Search results for: initial strain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4576

Search results for: initial strain

2206 A Greener Approach for the Recovery of Proteins from Meat Industries

Authors: Jesus Hernandez, Zead Elzoeiry, Md. S. Islam, Abel E. Navarro

Abstract:

The adsorption of bovine serum albumin (BSA) and human hemoglobin (Hb) on naturally-occurring adsorbents was studied to evaluate the potential recovery of proteins from meat industry residues. Spent peppermint tea (PM), powdered purple corn cob (PC), natural clay (NC) and chemically-modified clay (MC) were investigated to elucidate the effects of pH, adsorbent dose, initial protein concentration, presence of salts and heavy metals. Equilibrium data were fitted according to isotherm models, reporting a maximum adsorption capacity at pH 8 of 318 and 344 mg BSA/g of PM and NC, respectively. Moreover, Hb displayed maximum adsorption capacity at pH 5 of 125 and 143 mg/g of PM and PC, respectively. Hofmeister salt effect was only observed for PM/Hb system. Salts tend to decrease protein adsorption, and the presence of Cu(II) ions had negligible impacts on the adsorption onto NC and PC. Desorption experiments confirmed that more than 85% of both proteins can be recovered with diluted acids and bases. SEM, EDX, and TGA analyses demonstrated that the adsorbents have favorable morphological and mechanical properties. The long-term goal of this study aims to recover soluble proteins from industrial wastewaters to produce animal food or any protein-based product.

Keywords: adsorption, albumin, clay, hemoglobin, spent peppermint leaf

Procedia PDF Downloads 90
2205 In vitro Analysis of the Effect of Supplementation Oils on Conjugated Linoleic Acid Production by Butyvibrio Fibrisolvense

Authors: B. D. Ravindra, A. K. Tyagi, C. Kathirvelan

Abstract:

Some micronutrients in food (milk and meat), called ‘functional food components’ exert beneficial effects other than their routine nutrient function and conjugated linoleic acid (CLA) is an unsaturated fatty acid of ruminant origin, an example of this category. However, recently the fear of hypercholesterolemia due to saturated fats has led to the avoidance of dietary fat especially of animal origin despite its advantages such as lowering blood cholesterol, immuno-modulation and anticarcinogenic property due to the presence of CLA. The dietary increase of linoleic acid (LA) and linolenic acid (LNA) is one of the feeding strategies for increasing the CLA concentration in milk. Butyrivibrio fibrisolvens is the one potential rumen bacteria, which has high potential to isomerize LA to CLA. The study was conducted to screen the different oils for CLA production, selected based on their LA concentration. Butyrivibrio fibrisolvens culture (strain 49, MZ3, 30/10) were isolated from the rumen liquor of fistulated Buffalo (age ≈ 3 years; weight ≈ 250 kg) were used in in-vitro experiments, further work was carried out with three oils viz., sunflower, mustard and soybean oil at different concentration (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 g/L of media) to study the growth of bacteria and CLA production at different incubation period (0, 8, 12, 18, 24, 48, 72 h). In the present study, growth of the bacteria was decreased linearly with increase in concentration of three oils. However, highest decrease in growth was recorded at the concentration of 0.30 g of three oils per litre of the media. Highest CLA production was 51.96, 42.08 and 25.60 µg/ml at 0.25 g and it decreased to 48.19, 39.35 and 23.41 µg/ml at 0.3 g supplementation of sunflower, soybean, and mustard oil per litre of the media, respectively at 18 h incubation period. The present study indicates the Butyrivibrio fibrisolvens bacteria involves in the biohydrogenation process, and LA rich sunflower meal can be used to improve the CLA production in rumen and thereby increasing the CLA concentration of milk.

Keywords: Butyrivibrio fibrisolvens, CLA, fatty acids, sunflower oil

Procedia PDF Downloads 359
2204 Life Cycle Cost Evaluation of Structures Retrofitted with Damped Cable System

Authors: Asad Naeem, Mohamed Nour Eldin, Jinkoo Kim

Abstract:

In this study, the seismic performance and life cycle cost (LCC) are evaluated of the structure retrofitted with the damped cable system (DCS). The DCS is a seismic retrofit system composed of a high-strength steel cable and pressurized viscous dampers. The analysis model of the system is first derived using various link elements in SAP2000, and fragility curves of the structure retrofitted with the DCS and viscous dampers are obtained using incremental dynamic analyses. The analysis results show that the residual displacements of the structure equipped with the DCS are smaller than those of the structure with retrofitted with only conventional viscous dampers, due to the enhanced stiffness/strength and self-centering capability of the damped cable system. The fragility analysis shows that the structure retrofitted with the DCS has the least probability of reaching the specific limit states compared to the bare structure and the structure with viscous damper. It is also observed that the initial cost of the DCS method required for the seismic retrofit is smaller than that of the structure with viscous dampers and that the LCC of the structure equipped with the DCS is smaller than that of the structure with viscous dampers.

Keywords: damped cable system, fragility curve, life cycle cost, seismic retrofit, self-centering

Procedia PDF Downloads 537
2203 The Implementation of the Javanese Lettered-Manuscript Image Preprocessing Stage Model on the Batak Lettered-Manuscript Image

Authors: Anastasia Rita Widiarti, Agus Harjoko, Marsono, Sri Hartati

Abstract:

This paper presents the results of a study to test whether the Javanese character manuscript image preprocessing model that have been more widely applied, can also be applied to segment of the Batak characters manuscripts. The treatment process begins by converting the input image into a binary image. After the binary image is cleaned of noise, then the segmentation lines using projection profile is conducted. If unclear histogram projection is found, then the smoothing process before production indexes line segments is conducted. For each line image which has been produced, then the segmentation scripts in the line is applied, with regard of the connectivity between pixels which making up the letters that there is no characters are truncated. From the results of manuscript preprocessing system prototype testing, it is obtained the information about the system truth percentage value on pieces of Pustaka Batak Podani Ma AjiMamisinon manuscript ranged from 65% to 87.68% with a confidence level of 95%. The value indicates the truth percentage shown the initial processing model in Javanese characters manuscript image can be applied also to the image of the Batak characters manuscript.

Keywords: connected component, preprocessing, manuscript image, projection profiles

Procedia PDF Downloads 385
2202 Ultrafine Non Water Soluble Drug Particles

Authors: Shahnaz Mansouri, David Martin, Xiao Dong Chen, Meng Wai Woo

Abstract:

Ultrafine hydrophobic and non-water-soluble drugs can increase the percentage of absorbed compared to their initial dosage. This paper provides a scalable new method of making ultrafine particles of substantially insoluble water compounds specifically, submicron particles of ethanol soluble and water insoluble pharmaceutical materials by steaming an ethanol droplet to prepare a suspension and then followed by immediate drying. This suspension is formed by adding evaporated water molecules as an anti-solvent to the solute of the samples and in early stage of precipitation continued to dry by evaporating both solvent and anti-solvent. This fine particle formation has produced fast dispersion powder in water. The new method is an extension of the antisolvent vapour precipitation technique which exposes a droplet to an antisolvent vapour with reference to the dissolved materials within the droplet. Ultrafine vitamin D3 and ibuprofen particles in the submicron ranges were produced. This work will form the basis for using spray dryers as high-throughput scalable micro-precipitators.

Keywords: single droplet drying, nano size particles, non-water-soluble drugs, precipitators

Procedia PDF Downloads 469
2201 Mass-Transfer Processes of Textile Dyes Adsorption onto Food Waste Adsorbent

Authors: Amel Asselah, Nadia Chabli, Imane Haddad

Abstract:

The adsorption of methylene blue and congo red dyes in an aqueous solution, on a food waste adsorbent: potato peel, and on a commercial adsorbent: activated carbon powder, was investigated using batch experiments. The objective of this study is the valorization of potato peel by its application in the elimination of these dyes. A comparison of the adsorption efficiency with a commercial adsorbent was carried out. Characterization of the potato peel adsorbent was performed by scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy, Fourier transforms infrared spectroscopy, X-ray diffraction, and X-ray fluorescence. Various parameters were analyzed, in particular: the adsorbent mass, the initial dye concentration, the contact time, the pH, and the temperature. The results reveal that it is about 98% for methylene blue-potato peel, 84% for congo red-potato peel, 84% for methylene blue-activated carbon, and 66% for congo red-activated carbon. The kinetic data were modeled by different equations and revealed that the adsorption of textile dyes on adsorbents follows the model pseudo-second-order, and the particular extra diffusion governs the adsorption mechanism. It has been found that the adsorption process could be described by the Langmuir isotherm.

Keywords: bioadsorbent, waste valorization, adsorptio, textile dyes

Procedia PDF Downloads 71
2200 Affordable Aerodynamic Balance for Instrumentation in a Wind Tunnel Using Arduino

Authors: Pedro Ferreira, Alexandre Frugoli, Pedro Frugoli, Lucio Leonardo, Thais Cavalheri

Abstract:

The teaching of fluid mechanics in engineering courses is, in general, a source of great difficulties for learning. The possibility of the use of experiments with didactic wind tunnels can facilitate the education of future professionals. The objective of this proposal is the development of a low-cost aerodynamic balance to be used in a didactic wind tunnel. The set is comprised of an Arduino microcontroller, programmed by an open source software, linked to load cells built by students from another project. The didactic wind tunnel is 5,0m long and the test area is 90,0 cm x 90,0 cm x 150,0 cm. The Weq® electric motor, model W-22 of 9,2 HP, moves a fan with nine blades, each blade 32,0 cm long. The Weq® frequency inverter, model WEGCFW 08 (Vector Inverter) is responsible for wind speed control and also for the motor inversion of the rotational direction. A flat-convex profile prototype of airfoil was tested by measuring the drag and lift forces for certain attack angles; the air flux conditions remained constant, monitored by a Pitot tube connected to a EXTECH® Instruments digital pressure differential manometer Model HD755. The results indicate a good agreement with the theory. The choice of all of the components of this proposal resulted in a low-cost product providing a high level of specific knowledge of mechanics of fluids, which may be a good alternative to teaching in countries with scarce educational resources. The system also allows the expansion to measure other parameters like fluid velocity, temperature, pressure as well as the possibility of automation of other functions.

Keywords: aerodynamic balance, wind tunnel, strain gauge, load cell, Arduino, low-cost education

Procedia PDF Downloads 420
2199 The Use of Ensiled Sweet Potato Vines as Feed for Growing Rabbits

Authors: O. John Makinde

Abstract:

A total of 60 crossbred weaned rabbits with an average initial body weight of 650 ±2.00 g were used to study the effects of dietary inclusion of graded levels of Ensiled sweet potato vines (ESPV) based diets on growth performance. Four experimental diets were formulated such that ESPV was included at the graded levels of 0, 10, 20 and 30 % in diets 1, 2, 3 and 4 respectively. The rabbits were randomly assigned into 4 treatments with 15 rabbits per treatment; each treatment was replicated thrice (5 rabbits per replicate) in a completely randomised design. The rabbits were managed based on standard experimental procedures. Feed and water were given ad libitum. Results of growth performance were not significantly different (p > 0.05) for final weight, total weight gain, total feed intake, feed conversion ratio and mortality. Carcass characteristics were not significantly (p > 0.05) affected by the treatments. The economics of production showed that diet with 30 % ESPV had the least cost/kg diets. It was concluded that ESPV can be included up to 30 % in growing rabbit diets without adverse effect on their performance, blood indices and cost of production.

Keywords: ensiled, sweet potato vines, performance, rabbits, Oryctolagus cuniculus

Procedia PDF Downloads 233
2198 Application of Bacteriophages as Natural Antibiotics in Aquaculture

Authors: Chamilani Nikapitiya, Mahanama De Zoysa, Jehee Lee

Abstract:

Most of the bacterial diseases are associated with high mortalities in aquaculture species and causing huge economic losses. Different approaches have been taken to prevent or control of bacterial diseases including use of vaccines, probiotics, chemotherapy, water quality management, etc. Antibiotics are widely applying as chemotherapy to control bacterial diseases, however, it has been shown that frequent use of antibiotics is favored to develop multi-drug resistance bacteria. Therefore, phages and phage encoded lytic proteins are known to be one of the most promising alternatives for antibiotics to avoid the emergence of antibiotic-resistant bacteria. We isolated and characterized the two lytic phages, namely pAh-1 and pAs-1 against pathogenic Aeromonas hydrophila and Aeromonas salmonicida, respectively. Morphological characteristics were analyzed by Transmission electron microscopy (TEM) and host strain specificities were tested with Aeromonas and other closely related bacterial strains. TEM analysis revealed that both pAh-1 and pAsm-1 are composed of an icosahedral head and a segmented tail, and we suggest that, they are new members of Myoviridae family. Genome sizes of isolated phages were estimated by restriction enzyme digestion of genomic DNA using selected endonucleases followed by agarose gel electrophoresis. Estimated genome size of pAh-1 and pAs-1 were approximately 64 Kbp and 120 Kbp, respectively. Both pAh-1 and pAs-1 have shown narrow host specificity. Moreover, protective effects of phage therapy against fish pathogenic A. hydrophila were investigated in zebrafish model. The survival rate was 40% higher when zebrafish received intra-peritoneal injection (i.p.) of pAh-1 were simultaneously challenge A. hydrophila (2 x 106 CFU/fish) compared to that without phage treatment. Overall results suggest that both pAh-1 and pAs-1 can be used as a potential phage therapy to control Aeromonas infections in aquaculture.

Keywords: Aeromonas infections, antibiotic resistance, bacteriophage, bio-control, lytic phage

Procedia PDF Downloads 180
2197 Triassic and Liassic Paleoenvironments during the Central Atlantic Magmatique Province (CAMP) Effusion in the Moroccan Coastal Meseta: The Mohammedia-Benslimane-El Gara-Berrechid Basin

Authors: Rachid Essamoud, Abdelkrim Afenzar, Ahmed Belqadi

Abstract:

During the Early Mesozoic, the northwestern part of the African continent was affected by initial fracturing associated with the early stages of the opening of the Central Atlantic (Atlantic Rift). During this rifting phase, the Moroccan Meseta experienced an extensive tectonic regime. This extension favored the formation of a set of rift-type basins, including the Mohammedia-Benslimane-ElGara-Berrechid basin. Thus, it is essential to know the nature of the deposits in this basin and their evolution over time as well as their relationship with the basaltic effusion of the Central Atlantic Magmatic Province (CAMP). These deposits are subdivided into two large series: The Lower clay-salt series attributed to the Triassic and the Upper clay-salt series attributed to the Liassic. The two series are separated by the Upper Triassic-Lower Liassic basaltic complex. The detailed sedimentological analysis made it possible to characterize four mega-sequences, fifteen types of facies and eight architectural elements and facies associations in the Triassic series. A progressive decrease observed in paleo-slope over time led to the evolution of the paleoenvironment from a proximal system of alluvial fans to a braided fluvial style, then to an anastomosed system. These environments eventually evolved into an alluvial plain associated with a coastal plain where playa lakes, mudflats and lagoons had developed. The pure and massive halitic facies at the top of the series probably indicate an evolution of the depositional environment towards a shallow subtidal environment. The presence of these evaporites indicates a climate that favored their precipitation, in this case, a fairly hot and humid climate. The sedimentological analysis of the supra-basaltic part shows that during the Lower Liassic, the paleopente after basaltic effusion remained weak with distal environments. The faciological analysis revealed the presence of four major sandstone, silty, clayey and evaporitic lithofacies organized in two mega-sequences: the sedimentation of the first rock-salt mega-sequence took place in a brine depression system free, followed by saline mudflats under continental influences. The upper clay mega-sequence displays facies documenting sea level fluctuations from the final transgression of the Tethys or the opening Atlantic. Saliferous sedimentation is therefore favored from the Upper Triassic, but experienced a sudden rupture by the emission of basaltic flows which are interstratified in the azoic salt clays of very shallow seas. This basaltic emission which belongs to the CAMP would come from a fissural volcanism probably carried out through transfer faults located in the NW and SE of the basin. Their emplacement is probably subaquatic to subaerial. From a chronological and paleogeographic point of view, this main volcanism, dated between the Upper Triassic and the Lower Liassic (180-200 MA), is linked to the fragmentation of Pangea and managed by a progressive expansion triggered in the West in close relation with the initial phases of Central Atlantic rifting and seems to coincide with the major mass extinction at the Triassic-Jurassic boundary.

Keywords: Basalt, CAMP, Liassic, sedimentology, Triassic, Morocco

Procedia PDF Downloads 57
2196 Removal of Oxytetracycline Using Sonophotocatalysis: Parametric Study

Authors: Bouafia-Chergui Souâd, Chabani Malika, Bensmaili Aicha

Abstract:

Water treatment and especially, medicament pollutants are nowadays important problems. Degradation of oxytetracycline was carried out using combined process of low-frequency ultrasound (US), ultraviolet irradiation and a catalyst. The effectiveness of the coupled processes has been evaluated by studying the effects of various operating parameters including initial OTC concentration, solution pH and catalyst mass. For the photolysis process, the monochromatic ultraviolet light wavelength utilized was 365 nm. The sonolysis experiments were performed with ultrasound at a frequency of 40 kHz. The heterogeneous photocatalysis was studied in the presence of TiO2. The processes were employed individually, and simultaneously to examine the details of the processes and to investigate the contribution of each process. Low UV intensity (12W), low pH and high mass of TiO2 conditions enhanced the sono-photocatalytic degradation of OTC. The results showed that the individual contribution sonochemical and photochemical reactions are very low, however, their coupling increases the degradation rate of 8 times compared to photolysis and 2 times compared to sonolysis. There is a synergistic effect between the two modes of radiation, UV and U.S. leading to 82.04% degradation yield. An application of these combined processes on the treatment of a real pharmaceutical wastewater was examined.

Keywords: sonolysis, photocatalysis, combined process, antibiotic

Procedia PDF Downloads 269
2195 A Novel Solution Methodology for Transit Route Network Design Problem

Authors: Ghada Moussa, Mamoud Owais

Abstract:

Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.

Keywords: integer programming, transit route design, transportation, urban planning

Procedia PDF Downloads 251
2194 The Shape Memory Recovery Properties under Load of a Polymer Composite

Authors: Abdul Basit, Gildas Lhostis, Bernard Durand

Abstract:

Shape memory polymers (SMPs) are replacing shape memory alloys (SMAs) in many applications as SMPs have certain superior properties than SMAs. However, SMAs possess some properties like recovery under stress that SMPs lack. SMPs cannot give complete recovery even under a small load. SMPs are initially heated close to their transition temperature (glass transition temperature or the melting temperature). Then force is applied to deform the heated SMP to a specific position. Subsequently, SMP is allowed to cool keeping it deformed. After cooling, SMP gets the temporary shape. This temporary shape can be recovered by heating it again at the same temperature that was given it while heating it initially. As a result, it will recover its original position. SMP can perform unconstrained recovery and constrained recovery, however; under the load, it only recovers partially. In this work, the recovery under the load of an asymmetrical shape memory composite called as CBCM-SMPC has been investigated. It is found that it has the ability to recover under different loads. Under different loads, it shows powerful complete recovery in reference to initial position. This property can be utilized in many applications.

Keywords: shape memory, polymer composite, thermo-mechanical testing, recovery under load

Procedia PDF Downloads 415
2193 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties

Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer

Abstract:

Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.

Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory

Procedia PDF Downloads 116
2192 Modelling Water Vapor Sorption and Diffusion in Hydrocolloid Particles

Authors: Andrew Terhemen Tyowua, Zhibing Zhang, Michael J. Adams

Abstract:

Water vapor sorption data at a range of temperatures (25–70 °C) have been obtained for starch (corn and wheat) and non-starch (carrageenan and xanthan gum) hydrocolloid particles in the form of a thin slab. The results reveal that the data may be more accurately described by an existing sigmoidal rather than a Fickian model. The sigmoidal model accounts for the initial surface sorption before the onset of bulk diffusion. At relatively small water activities (≤ 0.3), the absorption of the moisture caused the particles to be plasticized, but at greater activity values (> 0.3), anti-plasticization was induced. However, it was found that for the whole range of water activities and temperatures studied, the data could be characterized by a single non-dimensional number, which was termed the non-Fickian diffusion number where τ is the characteristic time of surface sorption, D is the bulk diffusion coefficient and L is the thickness of the layer of particles. The activation energy suggested that the anti-plasticization mechanism was the result of a reduction in the molecular free volume or an increase in crystallinity.

Keywords: anti-plasticization, arrhenius behavior, diffusion coefficient, hygroscopic polymers, moisture migration, non-fickian sigmoidal model

Procedia PDF Downloads 14
2191 Characterization and Pcr Detection of Selected Strains of Psychrotrophic Bacteria Isolated From Raw Milk

Authors: Kidane workelul, Li xu, Xiaoyang Pang, Jiaping Lv

Abstract:

Dairy products are exceptionally ideal media for the growth of microorganisms because of their high nutritional content. There are several ways that milk might get contaminated throughout the milking process, including how the raw milk is transported and stored, as well as how long it is kept before being processed. Psychrotrophic bacteria are among the one which can deteriorate the quality of milk mainly their heat resistance proteas and lipase enzyme. For this research purpose 8 selected strains of Psychrotrophic bacteria (Entrococcus hirae, Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas putida, Exiguobacterium indicum, Pseudomonas paralactice, Acinetobacter indicum, Serratia liquefacients)are chosen and try to determine their characteristics based on the research methodology protocol. Thus, the 8 selected strains are cultured, plated incubate, extracted their genomic DNA and genome DNA was amplified, the purpose of the study was to identify their Psychrotrophic properties, lipase hydrolysis positive test, their optimal incubation temperature, designed primer using the noble strain P,flourescens conserved region area in target with lipA gene, optimized primer specificity as well as sensitivity and PCR detection for lipase positive strains using the design primers. Based on the findings both the selected 8 strains isolated from stored raw milk are Psychrotrophic bacteria, 6 of the selected strains except the 2 strains are positive for lipase hydrolysis, their optimal temperature is 20 to 30 OC, the designed primer specificity is very accurate and amplifies for those strains only with lipase positive but could not amplify for the others. Thus, the result is promising and could help in detecting the Psychrotrophic bacteria producing heat resistance enzymes (lipase) at early stage before the milk is processed and this will safe production loss for the dairy industry.

Keywords: dairy industry, heat-resistant, lipA, milk, primer and psychrotrophic

Procedia PDF Downloads 42
2190 Effects of Nickel and Inoculation with Three Isolates of Ectomycorrhizal Fungus Pisolithus on Eucalyptus urophylla S. T. Blake Seedlings

Authors: N. S. Aggangan, B. Dell, P. Jeffries

Abstract:

Two moderately nickel-tolerant isolates of Pisolithus were compared with a non-Ni tolerant isolate for the ability to increase the growth of Eucalyptus urophylla seedlings in the presence of nickel (Ni) in pots in a glasshouse. Seedlings, either inoculated with mycorrhizal fungi or uninoculated, were transplanted into pots containing 3 kg steam-pasteurized yellow sand amended with five concentrations of nickel (0, 6, 12, 24 and 48 mg Ni kg-1 soil). Within a day after transplanting, all seedlings subjected to Ni rates greater than 12 mg Ni kg-1 showed symptoms of wilting and all died within two weeks. At lower nickel concentrations, inoculation with all 3 Pisolithus strains increased rates of seedling survival after 12 weeks. Inoculation with all 3 isolates Pisolithus significantly increased the growth of plants in Ni-free soils between 2 to 4 fold dependent on isolate. However, seedlings growing in soils containing 12 mg Ni kg-1 grew poorly, mycorrhizal development was inhibited and no beneficial effects of inoculation were noted. In contrast, in soils containing 6mg Ni kg-1, inoculated seedlings did not show the reduced root growth and severe toxicity symptoms (chlorosis on young leaves and shoot tips) of uninoculated seedlings. Only the Ni-tolerant Pisolithus strains conferred a significant growth benefit compared to non-inoculated controls, and plants inoculated with one of these strains grew twice the size as those inoculated with the other Ni-tolerant strain. Inorganic plant analysis revealed that inoculation increased plant growth through improved P uptake but did not prevent Ni uptake. However, toxicity may have been minimized by dilution due to an increase in plant biomass. The results suggest that only one of the Ni-tolerant strains of Pisolithus has the potential to improve the growth and survival of E. urophylla seedlings in serpentine soils in the Philippines.

Keywords: ectomycorrhizas, Eucalyptus urophylla, nickel tolerance, pisolithus

Procedia PDF Downloads 290
2189 Antifungal Susceptibility of Saprolegnia parasitica Isolated from Rainbow Trout and Its Host Pathogen Interaction in Zebrafish Disease Model

Authors: Sangyeop Shin, D. C. M. Kulatunga, S. H. S. Dananjaya, Chamilani Nikapitiya, Jehee Lee, Mahanama De Zoysa

Abstract:

Saprolegniasis is one of the most devastating fungal diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated fungi belong to the member of S. parasitica, supported by its typical fungal features including cotton-like whitish mycelium, zoospores (primary and secondary) and phylogenetic analysis with internal transcribed spacer (ITS) region. Pathogenicity of isolated S. parasitica was developed in embryo, larvae, juvenile and adult zebrafish as a disease model. Up regulation of host genes encoding ZfTnf-α, Zfc-Rel, ZfIl-12, ZfLyz-c, Zfβ-def, and ZfHsp-70 was identified in zebrafish larvae after experimental challenge of S. parasitica showing the host immune responses against the S. parasitica. Survival of the juveniles upon fungal infection might be due to the increased immune protection in the host. Investigation of antifungal susceptibility of S. parasitica with natural lawsone (2-hydroxy-1,4-naphthoquinone) revealed the minimum inhibitory concentration (MIC) and percentage inhibition of radial growth (PIRG %) as 200 µg/mL and 31.8%, respectively. Lawsone was able to change the membrane permeability, and cause irreversible damage and disintegration to the cellular membranes of S. parasitica which might have effect on fungi growth inhibition. Moreover, the mycelium exposed to lawsone (MIC level) changed the transcriptional responses of S. parasitica genes. Overall results indicate that lawsone could be a potential and novel anti-S. parasitica agent for controlling S. parasitica infection.

Keywords: host-pathogen interactions, lawsone, rainbow trout, Saprolegnia parasitica, Saprolegniasis, zebrafish

Procedia PDF Downloads 230
2188 Lifetime Assessment of Highly Efficient Metal-Based Air-Diffuser through Accelerated Degradation Test

Authors: Jinyoung Choi, Tae-Ho Yoon, Sunmook Lee

Abstract:

Degradation of standard oxygen transfer efficiency (SOTE) with time was observed for the assessment of lifetime of metal-based air-diffuser, which displaced a polymer composite-based air-diffuser in order to attain a longer lifetime in the actual field. The degradation of air-diffuser occurred due to the failure of the formation of small and uniform air bubbles since the patterns formed on the disc of air-diffuser deteriorated and/or changed from their initial shapes while they were continuously exposed to the air blowing condition during the operation in the field. Therefore, the lifetime assessment of metal-based air-diffuser was carried out through an accelerated degradation test by accelerating the air-blowing conditions in 200 L/min, 300 L/min, and 400 L/min and the lifetime of normal operating condition at 120 L/min was predicted. It was found that Weibull distribution was the most proper one for describing the lifetime distribution of metal-based air-diffuser in the present study. The shape and scale parameters indicated that the accelerated blowing conditions were all within the acceleration domain. The lifetime was predicted by adopting inverse power model for a stress-life relationship and estimated to be B10=94,004 hrs with CL=95%. Acknowledgement: This work was financially supported by the Ministry of Trade, Industry and Energy (Grant number: N0001475).

Keywords: accelerated degradation test, air-diffuser, lifetime assessment, SOTE

Procedia PDF Downloads 549
2187 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning

Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas

Abstract:

During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.

Keywords: cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation

Procedia PDF Downloads 163
2186 Numerical Analysis of Mandible Fracture Stabilization System

Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski

Abstract:

The aim of the presented work is to recognize the impact of mini-plate application approach on the stress and displacement within the stabilization devices and surrounding bones. The mini-plate osteosynthesis technique is widely used by craniofacial surgeons as an improved replacement of wire connection approach. Many different types of metal plates and screws are used to the physical connection of fractured bones. Below investigation is based on a clinical observation of patient hospitalized with mini-plate stabilization system. Analysis was conducted on a solid mandible geometry, which was modeled basis on the computed tomography scan of the hospitalized patient. In order to achieve most realistic connected system behavior, the cortical and cancellous bone layers were assumed. The temporomandibular joint was simplified to the elastic element to allow physiological movement of loaded bone. The muscles of mastication system were reduced to three pairs, modeled as shell structures. Finite element grid was created by the ANSYS software, where hexahedral and tetrahedral variants of SOLID185 element were used. A set of nonlinear contact conditions were applied on connecting devices and bone common surfaces. Properties of particular contact pair depend on screw - mini-plate connection type and possible gaps between fractured bone around osteosynthesis region. Some of the investigated cases contain prestress introduced to the mini-plate during the application, what responds the initial bending of the connecting device to fit the retromolar fossa region. Assumed bone fracture occurs within the mandible angle zone. Due to the significant deformation of the connecting plate in some of the assembly cases the elastic-plastic model of titanium alloy was assumed. The bone tissues were covered by the orthotropic material. As a loading were used the gauge force of magnitude of 100N applied in three different locations. Conducted analysis shows significant impact of mini-plate application methodology on the stress distribution within the miniplate. Prestress effect introduces additional loading, which leads to locally exceed the titanium alloy yield limit. Stress in surrounding bone increases rapidly around the screws application region, exceeding assumed bone yield limit, what indicate the local bone destruction. Approach with the doubled mini-plate shows increased stress within the connector due to the too rigid connection, where the main path of loading leads through the mini-plates instead of plates and connected bones. Clinical observations confirm more frequent plate destruction of stiffer connections. Some of them could be an effect of decreased low cyclic fatigue capability caused by the overloading. The executed analysis prove that the mini-plate system provides sufficient support to mandible fracture treatment, however, many applicable solutions shifts the entire system to the allowable material limits. The results show that connector application with the initial loading needs to be carefully established due to the small material capability tolerances. Comparison to the clinical observations allows optimizing entire connection to prevent future incidents.

Keywords: mandible fracture, mini-plate connection, numerical analysis, osteosynthesis

Procedia PDF Downloads 262
2185 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa

Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly

Abstract:

It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.

Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal

Procedia PDF Downloads 259
2184 Pb and NI Removal from Aqueous Environment by Green Synthesized Iron Nanoparticles Using Fruit Cucumis Melo and Leaves of Ficus Virens

Authors: Amandeep Kaur, Sangeeta Sharma

Abstract:

Keeping in view the serious entanglement of heavy metals ( Pb+2 and Ni+2) ions in an aqueous environment, a rapid search for efficient adsorbents for the adsorption of heavy metals has become highly desirable. In this quest, green synthesized Fe np’s have gathered attention because of their excellent adsorption capability of heavy metals from aqueous solution. This research report aims at the fabrication of Fe np’s using the fruit Cucumis melo and leaves of Ficus virens via a biogenic synthesis route. Further, synthesized CM-Fe-np’s and FV-Fe-np’s have been tested as potential bio-adsorbents for the removal of Pb+2 and Ni+2 by carrying out adsorption batch experiments. The influence of myriad parameters like initial concentration of Pb/Ni (5,10,15,20,25 mg/L), contact time (10 to 200 min.), adsorbent dosage (0.5, 0.10, 0.15 mg/L), shaking speed (120 to 350 rpm) and pH value (6,7,8,9) has been investigated. The maximum removal with CM-Fe-np’s and FV-Fe-np’s has been achieved at pH 7, metal conc. 5 mg/L, dosage 0.9 g/L, shaking speed 200 rpm and reaction contact time 200 min during the adsorption experiment. The results obtained are found to be in accordance with Freundlich and Langmuir's adsorption models; consequently, they could be highly applicable to the wastewater treatment plant.

Keywords: adsorption, biogenic synthesis, nanoparticles, nickel, lead

Procedia PDF Downloads 72
2183 Geometrical Analysis of an Atheroma Plaque in Left Anterior Descending Coronary Artery

Authors: Sohrab Jafarpour, Hamed Farokhi, Mohammad Rahmati, Alireza Gholipour

Abstract:

In the current study, a nonlinear fluid-structure interaction (FSI) biomechanical model of atherosclerosis in the left anterior descending (LAD) coronary artery is developed to perform a detailed sensitivity analysis of the geometrical features of an atheroma plaque. In the development of the numerical model, first, a 3D geometry of the diseased artery is developed based on patient-specific dimensions obtained from the experimental studies. The geometry includes four influential geometric characteristics: stenosis ratio, plaque shoulder-length, fibrous cap thickness, and eccentricity intensity. Then, a suitable strain energy density function (SEDF) is proposed based on the detailed material stability analysis to accurately model the hyperelasticity of the arterial walls. The time-varying inlet velocity and outlet pressure profiles are adopted from experimental measurements to incorporate the pulsatile nature of the blood flow. In addition, a computationally efficient type of structural boundary condition is imposed on the arterial walls. Finally, a non-Newtonian viscosity model is implemented to model the shear-thinning behaviour of the blood flow. According to the results, the structural responses in terms of the maximum principal stress (MPS) are affected more compared to the fluid responses in terms of wall shear stress (WSS) as the geometrical characteristics are varying. The extent of these changes is critical in the vulnerability assessment of an atheroma plaque.

Keywords: atherosclerosis, fluid-Structure interaction modeling, material stability analysis, and nonlinear biomechanics

Procedia PDF Downloads 74
2182 Cyclic Response of Reinforced Concrete Beam-Column Joint Strengthening by FRP

Authors: N. Attari, S. Amziane, M. Chemrouk

Abstract:

A large number of old buildings have been identified as having potentially critical detailing to resist earthquakes. The main reinforcement of lap-spliced columns just above the joint region, discontinuous bottom beam reinforcement, and little or no joint transverse reinforcement are the most critical details of interior beam column joints in such buildings. This structural type constitutes a large share of the building stock, both in developed and developing countries, and hence it represents a substantial exposure. Direct observation of damaged structures, following the Algiers 2003 earthquake, has shown that damage occurs usually at the beam-column joints, with failure in bending or shear, depending on geometry and reinforcement distribution and type. While substantial literature exists for the design of concrete frame joints to withstand this type of failure, after the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore; there exists a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 399
2181 A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors

Authors: Ye Ling, Jiang Yuting, Ruan Haihui

Abstract:

Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%.

Keywords: zinc ion capacitor, metal nitride, zif-8, supercapacitor

Procedia PDF Downloads 21
2180 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network

Authors: Asmau Mukhtar Ahmed, Olga Duran

Abstract:

Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.

Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image

Procedia PDF Downloads 98
2179 The Role of Named Entity Recognition for Information Extraction

Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov

Abstract:

Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.

Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area

Procedia PDF Downloads 65
2178 Scalable and Accurate Detection of Pathogens from Whole-Genome Shotgun Sequencing

Authors: Janos Juhasz, Sandor Pongor, Balazs Ligeti

Abstract:

Next-generation sequencing, especially whole genome shotgun sequencing, is becoming a common approach to gain insight into the microbiomes in a culture-independent way, even in clinical practice. It does not only give us information about the species composition of an environmental sample but opens the possibility to detect antimicrobial resistance and novel, or currently unknown, pathogens. Accurately and reliably detecting the microbial strains is a challenging task. Here we present a sensitive approach for detecting pathogens in metagenomics samples with special regard to detecting novel variants of known pathogens. We have developed a pipeline that uses fast, short read aligner programs (i.e., Bowtie2/BWA) and comprehensive nucleotide databases. Taxonomic binning is based on the lowest common ancestor (LCA) principle; each read is assigned to a taxon, covering the most significantly hit taxa. This approach helps in balancing between sensitivity and running time. The program was tested both on experimental and synthetic data. The results implicate that our method performs as good as the state-of-the-art BLAST-based ones, furthermore, in some cases, it even proves to be better, while running two orders magnitude faster. It is sensitive and capable of identifying taxa being present only in small abundance. Moreover, it needs two orders of magnitude less reads to complete the identification than MetaPhLan2 does. We analyzed an experimental anthrax dataset (B. anthracis strain BA104). The majority of the reads (96.50%) was classified as Bacillus anthracis, a small portion, 1.2%, was classified as other species from the Bacillus genus. We demonstrate that the evaluation of high-throughput sequencing data is feasible in a reasonable time with good classification accuracy.

Keywords: metagenomics, taxonomy binning, pathogens, microbiome, B. anthracis

Procedia PDF Downloads 118
2177 Mechanical and Thermal Characterization of Washout Tooling for Resin Transfer Molding

Authors: Zachary N. Wing

Abstract:

Compared to autoclave based processes, Resin Transfer Molding (RTM) offers several key advantages. This includes high internal and external complexity, less waste, lower volatile emissions, higher production rates, and excellent surface finish. However, the injection of high pressure-high temperature resin presents a tooling challenge in cases where trapped geometries exist. Tooling materials that can sustain these conditions and be easily removed would expand the use of RTM. We have performed research on developing an RTM suitable tooling material called 'RTMCore' for use in forming trapped geometries. RTMCore tooling materials can withstand the injection of high temperature-high pressure resin but be easily removed with tap water. RTM properties and performance capabilities are reviewed against other washout systems. Our research will cover the preliminary characterization of tooling system properties, mechanical behavior, and initial results from an RTM manufacturing trial. Preliminary results show the material can sustain pressures greater than 13 MPa and temperatures greater than 150°C.

Keywords: RTM, resin transfer molding, trapped geometries, washout tooling

Procedia PDF Downloads 146