Search results for: uncut chip thickness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1790

Search results for: uncut chip thickness

1580 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.

Keywords: MBE, AlN/GaN, RTDs, double NDR

Procedia PDF Downloads 53
1579 Anatomical Adaptations of Three Astragalus Species under Salt Stress

Authors: Faycal Boughalleb, Raoudha Abdellaoui

Abstract:

The effect of NaCl stress on root and leaf anatomy was investigated in three Astragalus species grown in 0-300 mM NaCl for 30 days under greenhouse conditions. Root cross section and cortex thickness was reduced under salt stress in both species while A. tenuifolius showed thinner cortex and the root cross section was unchanged. The epidermis stele thickness was unaffected by salinity in A. armatus and A. tenuifolius and was reduced in A. mareoticus with smaller xylem vessel size. In addition, vessel density and wall thickness of xylem was increased under salt conditions in the studies species. The entire lamina and mesophyll of the three species were thinner in salt-stressed plants. A. armatus and A. tenuifolius showed the higher thickness with increased size of the lower epidermis. NaCl (300 mM) reduced leaf water content by 41.5 % in A. mareoticus while it was unchanged in the other species. The size of the vascular bundle increased under salinity in A. tenuifolius leaves and it was unchanged in the other ones. A longer distance between leaf vascular bundle was occurred in A. mareoticus. The effects of NaCl on root and leaf ultrastructure are discussed in relation to the degree of salt resistance of these species. The unchanged biomass production under salt stress confirmed the higher tolerance oft A. tenuifolius to salinity. A. armatus was moderately salt tolerant with decrease of biomass production by 14.2 % while A. mareoticus was considered as salt sensitive plant when the decrease in biomass production reached 56.8%.

Keywords: Astragalus species, leaf ultrastructure, root anatomy, salt stress

Procedia PDF Downloads 382
1578 Dynamic Analysis of Nanosize FG Rectangular Plates Based on Simple Nonlocal Quasi 3D HSDT

Authors: Sabrina Boutaleb, Fouad Bourad, Kouider Halim Benrahou, Abdelouahed Tounsi

Abstract:

In the present work, the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosized FG plate. In HSDT, a cubic function is employed in terms of thickness coordinates to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton’s principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature, and a good agreement is observed. Finally, the influence of the various parameters, such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness-to-length ratio, on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Keywords: nonlocal elasticity theory, FG nanoplate, free vibration, refined theory, elastic foundation

Procedia PDF Downloads 111
1577 Fabrication and Analysis of Vertical Double-Diffused Metal Oxide Semiconductor (VDMOS)

Authors: Deepika Sharma, Bal Krishan

Abstract:

In this paper, the structure of N-channel VDMOS was designed and analyzed using Silvaco TCAD tools by varying N+ source doping concentration, P-Body doping concentration, gate oxide thickness and the diffuse time. VDMOS is considered to be ideal power switches due to its high input impedance and fast switching speed. The performance of the device was analyzed from the Ids vs Vgs curve. The electrical characteristics such as threshold voltage, gate oxide thickness and breakdown voltage for the proposed device structures were extarcted. Effect of epitaxial layer on various parameters is also observed.

Keywords: on-resistance, threshold voltage, epitaxial layer, breakdown voltage

Procedia PDF Downloads 322
1576 Relative Study of the Effect of the Temperature Gradient on Free Vibrations of Clamped Visco-Elastic Rectangular Plates with Linearly and Exponentially Thickness Variations Respectively in Two Directions

Authors: Harvinder Kaur

Abstract:

Rayleigh–Ritz method is a broadly used classical method for the calculation of the natural vibration frequency of a structure in the second or higher order. Here it is used to construct a mathematical model of relative study of the thermal effect on free transverse vibrations of clamped (c-c-c-c type) visco-elastic rectangular plate with linearly and exponentially thickness variations respectively in two directions. Researchers in the field of Engineering always make an effort for better designs of mechanical structures. In-depth study of the vibration behavior of tapered plates with diverse thickness variation under high temperature would ultimately help to finalize the accurate design of a structure. The perfect tapered structure saves weight and as well as expenses. In the present paper, the comparison has been done for deflection and time period corresponding to the first two modes of vibrations of clamped plate for various values of aspect ratio, thermal constants, and taper constants of both the cases.

Keywords: Rayleigh-Ritz Method, tapered plates, transverse vibration, thermal constant, visco-elasticity

Procedia PDF Downloads 222
1575 Examination of the Influence of the Near-Surface Geology on the Initial Infrastructural Development Using High-Resolution Seismic Method

Authors: Collins Chiemeke, Stephen Ibe, Godwin Onyedim

Abstract:

This research work on high-resolution seismic tomography method was carried out with the aim of investigating how near-surface geology influences the initial distribution of infrastructural development in an area like Otuoke and its environs. To achieve this objective, seismic tomography method was employed. The result revealed that the overburden (highly-weathered layer) thickness ranges from 27 m to 50 m within the survey area, with an average value of 37 m. The 3D surface analysis for the overburden thickness distribution within the survey area showed that the thickness of the overburden is more in regions with less infrastructural development, and least in built-up areas. The range of velocity distribution from the surface to within a depth of 5 m is about 660 m/s to 1160 m/s, with an average value of 946 m/s. The 3D surface analysis of the velocity distribution also revealed that the areas with large infrastructural development are characterized with large velocity values compared with the undeveloped regions that has average low-velocity values. Hence, one can conclusively say that the initial settlement of Otuoke and its environs and the subsequent infrastructural development was influenced by the underlying near surface geology (rigid earth), among other factors.

Keywords: geology, seismic, infrastructural, near-surface

Procedia PDF Downloads 295
1574 Effect of Stitching Pattern on Composite Tubular Structures Subjected to Quasi-Static Crushing

Authors: Ali Rabiee, Hessam Ghasemnejad

Abstract:

Extensive experimental investigation on the effect of stitching pattern on tubular composite structures was conducted. The effect of stitching reinforcement through thickness on using glass flux yarn on energy absorption of fiber-reinforced polymer (FRP) was investigated under high speed loading conditions at axial loading. Keeping the mass of the structure at 125 grams and applying different pattern of stitching at various locations in theory enables better energy absorption, and also enables the control over the behaviour of force-crush distance curve. The study consists of simple non-stitch absorber comparison with single and multi-location stitching behaviour and its effect on energy absorption capabilities. The locations of reinforcements are 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 mm and 10-15-20-25-30-35 mm from the top of the specimen. The effect of through the thickness reinforcements has shown increase in energy absorption capabilities and crushing load. The significance of this is that as the stitching locations are closer, the crushing load increases and consequently energy absorption capabilities are also increased. The implementation of this idea would improve the mean force by applying stitching and controlling the behaviour of force-crush distance curve.

Keywords: through-thickness stitching, 3D enforcement​, energy absorption, tubular composite structures

Procedia PDF Downloads 259
1573 Effect of the Vertical Pressure on the ‎Electrical Behaviour of the Micro-Copper ‎Polyurethane Composite Films

Authors: Saeid Mehvari, Yolanda Sanchez-Vicente, Sergio González Sánchez, Khalid Lafdi

Abstract:

Abstract- Materials with a combination of transparency, electrical conductivity, and flexibility are required in the ‎growing electronic sector. In this research, electrically conductive and flexible films have been prepared. These ‎composite films consist of dispersing micro-copper particles into polyurethane (PU) matrix. Two sets of samples were ‎made using both spin coating technique (sample thickness lower than 30 μm) and materials casting (sample thickness ‎lower than 100 μm). Copper concentrations in the PU matrix varied from 0.5 to 20% by volume. The dispersion of ‎micro-copper particles into polyurethane (PU) matrix were characterised using optical microscope and scanning electron ‎microscope. The electrical conductivity measurement was carried out using home-made multimeter set up under ‎pressures from 1 to 20 kPa through thickness and in plane direction. It seems that samples made by casting were not ‎conductive. However, the sample made by spin coating shows through-thickness conductivity when they are under ‎pressure. The results showed that spin-coated films with higher concentration of 2 vol. % of copper displayed a ‎significant increase in the conductivity value, known as percolation threshold. The maximum conductivity of 7.2 × 10-1 ‎S∙m-1 was reached at concentrations of filler with 20 vol. % at 20kPa. A semi-empirical model with adjustable ‎coefficients was used to fit and predict the electrical behaviour of composites. For the first time, the finite element ‎method based on the representative volume element (FE-RVE) was successfully used to predict their electrical ‎behaviour under applied pressures. ‎

Keywords: electrical conductivity, micro copper, numerical simulation, percolation threshold, polyurethane, RVE model

Procedia PDF Downloads 188
1572 Synthetic Dermal Template Use in the Reconstruction of a Chronic Scalp Wound

Authors: Stephanie Cornish

Abstract:

The use of synthetic dermal templates, also known as dermal matrices, such as PolyNovo® Biodegradable Temporising Matrix (BTM), has been well established in the reconstruction of acute wounds with a full thickness defect of the skin. Its use has become common place in the treatment of full thickness burns and is not unfamiliar in the realm of necrotising fasciitis, free flap donor site reconstruction, and the management of acute traumatic wounds. However, the use of dermal templates for more chronic wounds is rare. The authors present the successful use of BTM in the reconstruction of a chronic scalp wound following the excision of a malignancy and multiple previous failed attempts at repair, thus demonstrating the potential for an increased scope of use.

Keywords: dermal template, BTM, chronic, scalp wound, reconstruction

Procedia PDF Downloads 87
1571 Changes in Textural Properties of Zucchini Slices with Deep-Fat-Frying

Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner

Abstract:

Changes in textural properties of zucchini slices under effects of frying conditions were investigated. Frying time and temperature were interested process variables like slice thickness. Slice thickness was studied at three levels (2, 3, and 4 mm). Frying process was performed at two temperature levels (160 and 180 °C) and each for five different process time periods (1, 2, 3, 5, 8 and 10 min). As frying oil sunflower oil was used. Before frying zucchini slices were thermally processes in boiling water for 90 seconds to inactivate at least 80% of plant’s enzymes. After thermal process, zucchini slices were fried in an industrial fryer at specified temperature and time pairs. Fried slices were subjected to textural profile analysis (TPA) to determine textural properties. In this extent hardness, elasticity, cohesion, chewiness, firmness values of slices were figured out. Statistical analysis indicated significant variations in the studied textural properties with process conditions (p < 0.05). Hardness and firmness were determined for fresh and thermally processes zucchini slices to compare each others. Differences in hardness and firmness of fresh, thermally processed and fried slices were found to be significant (p < 0.05). This project (113R015) has been supported by TUBITAK.

Keywords: sunflower oil, hardness, firmness, slice thickness, frying temperature, frying time

Procedia PDF Downloads 440
1570 Analysis of Wire Coating for Heat Transfer Flow of a Viscoelastic PTT Fluid with Slip Boundary Conditions

Authors: Rehan Ali Shah, A. M. Siddiqui, T. Haroon

Abstract:

Slip boundary value problem in wire coating analysis with heat transfer is examined. The fluid is assumed to be viscoelastic PTT (Phan-Thien and Tanner). The rheological constitutive equation of PTT fluid model simulates various polymer melts. Therefore, the current consequences are valuable in a number of realistic situations. Effects of slip parameter γ as well as εDec^2 (viscoelastic index) on the axial velocity, shear stress, normal stress, average velocity, volume flux, thickness of coated wire, shear stress, force on the total wire and temperature distribution profiles have been investigated. A new direction is explored to analyze the flow with the slip parameter. The slippage at the boundaries plays an important role in thickness of coated wire. It is noted that as the slip parameter increases the flow rate and thickness of coated wire increases while, temperature distribution decreases. The results reduce to no slip when the slip parameter is vanished. Furthermore, we can obtain the results for Maxwell and viscous model by setting ε and λ equal to zero respectively.

Keywords: wire coating, straight annular die, PTT fluid, heat transfer, slip boundary conditions

Procedia PDF Downloads 356
1569 Experimental Study on the Floor Vibration Evaluation of Concrete Slab for Existing Buildings

Authors: Yong-Taeg Lee, Jun-Ho Na, Seung-Hun Kim, Seong-Uk Hong

Abstract:

Damages from noise and vibration are increasing every year, most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the concrete slab measured vibration impact sound for evaluation floor vibration of deteriorated buildings that fails to satisfy with the minimum thickness. In this experimental study, the vibration scale by impact sound was calibrated and compared with ISO and AIJ standard for vibration. The results show that vibration in slab with thickness used in existing building reach human perception levels.

Keywords: vibration, frequency, accelerometer, concrete slab

Procedia PDF Downloads 632
1568 Nacre Deposition Rate in Japanese and Hybrid Mother Oysters, Pinctada Fucata, and Its Relationship with Their Respective Pearls

Authors: Gunawan Muhammad, Takashi Atsumi, Akira Komaru

Abstract:

Pinctada fucata has been the most important pearl culture species in Japan and known as Japanese Akoya Pearl Oyster. However, during summer 1994, mass mortality devastated pearl culture in most parts of Japan. Therefore, pearl farmers started to import Chinese Pearl Oysters from Hainan Island that came from the same species because they are believed to be more resistant towards high water temperature, despite their lack of ability in producing high-quality pearls. The local farmers were then hybridized Japanese and Chinese pearl oysters and currently known as Hybrid pearl oysters, as an attempt to produce a new oyster's strain which is more resistant towards high temperature but also able to produce higher quality pearls. However, despite both strains were implanted by mantle tissues from the same group of donors, the thickness of pearl nacre produced by both strains was different, even though tablet thickness shows a rather similar pattern. Hence, this leads to a question of whether mother oysters play a major role in both nacre deposition rate and tablet thickness of pearls or not. This study first describes the nacre deposition rate of the shells of Japanese and Hybrid mother oysters towards the water temperature condition in Ago Bay, Mie Prefecture, Japan. Later, a comparative study was conducted among 4 shell positions that had been chosen according to the mantle tissue location and shell growth directions. A correlative study was then taken between shells and pearls nacre deposition rate to know whether mother oyster ability in depositing nacre on their shells is related to that of pearls. All the four shell positions were significantly different in shell nacre growth rate (Kruskal-Wallis, p-value < 0.05), and the third position have faster nacre growth among the other three both in Japanese and Hybrid strains, especially in warm temperature. The ability to deposit nacre between Japanese and Hybrid during warm water conditions (August and September) is also significantly different in almost all positions (Mann Whitney U, p-value < 0.01), Japanese oyster growth faster than Hybrid in all four positions. This leads to a different total growth among the two strains and a higher possibility of thicker nacre thickness in Japanese shell nacre. Tablet thickness is significantly different among all positions of shells (Kruskal-Wallis, p-value < 0.01), the 2nd position deposited rather thinner tablet thickness than the other three, including on the 6th month of culture which is more desirable in producing pearls with good luster. This result gives us new information that pearl growth rate is highly affected by the mother oysters; however, nacre tablet thickness might be the result of the shell matrix expressed by different mantle position from donor oysters.

Keywords: nacre, deposition, biomineralization, pearl aquaculture, pearl oyster, Akoya pearl, pearl

Procedia PDF Downloads 134
1567 Wave Pressure Metering with the Specific Instrument and Measure Description Determined by the Shape and Surface of the Instrument including the Number of Sensors and Angle between Them

Authors: Branimir Jurun, Elza Jurun

Abstract:

Focus of this paper is description and functioning manner of the instrument for wave pressure metering. Moreover, an essential component of this paper is the proposal of a metering unit for the direct wave pressure measurement determined by the shape and surface of the instrument including the number of sensors and angle between them. Namely, far applied instruments by means of height, length, direction, wave time period and other components determine wave pressure on a particular area. This instrument, allows the direct measurement i.e. measurement without additional calculation, of the wave pressure expressed in a standardized unit of measure. That way the instrument has a standardized form, surface, number of sensors and the angle between them. In addition, it is made with the status that follows the wave and always is on the water surface. Database quality which is listed by the instrument is made possible by using the Arduino chip. This chip is programmed for receiving by two data from each of the sensors each second. From these data by a pre-defined manner a unique representative value is estimated. By this procedure all relevant wave pressure measurement results are directly and immediately registered. Final goal of establishing such a rich database is a comprehensive statistical analysis that ranges from multi-criteria analysis across different modeling and parameters testing to hypothesis accepting relating to the widest variety of man-made activities such as filling of beaches, security cages for aquaculture, bridges construction.

Keywords: instrument, metering, water, waves

Procedia PDF Downloads 257
1566 Hysteresis in Sustainable Two-layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device

Procedia PDF Downloads 291
1565 Bifurcations of a System of Rotor-Ball Bearings with Waviness and Squeeze Film Dampers

Authors: Sina Modares Ahmadi, Mohamad Reza Ghazavi, Mandana Sheikhzad

Abstract:

Squeeze film damper systems (SFD) are often used in machines with high rotational speed to reduce non-periodic behavior by creating external damping. These types of systems are frequently used in aircraft gas turbine engines. There are some structural parameters which are of great importance in designing these kinds of systems, such as oil film thickness, C, and outer race mass, mo. Moreover, there is a crucial parameter associated with manufacturing process, under the title of waviness. Geometric imperfections are often called waviness if its wavelength is much longer than Hertzian contact width which is a considerable source of vibration in ball bearings. In this paper, a system of a flexible rotor and two ball bearings with floating ring squeeze film dampers and consideration of waviness has been modeled and solved by a numerical integration method, namely Runge-Kutta method to investigate the dynamic response of the system. The results show that by increasing the number of wave lobes, which is due to inappropriate manufacturing, non- periodic and chaotic behavior increases. This result reveals the importance of manufacturing accuracy. Moreover, as long as C< 1.5×10-4 m, by increasing the oil film thickness, unwanted vibrations and non-periodic behavior of the system have been reduced, On the other hand, when C>1.5×10-4 m, increasing the outer oil film thickness results in the increasing chaotic and non-periodic responses. This result shows that although the presence of oil film results in reduction the non-periodic and chaotic behaviors, but the oil film has an optimal thickness. In addition, with increasing mo, the disc displacement amplitude increases. This result reveals the importance of utilizing light materials in manufacturing the squeeze film dampers.

Keywords: squeeze-film damper, waviness, ball bearing, bifurcation

Procedia PDF Downloads 376
1564 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy

Authors: Erick Pruchnicki, Nikhil Padhye

Abstract:

Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.

Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials

Procedia PDF Downloads 106
1563 Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. K. Singh, A. E. Benyamina, P. Boulet

Abstract:

Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature.

Keywords: multiprocessor system on chip, MPSoC, network on chip, NoC, heterogeneous architectures, run-time mapping heuristics, routing algorithm

Procedia PDF Downloads 484
1562 The Use of Ultrasound as a Safe and Cost-Efficient Technique to Assess Visceral Fat in Children with Obesity

Authors: Bassma A. Abdel Haleem, Ehab K. Emam, George E. Yacoub, Ashraf M. Salem

Abstract:

Background: Obesity is an increasingly common problem in childhood. Childhood obesity is considered the main risk factor for the development of metabolic syndrome (MetS) (diabetes type 2, dyslipidemia, and hypertension). Recent studies estimated that among children with obesity 30-60% will develop MetS. Visceral fat thickness is a valuable predictor of the development of MetS. Computed tomography and dual-energy X-ray absorptiometry are the main techniques to assess visceral fat. However, they carry the risk of radiation exposure and are expensive procedures. Consequently, they are seldom used in the assessment of visceral fat in children. Some studies explored the potential of ultrasound as a substitute to assess visceral fat in the elderly and found promising results. Given the vulnerability of children to radiation exposure, we sought to evaluate ultrasound as a safer and more cost-efficient alternative for measuring visceral fat in obese children. Additionally, we assessed the correlation between visceral fat and obesity indicators such as insulin resistance. Methods: A cross-sectional study was conducted on 46 children with obesity (aged 6–16 years). Their visceral fat was evaluated by ultrasound. Subcutaneous fat thickness (SFT), i.e., the measurement from the skin-fat interface to the linea alba, and visceral fat thickness (VFT), i.e., the thickness from the linea alba to the aorta, were measured and correlated with anthropometric measures, fasting lipid profile, homeostatic model assessment for insulin resistance (HOMA-IR) and liver enzymes (ALT). Results: VFT assessed via ultrasound was found to strongly correlate with the BMI, HOMA-IR with AUC for VFT as a predictor of insulin resistance of 0.858 and cut off point of >2.98. VFT also correlates positively with serum triglycerides and serum ALT. VFT correlates negatively with HDL. Conclusions: Ultrasound, a safe and cost-efficient technique, could be a useful tool for measuring the abdominal fat thickness in children with obesity. Ultrasound-measured VFT could be an appropriate prognostic factor for insulin resistance, hypertriglyceridemia, and elevated liver enzymes in obese children.

Keywords: metabolic syndrome, pediatric obesity, sonography, visceral fat

Procedia PDF Downloads 116
1561 A Sui Generis Technique to Detect Pathogens in Post-Partum Breast Milk Using Image Processing Techniques

Authors: Yogesh Karunakar, Praveen Kandaswamy

Abstract:

Mother’s milk provides the most superior source of nutrition to a child. There is no other substitute to the mother’s milk. Postpartum secretions like breast milk can be analyzed on the go for testing the presence of any harmful pathogen before a mother can feed the child or donate the milk for the milk bank. Since breast feeding is one of the main causes for transmission of diseases to the newborn, it is mandatory to test the secretions. In this paper, we describe the detection of pathogens like E-coli, Human Immunodeficiency Virus (HIV), Hepatitis B (HBV), Hepatitis C (HCV), Cytomegalovirus (CMV), Zika and Ebola virus through an innovative method, in which we are developing a unique chip for testing the mother’s milk sample. The chip will contain an antibody specific to the target pathogen that will show a color change if there are enough pathogens present in the fluid that will be considered dangerous. A smart-phone camera will then be acquiring the image of the strip and using various image processing techniques we will detect the color development due to antigen antibody interaction within 5 minutes, thereby not adding to any delay, before the newborn is fed or prior to the collection of the milk for the milk bank. If the target pathogen comes positive through this method, then the health care provider can provide adequate treatment to bring down the number of pathogens. This will reduce the postpartum related mortality and morbidity which arises due to feeding infectious breast milk to own child.

Keywords: postpartum, fluids, camera, HIV, HCV, CMV, Zika, Ebola, smart-phones, breast milk, pathogens, image processing techniques

Procedia PDF Downloads 217
1560 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, nanocomposite, ceramic hollow fibre, CO2, ion-exchange

Procedia PDF Downloads 293
1559 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: buckling, low yield point steel, plates, steel plate shear walls, yielding

Procedia PDF Downloads 398
1558 Fundamental Natural Frequency of Chromite Composite Floor System

Authors: Farhad Abbas Gandomkar, Mona Danesh

Abstract:

This paper aims to determine Fundamental Natural Frequency (FNF) of a structural composite floor system known as Chromite. To achieve this purpose, FNFs of studied panels are determined by development of Finite Element Models (FEMs) in ABAQUS program. American Institute of Steel Construction (AISC) code in Steel Design Guide Series 11, presents a fundamental formula to calculate FNF of a steel framed floor system. This formula has been used to verify results of the FEMs. The variability in the FNF of the studied system under various parameters such as dimensions of floor, boundary conditions, rigidity of main and secondary beams around the floor, thickness of concrete slab, height of composite joists, distance between composite joists, thickness of top and bottom flanges of the open web steel joists, and adding tie beam perpendicular on the composite joists, is determined. The results show that changing in dimensions of the system, its boundary conditions, rigidity of main beam, and also adding tie beam, significant changes the FNF of the system up to 452.9%, 50.8%, -52.2%, %52.6%, respectively. In addition, increasing thickness of concrete slab increases the FNF of the system up to 10.8%. Furthermore, the results demonstrate that variation in rigidity of secondary beam, height of composite joist, and distance between composite joists, and thickness of top and bottom flanges of open web steel joists insignificant changes the FNF of the studied system up to -0.02%, -3%, -6.1%, and 0.96%, respectively. Finally, the results of this study help designer predict occurrence of resonance, comfortableness, and design criteria of the studied system.

Keywords: Fundamental Natural Frequency, Chromite Composite Floor System, Finite Element Method, low and high frequency floors, Comfortableness, resonance.

Procedia PDF Downloads 447
1557 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device

Procedia PDF Downloads 353
1556 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fibre Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on a alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm, cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, CO2, nanocomposite, ceramic hollow fibre, ion-exchange

Procedia PDF Downloads 479
1555 ISMARA: Completely Automated Inference of Gene Regulatory Networks from High-Throughput Data

Authors: Piotr J. Balwierz, Mikhail Pachkov, Phil Arnold, Andreas J. Gruber, Mihaela Zavolan, Erik van Nimwegen

Abstract:

Understanding the key players and interactions in the regulatory networks that control gene expression and chromatin state across different cell types and tissues in metazoans remains one of the central challenges in systems biology. Our laboratory has pioneered a number of methods for automatically inferring core gene regulatory networks directly from high-throughput data by modeling gene expression (RNA-seq) and chromatin state (ChIP-seq) measurements in terms of genome-wide computational predictions of regulatory sites for hundreds of transcription factors and micro-RNAs. These methods have now been completely automated in an integrated webserver called ISMARA that allows researchers to analyze their own data by simply uploading RNA-seq or ChIP-seq data sets and provides results in an integrated web interface as well as in downloadable flat form. For any data set, ISMARA infers the key regulators in the system, their activities across the input samples, the genes and pathways they target, and the core interactions between the regulators. We believe that by empowering experimental researchers to apply cutting-edge computational systems biology tools to their data in a completely automated manner, ISMARA can play an important role in developing our understanding of regulatory networks across metazoans.

Keywords: gene expression analysis, high-throughput sequencing analysis, transcription factor activity, transcription regulation

Procedia PDF Downloads 59
1554 [Keynote Talk]: A Comparative Study on Air Permeability Properties of Multilayered Nonwoven Structures

Authors: M. Kucukali Ozturk, B. Nergis, C. Candan

Abstract:

Air permeability plays an important role for applications such as filtration, thermal and acoustic insulation. The study discussed in this paper was conducted in an attempt to investigate air permeability property of various combinations of nonwovens. The PROWHITE air permeability tester was used for the measurement of the air permeability of the samples in accordance with the relevant standards and a comparative study of the results were made. It was found that the fabric mass per unit area was closely related to the air-permeability. The air permeability decreased with the increase in mass per unit area. Additionally, the air permeability of nonwoven fabrics decreased with the increase in thickness. Moreover, air permeability of multilayered SMS nonwoven structures was lower than those of single layered ones.

Keywords: air permeability, mass per unit area, nonwoven structure, polypropylene nonwoven, thickness

Procedia PDF Downloads 336
1553 Evaluation of the Appropriateness of Common Oxidants for Ruthenium (II) Chemiluminescence in a Microfluidic Detection Device Coupled to Microbore High Performance Liquid Chromatography for the Analysis of Drugs in Formulations and Biological Fluids

Authors: Afsal Mohammed Kadavilpparampu, Haider A. J. Al Lawati, Fakhr Eldin O. Suliman, Salma M. Z. Al Kindy

Abstract:

In this work, we evaluated the appropriateness of various oxidants that can be used potentially with Ru(bipy)32+ CL system while performing CL detection in a microfluidic device using eight common active pharmaceutical ingredients- ciprofloxacin, hydrochlorothiazide, norfloxacin, buspirone, fexofenadine, cetirizine, codeine, and dextromethorphan. This is because, microfludics have very small channel volume and the residence time is also very short. Hence, a highly efficient oxidant is required for on-chip CL detection to obtain analytically acceptable CL emission. Three common oxidants were evaluated, lead dioxide, cerium ammonium sulphate and ammonium peroxydisulphate. Results obtained showed that ammonium peroxydisulphate is the most appropriate oxidant which can be used in microfluidic setup and all the tested analyte give strong CL emission while using this oxidant. We also found that Ru(bipy)33+ generated off-line by oxidizing [Ru(bipy)3]Cl2.6H2O in acetonitrile under acidic condition with lead dioxide was stable for more than 72 hrs. A highly sensitive microbore HPLC- CL method using ammonium peroxydisulphate as an oxidant in a microfluidic on-chip CL detection has been developed for the analyses of fixed-dose combinations of pseudoephedrine (PSE), fexofenadine (FEX) and cetirizine (CIT) in biological fluids and pharmaceutical formulations with minimum sample pre-treatment.

Keywords: oxidants, microbore High Performance Liquid Chromatography, chemiluminescence, microfluidics

Procedia PDF Downloads 440
1552 Investigation of Steel Infill Panels under Blast Impulsive Loading

Authors: Seyed M. Zahrai, Saeid Lotfi

Abstract:

If an infill panel does not have enough ductility against the loading, it breaks and gets damaged before depreciation and load transfer. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Concerning enough ductility of out-of-plane behavior the infill panel, the impact force enters the horizontal diaphragm and is distributed among the lateral elements which can be made from steel infill panels. This article investigates the behavior of steel infill panels with different thickness and stiffeners using finite element analysis with geometric and material nonlinearities for optimization of the steel plate thickness and stiffeners arrangement to obtain more efficient design for its out-of-plane behavior.

Keywords: blast loading, ductility, maximum displacement, steel infill panel

Procedia PDF Downloads 267
1551 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device

Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres

Abstract:

The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.

Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device

Procedia PDF Downloads 268