Search results for: friction coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2773

Search results for: friction coefficient

403 Optical Simulation of HfO₂ Film - Black Silicon Structures for Solar Cells Applications

Authors: Gagik Ayvazyan, Levon Hakhoyan, Surik Khudaverdyan, Laura Lakhoyan

Abstract:

Black Si (b-Si) is a nano-structured Si surface formed by a self-organized, maskless process with needle-like surfaces discernible by their black color. The combination of low reflectivity and the semi-conductive properties of Si found in b-Si make it a prime candidate for application in solar cells as an antireflection surface. However, surface recombination losses significantly reduce the efficiency of b-Si solar cells. Surface passivation using suitable dielectric films can minimize these losses. Nowadays some works have demonstrated that excellent passivation of b-Si nanostructures can be reached using Al₂O₃ films. However, the negative fixed charge present in Al₂O₃ films should provide good field effect passivation only for p- and p+-type Si surfaces. HfO2 thin films have not been practically tested for passivation of b-Si. HfO₂ could provide an alternative for n- and n+- type Si surface passivation since it has been shown to exhibit positive fixed charge. Using optical simulation by Finite-Difference Time Domain (FDTD) method, the possibility of b-Si passivation by HfO2 films has been analyzed. The FDTD modeling revealed that b-Si layers with HfO₂ films effectively suppress reflection in the wavelength range 400–1000 nm and across a wide range of incidence angles. The light-trapping performance primarily depends on geometry of the needles and film thickness. With the decrease of periodicity and increase of height of the needles, the reflectance decrease significantly, and the absorption increases significantly. Increase in thickness results in an even greater decrease in the calculated reflection coefficient of model structures and, consequently, to an improvement in the antireflection characteristics in the visible range. The excellent surface passivation and low reflectance results prove the potential of using the combination of the b-Si surface and the HfO₂ film for solar cells applications.

Keywords: antireflection, black silicon, HfO₂, passivation, simulation, solar cell

Procedia PDF Downloads 146
402 Research on the Effect of Coal Ash Slag Structure Evolution on Its Flow Behavior During Co-gasification of Coal and Indirect Coal Liquefaction Residue

Authors: Linmin Zhang

Abstract:

Entrained-flow gasification technology is considered the most promising gasification technology because of its clean and efficient utilization characteristics. The stable fluidity of slag at high temperatures is the key to affecting the long-period operation of the gasifier. The diversity and differences of coal ash-slag systems make it difficult to meet the requirements for stable slagging in entrained-flow gasifiers. Therefore, coal blending or adding fluxes has been used in industry for a long time to improve the flow behavior of coal ash. As a by-product of the indirect coal liquefaction process, indirect coal liquefaction residue (ICLR) is a kind of industrial solid waste that is usually disposed of by stacking or landfilling. However, this disposal method will not only occupy land resources but also cause serious pollution to soil and water bodies by leachate containing toxic and harmful metals. As a carbon-containing matrix, ICLR is not only a kind of waste but also a kind of energy substance. Utilizing existing industrial gasifiers to blend combustion ICLR can not only transform industrial solid waste into fuel but also save coal resources. Moreover, the ICLR usually contains a unique ash chemical composition different from coal, which will affect the slagging performance of the gasifier. Therefore, exploring the effect of the ash addition in ICLR on the coal ash flow behavior can not only improve the slagging performance and gasification efficiency of entrained-flow gasifier by using the unique ash chemical composition of ICLR but also provide some theoretical support for the large-scale consumption of industrial solid waste. Combining molecular dynamics simulation with Raman spectroscopy experiment, the effect of ICLR addition on slag structure and fluidity was explained, and the relationship between the evolution law of slag short/medium range microstructure and macroscopic flow behavior was discussed. The research found that the high silicon and aluminum content in coal ash led to the formation of complex [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron structures at high temperature, and the [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron were connected by oxygen atoms to form a multi-membered ring structure with high polymerization degree. Due to the action of the multi-membered ring structure, the internal friction in the slag increased, and the viscosity value was higher on the macro-level. As a network-modified ion, Fe2+ could replace Si4+ and Al3+ in the multi-membered ring structure and combine with O2-, which will destroy the bridge oxygen (BO) structure and transform more complex tri cluster oxygen (TO) and bridge oxygen (BO) into simple non-bridge oxygen (NBO) structure. As a result, a large number of multi-membered rings with high polymerization degrees were depolymerized into low-membered rings with low polymerization degrees. The evolution of oxygen types and ring structures in slag reduced the structure complexity and polymerization degree of coal ash slag, resulting in a decrease in the viscosity of coal ash slag.

Keywords: ash slag, coal gasification, fluidity, industrial solid waste, slag structure

Procedia PDF Downloads 29
401 Aerodynamic Optimization of Oblique Biplane by Using Supercritical Airfoil

Authors: Asma Abdullah, Awais Khan, Reem Al-Ghumlasi, Pritam Kumari, Yasir Nawaz

Abstract:

Introduction: This study verified the potential applications of two Oblique Wing configurations that were initiated by the Germans Aerodynamicists during the WWII. Due to the end of the war, this project was not completed and in this research is targeting the revival of German Oblique biplane configuration. The research draws upon the use of two Oblique wings mounted on the top and bottom of the fuselage through a single pivot. The wings are capable of sweeping at different angles ranging from 0° at takeoff to 60° at cruising Altitude. The top wing, right half, behaves like a forward swept wing and the left half, behaves like a backward swept wing. Vice Versa applies to the lower wing. This opposite deflection of the top and lower wing cancel out the rotary moment created by each wing and the aircraft remains stable. Problem to better understand or solve: The purpose of this research is to investigate the potential of achieving improved aerodynamic performance and efficiency of flight at a wide range of sweep angles. This will help examine the most accurate value for the sweep angle at which the aircraft will possess both stability and better aerodynamics. Explaining the methods used: The Aircraft configuration is designed using Solidworks after which a series of Aerodynamic prediction are conducted, both in the subsonic and the supersonic flow regime. Computations are carried on Ansys Fluent. The results are then compared to theoretical and flight data of different Supersonic fighter aircraft of the same category (AD-1) and with the Wind tunnel testing model at subsonic speed. Results: At zero sweep angle, the aircraft has an excellent lift coefficient value with almost double that found for fighter jets. In acquiring of supersonic speed the sweep angle is increased to maximum 60 degrees depending on the mission profile. General findings: Oblique biplane can be the future fighter jet aircraft because of its high value performance in terms of aerodynamics, cost, structural design and weight.

Keywords: biplane, oblique wing, sweep angle, supercritical airfoil

Procedia PDF Downloads 278
400 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak

Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi

Abstract:

This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak

Procedia PDF Downloads 153
399 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification

Procedia PDF Downloads 267
398 Calibration and Validation of ArcSWAT Model for Estimation of Surface Runoff and Sediment Yield from Dhangaon Watershed

Authors: M. P. Tripathi, Priti Tiwari

Abstract:

Soil and Water Assessment Tool (SWAT) is a distributed parameter continuous time model and was tested on daily and fortnightly basis for a small agricultural watershed (Dhangaon) of Chhattisgarh state in India. The SWAT model recently interfaced with ArcGIS and called as ArcSWAT. The watershed and sub-watershed boundaries, drainage networks, slope and texture maps were generated in the environment of ArcGIS of ArcSWAT. Supervised classification method was used for land use/cover classification from satellite imageries of the years 2009 and 2012. Manning's roughness coefficient 'n' for overland flow and channel flow and Fraction of Field Capacity (FFC) were calibrated for monsoon season of the years 2009 and 2010. The model was validated on a daily basis for the years 2011 and 2012 by using the observed daily rainfall and temperature data. Calibration and validation results revealed that the model was predicting the daily surface runoff and sediment yield satisfactorily. Sensitivity analysis showed that the annual sediment yield was inversely proportional to the overland and channel 'n' values whereas; annual runoff and sediment yields were directly proportional to the FFC. The model was also tested (calibrated and validated) for the fortnightly runoff and sediment yield for the year 2009-10 and 2011-12, respectively. Simulated values of fortnightly runoff and sediment yield for the calibration and validation years compared well with their observed counterparts. The calibration and validation results revealed that the ArcSWAT model could be used for identification of critical sub-watershed and for developing management scenarios for the Dhangaon watershed. Further, the model should be tested for simulating the surface runoff and sediment yield using generated rainfall and temperature before applying it for developing the management scenario for the critical or priority sub-watersheds.

Keywords: watershed, hydrologic and water quality, ArcSWAT model, remote sensing, GIS, runoff and sediment yield

Procedia PDF Downloads 379
397 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions

Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez

Abstract:

In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.

Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval

Procedia PDF Downloads 232
396 Examination of the Main Behavioral Patterns of Male and Female Students in Islamic Azad University

Authors: Sobhan Sobhani

Abstract:

This study examined the behavioral patterns of student and their determinants according to the "symbolic interaction" sociological perspective in the form of 7 hypotheses. Behavioral patterns of students were classified in 8 categories: religious, scientific, political, artistic, sporting, national, parents and teachers. They were evaluated by student opinions by a five-point Likert rating scale. The statistical population included all male and female students of Islamic Azad University, Behabahan branch, among which 600 patients (268 females and 332 males) were selected randomly. The following statistical methods were used: frequency and percentage, mean, t-test, Pearson correlation coefficient and multi-way analysis of variance. The results obtained from statistical analysis showed that: 1-There is a significant difference between male and female students in terms of disposition to religious figures, artists, teachers and parents. 2-There is a significant difference between students of urban and rural areas in terms of assuming behavioral patterns of religious, political, scientific, artistic, national figures and teachers. 3-The most important criterion for selecting behavioral patterns of students is intellectual understanding with the pattern. 4-The most important factor influencing the behavioral patterns of male and female students is parents followed by friends. 5-Boys are affected by teachers, the Internet and satellite programs more than girls. Girls assume behavioral patterns from books more than boys. 6-There is a significant difference between students in human sciences, technical, medical and engineering disciplines in terms of selecting religious and political figures as behavioral patterns. 7-There is a significant difference between students belonging to different subcultures in terms of assuming behavioral patterns of religious, scientific and cultural figures. 8-Between the first and fourth year students in terms of selecting behavioral patterns, there is a significant difference only in selecting religious figures. 9-There is a significant negative correlation between the education level of parents and the selection of religious and political figures and teachers. 10-There is a significant negative correlation between family income and the selection of political and religious figures.

Keywords: behavioral patterns, behavioral patterns, male and female students, Islamic Azad University

Procedia PDF Downloads 365
395 Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations.

Keywords: CFD, cavity envelope, high speed underwater vehicles, supercavitating flows, supercavitation, drag reduction, supercavitation parameters

Procedia PDF Downloads 173
394 Exploratory Factor Analysis of Natural Disaster Preparedness Awareness of Thai Citizens

Authors: Chaiyaset Promsri

Abstract:

Based on the synthesis of related literatures, this research found thirteen related dimensions that involved the development of natural disaster preparedness awareness including hazard knowledge, hazard attitude, training for disaster preparedness, rehearsal and practice for disaster preparedness, cultural development for preparedness, public relations and communication, storytelling, disaster awareness game, simulation, past experience to natural disaster, information sharing with family members, and commitment to the community (time of living).  The 40-item of natural disaster preparedness awareness questionnaire was developed based on these thirteen dimensions. Data were collected from 595 participants in Bangkok metropolitan and vicinity. Cronbach's alpha was used to examine the internal consistency for this instrument. Reliability coefficient was 97, which was highly acceptable.  Exploratory Factor Analysis where principal axis factor analysis was employed. The Kaiser-Meyer-Olkin index of sampling adequacy was .973, indicating that the data represented a homogeneous collection of variables suitable for factor analysis. Bartlett's test of Sphericity was significant for the sample as Chi-Square = 23168.657, df = 780, and p-value < .0001, which indicated that the set of correlations in the correlation matrix was significantly different and acceptable for utilizing EFA. Factor extraction was done to determine the number of factors by using principal component analysis and varimax.  The result revealed that four factors had Eigen value greater than 1 with more than 60% cumulative of variance. Factor #1 had Eigen value of 22.270, and factor loadings ranged from 0.626-0.760. This factor was named as "Knowledge and Attitude of Natural Disaster Preparedness".  Factor #2 had Eigen value of 2.491, and factor loadings ranged from 0.596-0.696. This factor was named as "Training and Development". Factor #3 had Eigen value of 1.821, and factor loadings ranged from 0.643-0.777. This factor was named as "Building Experiences about Disaster Preparedness".  Factor #4 had Eigen value of 1.365, and factor loadings ranged from 0.657-0.760. This was named as "Family and Community". The results of this study provided support for the reliability and construct validity of natural disaster preparedness awareness for utilizing with populations similar to sample employed.

Keywords: natural disaster, disaster preparedness, disaster awareness, Thai citizens

Procedia PDF Downloads 378
393 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles

Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem

Abstract:

Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.

Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species

Procedia PDF Downloads 234
392 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa

Authors: B. Mavhuru, N. S. Nethengwe

Abstract:

Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.

Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load

Procedia PDF Downloads 307
391 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 248
390 New Coating Materials Based on Mixtures of Shellac and Pectin for Pharmaceutical Products

Authors: M. Kumpugdee-Vollrath, M. Tabatabaeifar, M. Helmis

Abstract:

Shellac is a natural polyester resin secreted by insects. Pectins are natural, non-toxic and water-soluble polysaccharides extracted from the peels of citrus fruits or the leftovers of apples. Both polymers are allowed for the use in the pharmaceutical industry and as a food additive. SSB Aquagold® is the aqueous solution of shellac and can be used for a coating process as an enteric or controlled drug release polymer. In this study, tablets containing 10 mg methylene blue as a model drug were prepared with a rotary press. Those tablets were coated with mixtures of shellac and one of the pectin different types (i.e. CU 201, CU 501, CU 701 and CU 020) mostly in a 2:1 ratio or with pure shellac in a small scale fluidized bed apparatus. A stable, simple and reproducible three-stage coating process was successfully developed. The drug contents of the coated tablets were determined using UV-VIS spectrophotometer. The characterization of the surface and the film thickness were performed with the scanning electron microscopy (SEM) and the light microscopy. Release studies were performed in a dissolution apparatus with a basket. Most of the formulations were enteric coated. The dissolution profiles showed a delayed or sustained release with a lagtime of at least 4 h. Dissolution profiles of coated tablets with pure shellac had a very long lagtime ranging from 13 to 17.5 h and the slopes were quite high. The duration of the lagtime and the slope of the dissolution profiles could be adjusted by adding the proper type of pectin to the shellac formulation and by variation of the coating amount. In order to apply a coating formulation as a colon delivery system, the prepared film should be resistant against gastric fluid for at least 2 h and against intestinal fluid for 4-6 h. The required delay time was gained with most of the shellac-pectin polymer mixtures. The release profiles were fitted with the modified model of the Korsmeyer-Peppas equation and the Hixson-Crowell model. A correlation coefficient (R²) > 0.99 was obtained by Korsmeyer-Peppas equation.

Keywords: shellac, pectin, coating, fluidized bed, release, colon delivery system, kinetic, SEM, methylene blue

Procedia PDF Downloads 407
389 Factors Contributing to Farmers’ Attitude Towards Climate Adaptation Farming Practices: A Farm Level Study in Bangladesh

Authors: Md Rezaul Karim, Farha Taznin

Abstract:

The purpose of this study was to assess and describe the individual and household characteristics of farmers, to measure the attitude of farmers towards climate adaptation farming practices and to explore the individual and household factors contributing in predicting their attitude towards climate adaptation farming practices. Data were collected through personal interviews using a pre-tested interview schedule. The data collection was done at Biral Upazila under Dinajpur district in Bangladesh from 1st November to 15 December 2018. Besides descriptive statistical parameters, Pearson’s Product Moment Correlation Coefficient (r), multiple regression and step-wise multiple regression analysis were used for the statistical analysis. Findings indicated that the highest proportion (77.6 percent) of the farmers had moderately favorable attitudes, followed by only 11.2 percent with highly favorable attitudes and 11.2 percent with slightly favorable attitudes towards climate adaptation farming practices. According to the computed correlation coefficients (r), among the 10 selected factors, five of them, such as education of household head, farm size, annual household income, organizational participation, and information access by extension services, had a significant relationship with the attitude of farmers towards climate-smart practices. The step-wise multiple regression results showed that two characteristics as education of household head and information access by extension services, contributed 26.2% and 5.1%, respectively, in predicting farmers' attitudes towards climate adaptation farming practices. In addition, more than two-thirds of farmers cited their opinion to the problems in response to ‘price of vermi species is high and it is not easily available’ as 1st ranked problem, followed by ‘lack of information for innovative climate-smart technologies’. This study suggests that policy implications are necessary to promote extension education and information services and overcome the obstacles to climate adaptation farming practices. It further recommends that research study should be conducted in diverse contexts of nationally or globally.

Keywords: factors, attitude, climate adaptation, farming practices, Bangladesh

Procedia PDF Downloads 88
388 Evaluation of the Effect of Milk Recording Intervals on the Accuracy of an Empirical Model Fitted to Dairy Sheep Lactations

Authors: L. Guevara, Glória L. S., Corea E. E, A. Ramírez-Zamora M., Salinas-Martinez J. A., Angeles-Hernandez J. C.

Abstract:

Mathematical models are useful for identifying the characteristics of sheep lactation curves to develop and implement improved strategies. However, the accuracy of these models is influenced by factors such as the recording regime, mainly the intervals between test day records (TDR). The current study aimed to evaluate the effect of different TDR intervals on the goodness of fit of the Wood model (WM) applied to dairy sheep lactations. A total of 4,494 weekly TDRs from 156 lactations of dairy crossbred sheep were analyzed. Three new databases were generated from the original weekly TDR data (7D), comprising intervals of 14(14D), 21(21D), and 28(28D) days. The parameters of WM were estimated using the “minpack.lm” package in the R software. The shape of the lactation curve (typical and atypical) was defined based on the WM parameters. The goodness of fit was evaluated using the mean square of prediction error (MSPE), Root of MSPE (RMSPE), Akaike´s Information Criterion (AIC), Bayesian´s Information Criterion (BIC), and the coefficient of correlation (r) between the actual and estimated total milk yield (TMY). WM showed an adequate estimate of TMY regardless of the TDR interval (P=0.21) and shape of the lactation curve (P=0.42). However, we found higher values of r for typical curves compared to atypical curves (0.9vs.0.74), with the highest values for the 28D interval (r=0.95). In the same way, we observed an overestimated peak yield (0.92vs.6.6 l) and underestimated time of peak yield (21.5vs.1.46) in atypical curves. The best values of RMSPE were observed for the 28D interval in both lactation curve shapes. The significant lowest values of AIC (P=0.001) and BIC (P=0.001) were shown by the 7D interval for typical and atypical curves. These results represent the first approach to define the adequate interval to record the regime of dairy sheep in Latin America and showed a better fitting for the Wood model using a 7D interval. However, it is possible to obtain good estimates of TMY using a 28D interval, which reduces the sampling frequency and would save additional costs to dairy sheep producers.

Keywords: gamma incomplete, ewes, shape curves, modeling

Procedia PDF Downloads 78
387 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO

Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li

Abstract:

ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.

Keywords: ceramics, conductivity, defects, TCO, ZnO

Procedia PDF Downloads 196
386 Emerging Issues of Non-Communicable Diseases among Older Persons in India

Authors: Dhananjay W. Bansod, Santosh Phad

Abstract:

Non-Communicable Diseases (NCD) are major contributing factors to the disease burden in the world as well as in India. With a growing proportion of older persons in India gives rise to several challenges. With the advancement of age, elderly is exposed to various kinds of health problems more specifically NCDs. Therefore, an effort has been made to examine the prevalence of NCDs among older persons and its treatment-seeking behaviour, also it is tried to explore the association between the NCDs and its effect on the overall wellbeing of older persons. Data used from “Building Knowledge Base of Population Ageing Survey” conducted in 2011 in seven states of India. Six chronic diseases used (non-communicable diseases) namely Arthritis, Hypertension, Cataract, Diabetes, Asthma and Heart diseases to understand the issues related to NCDs. Also seen the effect of NCDs on the wellbeing of the elderly, the subjective well-being consists of nine questions from which SUBI score generated for mental health status, which ranges from 9 to 27. This Index indicates that lower the score better is the mental health status. Further, this index modified and generated three categories of Better (9-15), Average (16-20) and Worse (21-27). The reliability analysis is carried out with the coefficient (Cronbach’s alpha) of the scale was 0.8884. The result shows that Orthopedic / musculoskeletal ailments involving arthritis, rheumatism and osteoarthritis are the most common type of ailment followed by hypertension. Two-thirds of the elderly reported suffering from at least one chronic ailment. Most chronic illness conditions received some form of treatment and mainly depend on public health facilities. Financial insecurity is the primary obstruction in seeking treatment for most of the chronic ailments which typically require a longer duration of medication and repeated medical consultations, both having significant economic implications. According to SUBI index, only 15 per cent of the elderly are in Better mental health status, and one-third of the elderly are with the worse score. Elderly with the ailments like Cataract, Asthma and Arthritis have worse mental health. It depicts that the burden of disease is more among the elderly and it is directly affecting the overall wellbeing of older persons.

Keywords: NCD, well-being, older person, India

Procedia PDF Downloads 147
385 Psychometric Characteristics of the Persian Version of the Revised Caregiving Appraisal Scale in Iranian Family Caregivers of Older Adults with Dementia

Authors: Akram Farhadi, Mahshid Froughan, Farahnaz Mohammadi, Maryam Rassouli, Maryam Noroozian, Leila Sadeghmoghaddam

Abstract:

Background: The caregivers’ assessment of their own caregiving is considered the most important concept in exploring their experiences and has a major role in care outcomes. The rising number of people with dementia and their need for care makes family caregiving really important matter to consider and evaluate. Objectives: This study was conducted with the aim to naturalize and validate the Persian version of the Revised Caregiving Appraisal Scale (RCAS) in family caregivers of older adults with dementia. Patients and Method: In this cross-sectional methodological study, the Revised Caregiving Appraisal Scale (RCAS) was translated using International Quality of Life Assessment (IQOLA) protocol, and then a panel of experts examined its face and content validities. To ensure construct validity, the translated Revised Caregiving Appraisal Scale (RCAS) was completed by 236 family caregivers, and factor construct of the scale was assessed with 5 initial factors using confirmatory factor analysis. Internal consistency was found using Cronbach's alpha, and test-retest using intraclass correlation coefficient. Confirmatory factor analysis was performed in LISREL-8.8 software in Windows®. Results: Participating caregivers' mean age was 53.5±13.13 years. Content and face validities of the scale were confirmed according to the views expressed by family caregivers and panel of experts. The confirmatory factor analysis (CFA) results showed appropriate values for all fitness indices (RMSEA=0.046, df/X2=2.428, CFI=0.98, AGFI=0.84, GFI=0.9), and the 5-factor model was confirmed with 27 items. Overall Cronbach's alpha was reported 0.894, and test retest showed overall ICC=0.94. Conclusion: The Persian version of RCAS is a valid and reliable tool for family caregivers' assessment of their caregiving of older adults with dementia, and can be useful in assessing family caregiving interventions.

Keywords: psychometric, family caregivers, reliability and validity, elderly, dementia, self-appraisal

Procedia PDF Downloads 234
384 Effect of 16 Weeks Walking with Different Dosages on Psychosocial Function Related Quality of Life among 60 to 75 Years Old Men

Authors: Mohammad Ehsani, Elham Karimi, Hashem Koozechian

Abstract:

Aim: The purpose of current semi-experimental study was a survey on effect of 16 week walking on psychosocial function related quality of life among 60 to 75 years old men. Methodology: For this reason, short from of health – related quality of life questionnaire (SF – 36) and Geriatric Depression Scale (GDS) had been distributed to the subjects at 2 times of pre – test and posttest. Statistical sample of current study was 60 to 75 years old men who placed at Kahrizak house and assessed by considering physically and medical background. Also factors of entrance to the intervention like age range, have satisfaction and have intent to participating in walking program, lack of having diabetic, cardiovascular, Parkinsonism diseases and postural, neurological, musculoskeletal disorders, lack of having clinical background like visual disorders or disordering on equilibrium system, lack of motor limitation, foot print disorders, having surgery and mental health had been determined and assessed. Finally after primary studies, 80 persons selected and categorized accidentally to the 3 experimental group (1, 2, 3 sessions per week, 30 min walking with moderate intension at every sessions) and one control group (without physical activity in period of 16 weeks). Data analysed by employing ANOVA, Pearson coefficient and Scheffe Post – Hoc tests at the significance level of p < 0.05. Results: Results showed that psychosocial function of men with 60 to 75 years old increase by influence of 16 week walking and increase of exercise sessions lead to more effectiveness of walking. Also there was no significant difference between psychosocial function of subjects within 1 session and 3 sessions experimental groups (p > 0.05). Conclusion: On the basis of results, we can say that doing regular walking with efficient and standard dosage for elderly people, can increase their quality of life. Furthermore, designing and action operation regular walking program for elderly men on the basis of special, logical and systematic pattern under the supervision of aware coaches have been recommended on the basis of results.

Keywords: walking, quality of life, psychosocial function, elders

Procedia PDF Downloads 590
383 Development and Validation of a Liquid Chromatographic Method for the Quantification of Related Substance in Gentamicin Drug Substances

Authors: Sofiqul Islam, V. Murugan, Prema Kumari, Hari

Abstract:

Gentamicin is a broad spectrum water-soluble aminoglycoside antibiotics produced by the fermentation process of microorganism known as Micromonospora purpurea. It is widely used for the treatment of infection caused by both gram positive and gram negative bacteria. Gentamicin consists of a mixture of aminoglycoside components like C1, C1a, C2a, and C2. The molecular structure of Gentamicin and its related substances showed that it has lack of presence of chromophore group in the molecule due to which the detection of such components were quite critical and challenging. In this study, a simple Reversed Phase-High Performance Liquid Chromatographic (RP-HPLC) method using ultraviolet (UV) detector was developed and validated for quantification of the related substances present in Gentamicin drug substances. The method was achieved by using Thermo Scientific Hypersil Gold analytical column (150 x 4.6 mm, 5 µm particle size) with isocratic elution composed of methanol: water: glacial acetic acid: sodium hexane sulfonate in the ratio 70:25:5:3 % v/v/v/w as a mobile phase at a flow rate of 0.5 mL/min, column temperature was maintained at 30 °C and detection wavelength of 330 nm. The four components of Gentamicin namely Gentamicin C1, C1a, C2a, and C2 were well separated along with the related substance present in Gentamicin. The Limit of Quantification (LOQ) values were found to be at 0.0075 mg/mL. The accuracy of the method was quite satisfactory in which the % recovery was resulted between 95-105% for the related substances. The correlation coefficient (≥ 0.995) shows the linearity response against concentration over the range of Limit of Quantification (LOQ). Precision studies showed the % Relative Standard Deviation (RSD) values less than 5% for its related substance. The method was validated in accordance with the International Conference of Harmonization (ICH) guideline with various parameters like system suitability, specificity, precision, linearity, accuracy, limit of quantification, and robustness. This proposed method was easy and suitable for use for the quantification of related substances in routine analysis of Gentamicin formulations.

Keywords: reversed phase-high performance liquid chromatographic (RP-HPLC), high performance liquid chromatography, gentamicin, isocratic, ultraviolet

Procedia PDF Downloads 162
382 Grain Yield, Morpho-Physiological Parameters and Growth Indices of Wheat (Triticum Aestivum L.) Varieties Exposed to High Temperature under Late Sown Condition

Authors: Shital Bangar, Chetana Mandavia

Abstract:

A field experiment was carried out in Factorial Randomized Block Design (FRBD) with three replications at Instructional Farm Krushigadh, Junagadh Agricultural University, Junagadh, India to assess the biochemical parameters of wheat in order to assess the thermotolerance. Nine different wheat varieties GW 433, GW 431, HI 1571, GW 432, RAJ 3765, HD 2864, HI 1563, HD 3091 and PBW 670 sown in timely and late sown conditions (i.e., 22 Nov and 6 Dec 2012) were analysed. All the varieties differed significantly with respect to grain yield morpho-physiological parameters and growth indices for time of sowing, varieties and varieties x time of sowing interactions. The observations on morpho-physiological parameters viz., germination percentage, canopy temperature depression and growth indices viz., leaf area index (LAI), leaf area ratio (LAR) were recorded. Almost all the morpho-physiological parameters, growth indices and grain yield studied were affected adversely by late sowing, registering reduction in their magnitude. Germination percentage was reduced under late sown condition but variety PBW 670 was the best. Varieties GW 432 performed better with respect to canopy temperature depression while sown late. Under late sown condition, variety GW 431 recorded higher LAI while HI 1563 had maximum LAR. Considering yield performance, HD 2864 was best under timely sown condition, while GW 433 was best under late sown condition. Varieties HI 1571, GW 433 and GW 431 could be labelled as thermo-tolerant because there was least reduction in grain yield under late sown condition (1.75 %, 7.90 % and13.8 % respectively). Considering correlation coefficient, grain yield showed very strong significant positive association with germination percentage. Leaf area ratio was strongly and significantly correlated with grain yield but in negative direction. Canopy temperature depression and leaf area index also had positive correlation with grain yield but were non-significant.

Keywords: growth indices, morpho-physiological parametrs, thermo-tolerance, wheat

Procedia PDF Downloads 440
381 Effects of Effort and Water Quality on Productivity (CPUE) of Hampal (Hampala macrolepidota) Resources in Jatiluhur Dam, West Java

Authors: Ririn Marinasari, S. Pi

Abstract:

Hampal (Hampala macrolepidota) is one of Citarum river indigenous fishes that still find in Jatiluhur dam. IUCN at 2013 said that hampal listed on redlist species category, this species was rare in Jatiluhur dam. This species more and more decreasing because change of habitats characteristic such as water quality and fishing effort. This study aims to determine and identify the influence of fishing effort and the quality of water on the productivity of fish resources hampal (Hampala macrolepidota) in Jatiluhur. The study was conducted from October to November 2013. Zones of research include lacustrine zone, transition and Riverin. Hampal fish productivity value computed by Hampal’s CPUE values. The results showed that fish MSY hampal obtained from surplus production model of Schaefer is equal to 0.2045 tons / quarterly. In the years 2011-2012 have occurred over fishing in 2013 while still under fishing. Total catches have exceeded the MSY during the year 2011 and the third quarterly of 2012 tons of fish that exceed 0.2045 hampal. The rate of utilization of fish resources hampal is equal to 80% of MSY or equal to the allowable catch (Total Allowable Catch) for fish in Jatiluhur hampal based Schaefer surplus production theory. Fishing effort, water quality parameters such as DO, turbidity and negatively correlated sulfide as H2S, while the temperature and pH positively correlated to productivity or unit catches fish hampal efforts in quarterly time series in the period 2011-2013. Shows that the higher fishing effort, DO, turbidity and sulfide in H2S and diminishing the temperature and pH of the productivity decreases. Variables that affect the productivity of fishing hampal only H2S only factor beta coefficient -0.834 which indicates a negative effect. It can be caused by H2S levels are toxic and have already exceeded the quality standard, while for other water quality parameters are still below the maximum standards allowed in the waters. Result of the study can be a reference of fishing regulation for hampal conservation in Jatiluhur dam.

Keywords: effort, hampal, productivity, water quality

Procedia PDF Downloads 298
380 Strengthening Islamic Banking Customer Behavioral Intention through Value and Commitment

Authors: Mornay Roberts-Lombard

Abstract:

Consumers’ perceptions of value are crucial to ensuring their future commitment and behavioral intentions. As a result, service providers, such as Islamic banks, must provide their customers with products and services that are regarded as valuable, stimulating, collaborative, and competent. Therefore, the value provided to customers must meet or surpass their expectations, which can drive customers’ commitment (affective and calculative) and eventually favorably impact their future behavioral intentions. Consequently, Islamic banks in South Africa, as a growing African market, need to obtain a better understanding of the variables that impact Islamic banking customers’ value perceptions and how these impact their future behavioral intentions. Furthermore, it is necessary to investigate how customers’ perceived value perceptions impact their affective and calculative commitment and how the latter impact their future behavioral intentions. The purpose of this study is to bridge these gaps in knowledge, as the competitiveness of the Islamic banking industry in South Africa requires a deeper understanding of the aforementioned relationships. The study was exploratory and quantitative in nature, and data was collected from 250 Islamic banking customers using self-administered questionnaires. These banking customers resided in the Gauteng province of South Africa. Exploratory factor analysis, Pearson’s coefficient analysis, and multiple regression analysis were applied to measure the proposed hypotheses developed for the study. This research will aid Islamic banks in the country in potentially strengthening customers’ future commitment (affective and calculative) and positively impact their future behavioral intentions. The findings of the study established that service quality has a significant and positive impact on perceived value. Moreover, it was determined that perceived value has a favorable and considerable impact on affective and calculative commitment, while calculative commitment has a beneficial impact on behavioral intention. The research informs Islamic banks of the importance of service engagement in driving customer perceived value, which stimulates the future affective and calculative commitment of Islamic bank customers in an emerging market context. Finally, the study proposes guidelines for Islamic banks to develop an enhanced understanding of the factors that impact the perceived value-commitment-behavioral intention link in a competitive Islamic banking market in South Africa.

Keywords: perceived value, affective commitment, calculative commitment, behavioural intention

Procedia PDF Downloads 79
379 Validation of the Female Sexual Function Index and the Female Sexual Distress Scale-Desire/Arousal/Orgasm in Chinese Women

Authors: Lan Luo, Jingjing Huang, Huafang Li

Abstract:

Introduction: Distressing low sexual desire is common in China, while the lack of reliable and valid instruments to evaluate symptoms of hypoactive sexual desire disorder (HSDD) impedes related research and clinical services. Aim: This study aimed to validate the reliability and validity of the Female Sexual Function Index (FSFI) and the Female Sexual Distress Scale-Desire/Arousal/Orgasm (FSDS-DAO) in Chinese female HSDD patients. Methods: We administered FSFI and FSDS-DAO in a convenient sample of Chinese adult women. Participants were diagnosed by a psychiatrist according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). Results: We had a valid analysis sample of 279 Chinese women, of which 107 were HSDD patients. The Cronbach's α of FSFI and FSDS-DAO were 0.947 and 0.956, respectively, and the intraclass correlation coefficients of which were 0.86 and 0.89, respectively (the interval was 13-15 days). The correlation coefficient between the Revised Adult Attachment Scale (RAAS) and FSFI (or FSDS-DAO) did not exceed 0.4; the area under the receiver operating characteristic (ROC) curve was 0. 83 when combined FSFI-d (the desire domain of FSFI) and FSDS-DAO to diagnose HSDD, which was significantly different from that of using these scales individually. FSFI-d of less than 2.7 (1.2-6) and FSDS-DAO of no less than 15 (0-60) (Sensitivity 65%, Specificity 83%), or FSFI-d of no more than 3.0 (1.2-6) and FSDS-DAO of no less than 14 (0-60) (Sensitivity 74%, Specificity 77%) can be used as cutoff scores in clinical research or outpatient screening. Clinical implications: FSFI (including FSFI-d) and FSDS-DAO are suitable for the screening and evaluation of Chinese female HSDD patients of childbearing age. Strengths and limitations: Strengths include a thorough validation of FSFI and FSDS-DAO and the exploration of the cutoff score combing FSFI-d and FSDS-DAO. Limitations include a small convenience sample and the requirement of being sexually active for HSDD patients. Conclusion: FSFI (including FSFI-d) and FSDS-DAO have good internal consistency, test-retest reliability, construct validity, and criterion validity in Chinese female HSDD patients of childbearing age.

Keywords: sexual desire, sexual distress, hypoactive sexual desire disorder, scale

Procedia PDF Downloads 76
378 Estimating Housing Prices Using Automatic Linear Modeling in the Metropolis of Mashhad, Iran

Authors: Mohammad Rahim Rahnama

Abstract:

Market-transaction price for housing is the main criteria for determining municipality taxes and is determined and announced on an annual basis. Of course, there is a discrepancy between the actual value of transactions in the Bureau of Finance (P for short) or municipality (P´ for short) and the real price on the market (P˝). The present research aims to determine the real price of housing in the metropolis of Mashhad and to pinpoint the price gap with those of the aforementioned apparatuses and identify the factors affecting it. In order to reach this practical objective, Automatic Linear Modeling, which calls for an explanatory research, was utilized. The population of the research consisted of all the residential units in Mashhad, from which 317 residential units were randomly selected. Through cluster sampling, out of the 170 income blocks defined by the municipality, three blocks form high-income (Kosar), middle-income (Elahieh), and low-income (Seyyedi) strata were surveyed using questionnaires during February and March of 2015 and the information regarding the price and specifications of residential units were gathered. In order to estimate the effect of various factors on the price, the relationship between independent variables (8 variables) and the dependent variable of the housing price was calculated using Automatic Linear Modeling in SPSS. The results revealed that the average for housing price index is 788$ per square meter, compared to the Bureau of Finance’s prices which is 10$ and that of municipality’s which is 378$. Correlation coefficient among dependent and independent variables was calculated to be R²=0.81. Out of the eight initial variables, three were omitted. The most influential factor affecting the housing prices is the quality of Quality of construction (Ordinary, Full, Luxury). The least important factor influencing the housing prices is the variable of number of sides. The price gap between low-income (Seyyedi) and middle-income (Elahieh) districts was not confirmed via One-Way ANOVA but their gap with the high-income district (Kosar) was confirmed. It is suggested that city be divided into two low-income and high-income sections, as opposed three, in terms of housing prices.

Keywords: automatic linear modeling, housing prices, Mashhad, Iran

Procedia PDF Downloads 255
377 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan

Authors: Basit Aftab, Zhichao Wang, Feng Zhongke

Abstract:

Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.

Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.

Procedia PDF Downloads 34
376 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data

Authors: Adrian Priceputu, Elena Mihaela Stan

Abstract:

Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.

Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations

Procedia PDF Downloads 54
375 Statistical Characteristics of Code Formula for Design of Concrete Structures

Authors: Inyeol Paik, Ah-Ryang Kim

Abstract:

In this research, a statistical analysis is carried out to examine the statistical properties of the formula given in the design code for concrete structures. The design formulas of the Korea highway bridge design code - the limit state design method (KHBDC) which is the current national bridge design code and the design code for concrete structures by Korea Concrete Institute (KCI) are applied for the analysis. The safety levels provided by the strength formulas of the design codes are defined based on the probabilistic and statistical theory.KHBDC is a reliability-based design code. The load and resistance factors of this code were calibrated to attain the target reliability index. It is essential to define the statistical properties for the design formulas in this calibration process. In general, the statistical characteristics of a member strength are due to the following three factors. The first is due to the difference between the material strength of the actual construction and that used in the design calculation. The second is the difference between the actual dimensions of the constructed sections and those used in design calculation. The third is the difference between the strength of the actual member and the formula simplified for the design calculation. In this paper, the statistical study is focused on the third difference. The formulas for calculating the shear strength of concrete members are presented in different ways in KHBDC and KCI. In this study, the statistical properties of design formulas were obtained through comparison with the database which comprises the experimental results from the reference publications. The test specimen was either reinforced with the shear stirrup or not. For an applied database, the bias factor was about 1.12 and the coefficient of variation was about 0.18. By applying the statistical properties of the design formula to the reliability analysis, it is shown that the resistance factors of the current design codes satisfy the target reliability indexes of both codes. Also, the minimum resistance factors of the KHBDC which is written in the material resistance factor format and KCE which is in the member resistance format are obtained and the results are presented. A further research is underway to calibrate the resistance factors of the high strength and high-performance concrete design guide.

Keywords: concrete design code, reliability analysis, resistance factor, shear strength, statistical property

Procedia PDF Downloads 319
374 Investigation on the Effect of Titanium (Ti) Plus Boron (B) Addition to the Mg-AZ31 Alloy in the as Cast and After Extrusion on Its Metallurgical and Mechanical Characteristics

Authors: Adnan I. O. Zaid, Raghad S. Hemeimat

Abstract:

Magnesium - aluminum alloys are versatile materials which are used in manufacturing a number of engineering and industrial parts in the automobile and aircraft industries due to their strength – to –weight -ratio. Against these preferable characteristics, magnesium is difficult to deform at room temperature therefore it is alloyed with other elements mainly Aluminum and Zinc to add some required properties particularly for their high strength - to -weight ratio. Mg and its alloys oxidize rapidly therefore care should be taken during melting or machining them; but they are not fire hazardous. Grain refinement is an important technology to improve the mechanical properties and the micro structure uniformity of the alloys. Grain refinement has been introduced in early fifties; when Cibula showed that the presence of Ti, and Ti+ B, produced a great refining effect in Al. since then it became an industrial practice to grain refine Al. Most of the published work on grain refinement was directed toward grain refining Al and Zinc alloys; however, the effect of the addition of rare earth material on the grain size or the mechanical behavior of Mg alloys has not been previously investigated. This forms the main objective of the research work; where, the effect of Ti addition on the grain size, mechanical behavior, ductility, and the extrusion force & energy consumed in forward extrusion of Mg-AZ31 alloy is investigated and discussed in two conditions, first in the as cast condition and the second after extrusion. It was found that addition of Ti to Mg- AZ31 alloy has resulted in reduction of its grain size by 14%; the reduction in grain size after extrusion was much higher. However the increase in Vicker’s hardness was 3% after the addition of Ti in the as cast condition, and higher values for Vicker’s hardness were achieved after extrusion. Furthermore, an increase in the strength coefficient by 36% was achieved with the addition of Ti to Mg-AZ31 alloy in the as cast condition. Similarly, the work hardening index was also increased indicating an enhancement of the ductility and formability. As for the extrusion process, it was found that the force and energy required for the extrusion were both reduced by 57% and 59% with the addition of Ti.

Keywords: cast condition, direct extrusion, ductility, MgAZ31 alloy, super - plasticity

Procedia PDF Downloads 454