Search results for: lesion detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3694

Search results for: lesion detection

1324 Cognitive Decline in People Living with HIV in India and Correlation with Neurometabolites Using 3T Magnetic Resonance Spectroscopy (MRS): A Cross-Sectional Study

Authors: Kartik Gupta, Virendra Kumar, Sanjeev Sinha, N. Jagannathan

Abstract:

Introduction: A significant number of patients having human immunodeficiency virus (HIV) infection show a neurocognitive decline (NCD) ranging from minor cognitive impairment to severe dementia. The possible causes of NCD in HIV-infected patients include brain injury by HIV before cART, neurotoxic viral proteins and metabolic abnormalities. In the present study, we compared the level of NCD in asymptomatic HIV-infected patients with changes in brain metabolites measured by using magnetic resonance spectroscopy (MRS). Methods: 43 HIV-positive patients (30 males and 13 females) coming to ART center of the hospital and HIV-seronegative healthy subjects were recruited for the study. All the participants completed MRI and MRS examination, detailed clinical assessments and a battery of neuropsychological tests. All the MR investigations were carried out at 3.0T MRI scanner (Ingenia/Achieva, Philips, Netherlands). MRI examination protocol included the acquisition of T2-weighted imaging in axial, coronal and sagittal planes, T1-weighted, FLAIR, and DWI images in the axial plane. Patients who showed any apparent lesion on MRI were excluded from the study. T2-weighted images in three orthogonal planes were used to localize the voxel in left frontal lobe white matter (FWM) and left basal ganglia (BG) for single voxel MRS. Single voxel MRS spectra were acquired with a point resolved spectroscopy (PRESS) localization pulse sequence at an echo time (TE) of 35 ms and a repetition time (TR) of 2000 ms with 64 or 128 scans. Automated preprocessing and determination of absolute concentrations of metabolites were estimated using LCModel by water scaling method and the Cramer-Rao lower bounds for all metabolites analyzed in the study were below 15\%. Levels of total N-acetyl aspartate (tNAA), total choline (tCho), glutamate + glutamine (Glx), total creatine (tCr), were measured. Cognition was tested using a battery of tests validated for Indian population. The cognitive domains tested were the memory, attention-information processing, abstraction-executive, simple and complex perceptual motor skills. Z-scores normalized according to age, sex and education standard were used to calculate dysfunction in these individual domains. The NCD was defined as dysfunction with Z-score ≤ 2 in at least two domains. One-way ANOVA was used to compare the difference in brain metabolites between the patients and healthy subjects. Results: NCD was found in 23 (53%) patients. There was no significant difference in age, CD4 count and viral load between the two groups. Maximum impairment was found in the domains of memory and simple motor skills i.e., 19/43 (44%). The prevalence of deficit in attention-information processing, complex perceptual motor skills and abstraction-executive function was 37%, 35%, 33% respectively. Subjects with NCD had a higher level of Glutamate in the Frontal region (8.03 ± 2.30 v/s. 10.26 ± 5.24, p-value 0.001). Conclusion: Among newly diagnosed, ART-naïve retroviral disease patients from India, cognitive decline was found in 53\% patients using tests validated for this population. Those with neurocognitive decline had a significantly higher level of Glutamate in the left frontal region. There was no significant difference in age, CD4 count and viral load at initiation of ART between the two groups.

Keywords: HIV, neurocognitive decline, neurometabolites, magnetic resonance spectroscopy

Procedia PDF Downloads 215
1323 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector

Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi

Abstract:

In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.

Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture

Procedia PDF Downloads 434
1322 Study of Phenotypic Polymorphism and Detection of Genotypic Polymorphism in Menochilus sexmaculatus (Coleoptera: Insecta) Using RAPD PCR

Authors: Huma Balouch

Abstract:

Menochilus sexmaculatus commonly known as six spotted zig zag ladybird, is an aphidophagus and the most misidentified Coccinellids due to the occurrence of numerous color variants. The correct identification of Menochilus sexmaculatus and its strains is necessary to implement the use of biological control. In the present study phenotypic and genotypic polymorphism was investigated in Menochilus sexmaculatus collected from Punjab, NWFP and Sindh provinces of Pakistan. Six different morphs of the species were distinguished by analyzing its Elytral color and spot pattern and then Polymerase Chain Reaction was used to generate random amplification of polymorphic DNA (RAPD) from six different types of Menochilus sexmaculatus. Forty primers (OPA & OPC Kit) were used to perform RAPD PCR on six different types of Menochilus sexmaculatus of which, seven primers revealed different patterns related to the Menochilus sexmaculatus types. These seven primers (OPA-04, OPA-09, OPA-18, OPC-04, OPC-12, OPC-15 and OPC-18) produced 111 clear polymorphic bands and 6 scorable strain specific markers. The cluster analysis applied to RAPD data showed high polymorphism among six types and it can be concluded that these six types are six polymorphic strains of the same species.

Keywords: Menochilus sexmaculatus, aphidophagus, coccinellids, phenotypic and genotypic polymorphism, RAPD-PCR, strain specific markers

Procedia PDF Downloads 497
1321 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach

Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim

Abstract:

De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantation

Keywords: De novo malignancy, bilirubin, data mining, transplantation

Procedia PDF Downloads 106
1320 Targeting Matrix Metalloprotease-9 to Reduce Coronary Artery Manifestations of Kawasaki’s Disease

Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian

Abstract:

Kawasaki disease (KD) is the primary cause of acquired pediatric heart disease as an acute vasculitis. In children with prolonged fever, rash, and inflammation of the mucosa KD must be considered as a clinical diagnosis. There is a persuasive suggestion of immune-mediated damage as the pathophysiologic cascade of KD. For example, the invasion of cytotoxic T-cells supports a viral etiology and the inflammasome of the innate immune system is a critical component in the vasculitis formation in KD. Animal models of KD propose the cytokine profiles, such as increased IL-1 and GM-CSF, which cause vascular damage. CRP and IFN-γ elevated expression and the upregulation of IL-6, and IL-10 production are also described in previous studies. Untreated KD is a critical risk factor for coronary artery diseases and myocardial infarction. Vascular damage may encompass amplified T-cell activity. SMAD3 is an essential molecule in down-regulating T-cells and increasing expression of FoxP3. It has a critical effect in the differentiation of regulatory T-cells. The discrepancy of regulatory T-cells and pro-inflammatory Th17 has been studied in acute coronary syndrome during KD. However in the coronary artery damaged lymphocytes and IgA plasma cells are seen at the lesion locations, the major immune cells in the coronary lesions are monocytes/macrophages and neutrophils. These cells secrete TNF-α, and activates matrix metalloprotease (MMP)-9, reducing the integrity of vessels and prompting patients to arise aneurysm. MMPs can break down the components of the extracellular matrix and assist immune cell movement. IVIG as an effective form of treatment clarified the role of the immune system, which may target pathogenic antigens and regulate cytokine production. Several reports have revealed that in the coronary arteries, high expression of MMP-9 in monocyte/macrophage results in pathologic cascades. Curcumin is a potent antioxidant and anti-inflammatory molecule. Curcumin decreases the production of reactive oxygen and nitrogen species and inhibits transcription factors like AP-1 and NF-κB. Curcumin also contains the characteristics of inhibitory effects on MMPs, especially MMP-9. The upregulation of MMP-9 is an important cellular response. Curcumin treatment caused a reverse effect and down-regulates MMP-9 gene expression which may fund the anti-inflammatory effect. Curcumin inhibits MMP-9 expression via PKC and AMPK-dependent pathways in Human monocytes cells. Elevated expression and activity of MMP-9 are correlated with advanced vascular lesions. AMPK controls lipid metabolism and oxidation, and protein synthesis. AMPK is also necessary for the MMP-9 activity and THP-1 cell adhesion to endothelial cells. Curcumin was shown to inhibit the activation of AMPKα. Compound C (AMPK inhibitor) inhibits MMP-9 expression level. Therefore, through inactivating AMPKs and PKC, curcumin decreases the MMP-9 level, which results in inhibiting monocyte/macrophage differentiation. Compound C also suppress the phosphorylation of three major classes of MAP kinase signaling, suggesting that curcumin may suppress MMP-9 level by inactivation of MAPK pathways. MAPK cascades are activated to induce the expression of MMP-9. Curcumin inhibits MAPKs phosphorylation, which contributes to the down-regulation of MMP-9. This study demonstrated that the potential inhibitory properties of curcumin over MMP-9 lead to a therapeutic strategy to reduce the risk of coronary artery involvement during KD.

Keywords: MMP-9, coronary artery aneurysm, Kawasaki’s disease, curcumin, AMPK, immune system, NF-κB, MAPK

Procedia PDF Downloads 305
1319 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates

Authors: Abdelaziz Fellah, Allaoua Maamir

Abstract:

We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.

Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery

Procedia PDF Downloads 388
1318 Classification of Echo Signals Based on Deep Learning

Authors: Aisulu Tileukulova, Zhexebay Dauren

Abstract:

Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.

Keywords: radar, neural network, convolutional neural network, echo signals

Procedia PDF Downloads 355
1317 Quality Assessment of Some Selected Locally Produced and Marketed Soft Drinks

Authors: Gerardette Darkwah, Gloria Ankar Brewoo, John Barimah, Gilbert Owiah Sampson, Vincent Abe-Inge

Abstract:

Soft drinks which are widely consumed in Ghana have been reported in other countries to contain toxic heavy metals beyond the acceptable limits in other countries. Therefore, the objective of this study was to assess the quality characteristics of selected locally produced and marketed soft drinks. Three (3) different batches of 23 soft drinks were sampled from the Takoradi markets. The samples were prescreened for the presence of reducing sugars, phosphates, alcohol and carbon dioxide. The heavy metal contents and physicochemical properties were also determined with AOAC methods. The results indicated the presence of reducing sugars, carbon dioxide and the absence of alcohol in all the selected soft drink samples. The pH, total sugars, moisture, total soluble solids (TSS) and titratable acidity ranged from 2.42 – 3.44, 3.30 – 10.44%, 85.63 – 94.85%, 5.00 – 13.33°Brix, and 0.21 – 1.99% respectively. The concentration of heavy metals were also below detection limits in all samples. The quality of the selected were within specifications prescribed by regulatory bodies.

Keywords: heavy metal contamination, locally manufactured, quality, soft drinks

Procedia PDF Downloads 150
1316 Static Eccentricity Fault Diagnosis in Synchronous Reluctance Motor and Permanent Magnet Assisted Synchronous Reluctance Motor

Authors: M. Naeimi, H. Aghazadeh, E. Afjei, A. Siadatan

Abstract:

In this paper, a novel view of air gap magnetic field analysis of synchronous reluctance motor and permanent magnet assisted synchronous reluctance motor under static eccentricity to provide the precise fault diagnosis based on three-dimensional finite element method is presented. Analytical nature of this method makes it possible to simulate reliable and precise model by considering the end effects and axial fringing effects. The results of the three-dimensional finite element analysis of synchronous reluctance motor and permanent magnet synchronous reluctance motor such as flux linkage, flux density, and compression both of SynRM and PM-SynRM for various eccentric motor conditions are obtained and analyzed. These results present useful information regarding to the detection of static eccentricity.

Keywords: synchronous reluctance motor (SynRM), permanent magnet assisted synchronous reluctance motor (PMaSynRM), finite element method, static eccentricity, fault analysis

Procedia PDF Downloads 315
1315 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 132
1314 Natural Radioactivity in Foods Consumed in Turkey

Authors: E. Kam, G. Karahan, H. Aslıyuksek, A. Bozkurt

Abstract:

This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides’ concentrations. The gross alpha radioactivities were measured as below 1 Bq kg-1 in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg-1 to 453 Bq kg-1, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of 40K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of 238U and 226Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides 226Ra, 238U, and 40K were calculated as 77.416 µSv y-1, 0.978 µSv y-1, and 140.55 µSv y-1, respectively.

Keywords: foods, radioactivity, gross alpha, gross beta, annual equivalent dose, Turkey

Procedia PDF Downloads 456
1313 Clinical and Molecular Characterization of Mycoplasmosis in Sheep in Egypt

Authors: Walid Mousa, Mohamed Nayel, Ahmed Zaghawa, Akram Salama, Ahmed El-Sify, Hesham Rashad, Dina El-Shafey

Abstract:

Mycoplasmosis in small ruminants constitutes a serious contagious problem in smallholders causing severe economic losses worldwide. This study was conducted to determine the clinical, Minimum Inhibitory Concentration (MIC) and molecular characterization of Mycoplasma species associated in sheep breeding herds in Menoufiya governorate, Egypt. Out of the examination of 400 sheep, 104 (26%) showed respiratory manifestations, nasal discharges, cough and conjunctivitis with systemic body reaction. Meanwhile, out of these examined sheep, only 56 (14%) were positive for mycoplasma isolation onto PPLO(Pleuropneumonia-like organisms) specific medium. The MIC for evaluating the efficacy of sensitivity of Mycoplasma isolates against different antibiotics groups revealed that both the Linospectin and Tylosin with 2ug, 0.25ug/ml concentration were the most effective antibiotics for Mycoplasma isolates. The application of PCR was the rapid, specific and sensitive molecular approach for detection of M. ovipneumoniae, and M. arginine at 390 and 326 bp, respectively, in all tested isolates. In conclusion, the diagnosis of Mycoplsamosis in sheep is important to achieve effective control measures and minimizing the disease dissemination among sheep herds.

Keywords: MIC, mycoplasmosis, PCR, sheep

Procedia PDF Downloads 229
1312 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 104
1311 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 133
1310 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators

Authors: Wei Ji

Abstract:

This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.

Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis

Procedia PDF Downloads 310
1309 The Modeling and Effectiveness Evaluation for Vessel Evasion to Acoustic Homing Torpedo

Authors: Li Minghui, Min Shaorong, Zhang Jun

Abstract:

This paper aims for studying the operational efficiency of surface warship’s motorized evasion to acoustic homing torpedo. It orderly developed trajectory model, self-guide detection model, vessel evasion model, as well as anti-torpedo error model in three-dimensional space to make up for the deficiency of precious researches analyzing two-dimensionally confrontational models. Then, making use of the Monte Carlo method, it carried out the simulation for the confrontation process of evasion in the environment of MATLAB. At last, it quantitatively analyzed the main factors which determine vessel’s survival probability. The results show that evasion relative bearing and speed will affect vessel’s survival probability significantly. Thus, choosing appropriate evasion relative bearing and speed according to alarming range and alarming relative bearing for torpedo, improving alarming range and positioning accuracy and reducing the response time against torpedo will improve the vessel’s survival probability significantly.

Keywords: acoustic homing torpedo, vessel evasion, monte carlo method, torpedo defense, vessel's survival probability

Procedia PDF Downloads 457
1308 Hybrid Approximate Structural-Semantic Frequent Subgraph Mining

Authors: Montaceur Zaghdoud, Mohamed Moussaoui, Jalel Akaichi

Abstract:

Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks.

Keywords: approximate graph matching, hybrid frequent subgraph mining, graph mining, possibility theory

Procedia PDF Downloads 407
1307 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 176
1306 miCoRe: Colorectal Cancer miRNAs Database

Authors: Rahul Agarwal, Ashutosh Singh

Abstract:

Colorectal cancer (CRC) also refers as bowel cancer or colon cancer. It involves the development of abnormal growth of cells in colon or rectum part of the body. This work leads to the development of a miRNA database in colorectal cancer. We named this database- miCoRe. This database comprises of all validated colon-rectal cancer miRNAs information from various published literature with an effectual knowledge based information retrieval system. miRNAs have been collected from various published literature reports. MySQL is used for main-framework of miCoRe while the front-end was developed in PHP script. The aim of developing miCoRe is to create a comprehensive central repository of colorectal carcinoma miRNAs with all germane information of miRNAs and their target genes. The current version of miCoRe consists of 238 miRNAs which are known to be implicated in malignancy of CRC. Alongside with miRNA information, miCoRe also contains the information related to the target genes of these miRNA. miCoRe furnishes the information about the mechanism of incidence and progression of the disease, which would further help the researchers to look for colorectal specific miRNAs therapies and CRC specific targeted drug designing. Moreover, it will also help in development of biomarkers for the better and early detection of CRC and will help in better clinical management of the disease.

Keywords: colorectal cancer, database, miCoRe, miRNAs

Procedia PDF Downloads 280
1305 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 117
1304 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data

Authors: Muthukumarasamy Govindarajan

Abstract:

Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.

Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine

Procedia PDF Downloads 144
1303 Computer-Aided Exudate Diagnosis for the Screening of Diabetic Retinopathy

Authors: Shu-Min Tsao, Chung-Ming Lo, Shao-Chun Chen

Abstract:

Most diabetes patients tend to suffer from its complication of retina diseases. Therefore, early detection and early treatment are important. In clinical examinations, using color fundus image was the most convenient and available examination method. According to the exudates appeared in the retinal image, the status of retina can be confirmed. However, the routine screening of diabetic retinopathy by color fundus images would bring time-consuming tasks to physicians. This study thus proposed a computer-aided exudate diagnosis for the screening of diabetic retinopathy. After removing vessels and optic disc in the retinal image, six quantitative features including region number, region area, and gray-scale values etc… were extracted from the remaining regions for classification. As results, all six features were evaluated to be statistically significant (p-value < 0.001). The accuracy of classifying the retinal images into normal and diabetic retinopathy achieved 82%. Based on this system, the clinical workload could be reduced. The examination procedure may also be improved to be more efficient.

Keywords: computer-aided diagnosis, diabetic retinopathy, exudate, image processing

Procedia PDF Downloads 274
1302 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System

Authors: Mamta M. Barapatre, V. N. Sahare

Abstract:

Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.

Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept

Procedia PDF Downloads 279
1301 High-Throughput, Purification-Free, Multiplexed Profiling of Circulating miRNA for Discovery, Validation, and Diagnostics

Authors: J. Hidalgo de Quintana, I. Stoner, M. Tackett, G. Doran, C. Rafferty, A. Windemuth, J. Tytell, D. Pregibon

Abstract:

We have developed the Multiplexed Circulating microRNA assay that allows the detection of up to 68 microRNA targets per sample. The assay combines particle­based multiplexing, using patented Firefly hydrogel particles, with single­ step RT-PCR signal. Thus, the Circulating microRNA assay leverages PCR sensitivity while eliminating the need for separate reverse transcription reactions and mitigating amplification biases introduced by target­-specific qPCR. Furthermore, the ability to multiplex targets in each well eliminates the need to split valuable samples into multiple reactions. Results from the Circulating microRNA assay are interpreted using Firefly Analysis Workbench, which allows visualization, normalization, and export of experimental data. To aid discovery and validation of biomarkers, we have generated fixed panels for Oncology, Cardiology, Neurology, Immunology, and Liver Toxicology. Here we present the data from several studies investigating circulating and tumor microRNA, showcasing the ability of the technology to sensitively and specifically detect microRNA biomarker signatures from fluid specimens.

Keywords: biomarkers, biofluids, miRNA, photolithography, flowcytometry

Procedia PDF Downloads 371
1300 Efficiency and Factors Affecting Inefficiency in the Previous Enclaves of Northern Region of Bangladesh: An Analysis of SFA and DEA Approach

Authors: Md. Mazharul Anwar, Md. Samim Hossain Molla, Md. Akkas Ali, Mian Sayeed Hassan

Abstract:

After 68 years, the agreement between Bangladesh and India was ratified on 6 June 2015 and Bangladesh received 111 Indian enclaves. Millions of farm household lived in these previous enclaves, being detached from the mainland of the country, they were socially, economically and educationally deprived people in the world. This study was undertaken to compare of the Stochastic Frontier Analysis (SFA) and the constant returns to scale (CRS) and variable returns to scale (VRS) output-oriented DEA models, based on a sample of 300 farms from the three largest enclaves of Bangladesh in 2017. However, the aim of the study was not only to compare estimates of technical efficiency obtained from the two approaches, but also to examine the determinants of inefficiency. The results from both the approaches indicated that there is a potential for increasing farm production through efficiency improvement and that farmers' age, educational level, new technology dissemination and training on crop production technology have a significant effect on efficiency. The detection and measurement of technical inefficiency and its determinants can be used as a basis of policy recommendations.

Keywords: DEA approach, previous enclaves, SFA approach, technical inefficiency

Procedia PDF Downloads 130
1299 Accumulation of Phlorotannins in Abalone Haliotis discus Hannai after Feeding with Eisenia bicyclis

Authors: Bangoura Issa, Ji-Young Kang, M. T. H. Chowdhury, Ji-Eun Lee, Yong-Ki Hong

Abstract:

Investigation was carried out for the production of value-added abalone Haliotis discus hannai containing bioactive phlorotannin by feeding phlorotannin-rich seaweed Eisenia bicyclis 2 weeks prior to harvesting. Accumulation of phlorotannins was proceded by feeding with E. bicyclis after 4 days of starvation. HPLC purification afforded two major phlorotannins. Mass spectrometry and 1H-nuclear magnetic resonance analysis clarified their structures to be as 7-phloroeckol and eckol. Throughout the feeding period of 20 days, 7-phloroeckolol was accumulated in the muscle (foot muscle tissue) up to 0.18±0.12 mg g-1 dry weight of tissue after 12 days. Eckol reached 0.21±0.03 mg g-1 dry weight of tissue after 18 days. By feeding Laminaria japonica as reference, abalone showed no detection of phlorotannins in the muscle tissue. Seaweed consumption and growth rate of abalone revealed almost similar when feed with E. bicyclis or L. japonicain 20 days. Phlorotannins reduction to half-maximal accumulation values took 1.0 day and 2.7 days for 7-phloroeckol and eckol respectively, after replacing the feed to L. japonica.

Keywords: abalone, accumulation, eisenia bicyclis, phlorotannins

Procedia PDF Downloads 385
1298 Production, Characterisation, and in vitro Degradation and Biocompatibility of a Solvent-Free Polylactic-Acid/Hydroxyapatite Composite for 3D-Printed Maxillofacial Bone-Regeneration Implants

Authors: Carlos Amnael Orozco-Diaz, Robert David Moorehead, Gwendolen Reilly, Fiona Gilchrist, Cheryl Ann Miller

Abstract:

The current gold-standard for maxillofacial reconstruction surgery (MRS) utilizes auto-grafted cancellous bone as a filler. This study was aimed towards developing a polylactic-acid/hydroxyapatite (PLA-HA) composite suitable for fused-deposition 3D printing. Functionalization of the polymer through the addition of HA was directed to promoting bone-regeneration properties so that the material can rival the performance of cancellous bone grafts in terms of bone-lesion repair. This kind of composite enables the production of MRS implants based off 3D-reconstructions from image studies – namely computed tomography – for anatomically-correct fitting. The present study encompassed in-vitro degradation and in-vitro biocompatibility profiling for 3D-printed PLA and PLA-HA composites. PLA filament (Verbatim Co.) and Captal S hydroxyapatite micro-scale HA powder (Plasma Biotal Ltd) were used to produce PLA-HA composites at 5, 10, and 20%-by-weight HA concentration. These were extruded into 3D-printing filament, and processed in a BFB-3000 3D-Printer (3D Systems Co.) into tensile specimens, and were mechanically challenged as per ASTM D638-03. Furthermore, tensile specimens were subjected to accelerated degradation in phosphate-buffered saline solution at 70°C for 23 days, as per ISO-10993-13-2010. This included monitoring of mass loss (through dry-weighing), crystallinity (through thermogravimetric analysis/differential thermal analysis), molecular weight (through gel-permeation chromatography), and tensile strength. In-vitro biocompatibility analysis included cell-viability and extracellular matrix deposition, which were performed both on flat surfaces and on 3D-constructs – both produced through 3D-printing. Discs of 1 cm in diameter and cubic 3D-meshes of 1 cm3 were 3D printed in PLA and PLA-HA composites (n = 6). The samples were seeded with 5000 MG-63 osteosarcoma-like cells, with cell viability extrapolated throughout 21 days via resazurin reduction assays. As evidence of osteogenicity, collagen and calcium deposition were indirectly estimated through Sirius Red staining and Alizarin Red staining respectively. Results have shown that 3D printed PLA loses structural integrity as early as the first day of accelerated degradation, which was significantly faster than the literature suggests. This was reflected in the loss of tensile strength down to untestable brittleness. During degradation, mass loss, molecular weight, and crystallinity behaved similarly to results found in similar studies for PLA. All composite versions and pure PLA were found to perform equivalent to tissue-culture plastic (TCP) in supporting the seeded-cell population. Significant differences (p = 0.05) were found on collagen deposition for higher HA concentrations, with composite samples performing better than pure PLA and TCP. Additionally, per-cell-calcium deposition on the 3D-meshes was significantly lower when comparing 3D-meshes to discs of the same material (p = 0.05). These results support the idea that 3D-printable PLA-HA composites are a viable resorbable material for artificial grafts for bone-regeneration. Degradation data suggests that 3D-printing of these materials – as opposed to other manufacturing methods – might result in faster resorption than currently-used PLA implants.

Keywords: bone regeneration implants, 3D-printing, in vitro testing, biocompatibility, polymer degradation, polymer-ceramic composites

Procedia PDF Downloads 155
1297 Design Study for the Rehabilitation of a Retaining Structure and Water Intake on Site

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, artificial defect, NDT, ultrasonic testing

Procedia PDF Downloads 351
1296 A Rapid and Greener Analysis Approach Based on Carbonfiber Column System and MS Detection for Urine Metabolomic Study After Oral Administration of Food Supplements 

Authors: Zakia Fatima, Liu Lu, Donghao Li

Abstract:

The analysis of biological fluid metabolites holds significant importance in various areas, such as medical research, food science, and public health. Investigating the levels and distribution of nutrients and their metabolites in biological samples allows researchers and healthcare professionals to determine nutritional status, find hypovitaminosis or hypervitaminosis, and monitor the effectiveness of interventions such as dietary supplementation. Moreover, analysis of nutrient metabolites provides insight into their metabolism, bioavailability, and physiological processes, aiding in the clarification of their health roles. Hence, the exploration of a distinct, efficient, eco-friendly, and simpler methodology is of great importance to evaluate the metabolic content of complex biological samples. In this work, a green and rapid analytical method based on an automated online two-dimensional microscale carbon fiber/activated carbon fiber fractionation system and time-of-flight mass spectrometry (2DμCFs-TOF-MS) was used to evaluate metabolites of urine samples after oral administration of food supplements. The automated 2DμCFs instrument consisted of a microcolumn system with bare carbon fibers and modified carbon fiber coatings. Carbon fibers and modified carbon fibers exhibit different surface characteristics and retain different compounds accordingly. Three kinds of mobile-phase solvents were used to elute the compounds of varied chemical heterogeneities. The 2DμCFs separation system has the ability to effectively separate different compounds based on their polarity and solubility characteristics. No complicated sample preparation method was used prior to analysis, which makes the strategy more eco-friendly, practical, and faster than traditional analysis methods. For optimum analysis results, mobile phase composition, flow rate, and sample diluent were optimized. Water-soluble vitamins, fat-soluble vitamins, and amino acids, as well as 22 vitamin metabolites and 11 vitamin metabolic pathway-related metabolites, were found in urine samples. All water-soluble vitamins except vitamin B12 and vitamin B9 were detected in urine samples. However, no fat-soluble vitamin was detected, and only one metabolite of Vitamin A was found. The comparison with a blank urine sample showed a considerable difference in metabolite content. For example, vitamin metabolites and three related metabolites were not detected in blank urine. The complete single-run screening was carried out in 5.5 minutes with the minimum consumption of toxic organic solvent (0.5 ml). The analytical method was evaluated in terms of greenness, with an analytical greenness (AGREE) score of 0.72. The method’s practicality has been investigated using the Blue Applicability Grade Index (BAGI) tool, obtaining a score of 77. The findings in this work illustrated that the 2DµCFs-TOF-MS approach could emerge as a fast, sustainable, practical, high-throughput, and promising analytical tool for screening and accurate detection of various metabolites, pharmaceuticals, and ingredients in dietary supplements as well as biological fluids.

Keywords: metabolite analysis, sustainability, carbon fibers, urine.

Procedia PDF Downloads 30
1295 Advancing Horizons: Standardized Future Trends in LiDAR and Remote Sensing Technologies

Authors: Spoorthi Sripad

Abstract:

Rapid advancements in LiDAR (Light Detection and Ranging) technology, coupled with the synergy of remote sensing, have revolutionized Earth observation methodologies. This paper delves into the transformative impact of integrated LiDAR and remote sensing systems. Focusing on miniaturization, cost reduction, and improved resolution, the study explores the evolving landscape of terrestrial and aquatic environmental monitoring. The integration of multi-wavelength and dual-mode LiDAR systems, alongside collaborative efforts with other remote sensing technologies, presents a comprehensive approach. The paper highlights the pivotal role of LiDAR in environmental assessment, urban planning, and infrastructure development. As the amalgamation of LiDAR and remote sensing reshapes Earth observation, this research anticipates a paradigm shift in our understanding of dynamic planetary processes.

Keywords: LiDAR, remote sensing, earth observation, advancements, integration, environmental monitoring, multi-wavelength, dual-mode, technology, urban planning, infrastructure, resolution, miniaturization

Procedia PDF Downloads 86