Search results for: traditional knowledge resources classification
17312 The Role of Quality Management Tools and Knowledge Sharing in Improving the Level of Academic Staff: An Empirical Investigation of the Jordanian Universities
Authors: Tasneem Alfalah, Salsabeel Alfalah, Jannat Alfalah
Abstract:
The quality of higher education as a service is fundamental to a country’s development because universities prepare the professionals who will work as managers in companies and manage public and private resources and care for the health and education of new generations. Knowledge sharing involves the interaction of all activities between individuals. Thus, the higher education institutions are aiming to improve and assist their academics in generating new ideas by encouraging them to work as a team, to simplify the exchange of the new knowledge and to further improve the learning process and achieving institutional aims. Moreover, the sources of competitive advantage in universities derive from intellectual capital and innovations in which innovation comes through knowledge sharing. Using quality tools is to define the exact requirements needed to create the concept of knowledge sharing and what are the barriers to achieve this in universities. The purpose of this research is critically evaluating the role of using quality tools to facilitate the concept of knowledge sharing and improve the academic staff level in the Jordanian universities.Keywords: higher education, knowledge sharing, quality, management tools
Procedia PDF Downloads 46317311 The Traditional Roles and Place of Indigenous Musical Practices in Contemporary African Society
Authors: Benjamin Obeghare Izu
Abstract:
In Africa, indigenous musical practices are the focal point in which most cultural practices revolve, and they are the conduit mainly used in transmitting Indigenous knowledge and values. They serve as a means of documenting, preserving, transmitting indigenous knowledge, and re-enacting their historical, social, and cultural affinity. Indigenous musical practices also serve as a repository for indigenous knowledge and artistic traditions. However, these indigenous musical practices and the resulting cultural ideals are confronted with substantial challenges in the twenty-first century from contemporary cultural influence. Additionally, indigenous musical practices' educational and cultural purposes have been impacted by the broad monetisation of the arts in contemporary society. They are seen as objects of entertainment. Some young people are today unaware of their cultural roots and are losing their cultural identity due to these influences and challenges. In order to help policymakers raise awareness of and encourage the use of indigenous knowledge and musical practices among African youth and scholars, this study is in response to the need to explore the components and functions of the indigenous knowledge system, values, and musical tradition in Africa. The study employed qualitative research methods, utilising interviews, participant observation, and conducting related literature as data collection methods. It examines the indigenous musical practices in the Oba of Benin Royal Igue festival among the Benin people in Edo state, Nigeria, and the Ovwuwve festival observed by the Abraka people in Delta state, Nigeria. The extent to which the indigenous musical practices convey and protect indigenous knowledge and cultural values are reflected in the musical practices of the cultural festivals. The study looks at how indigenous musical arts are related to one another and how that affects how indigenous knowledge is transmitted and preserved. It makes recommendations for how to increase the use of indigenous knowledge and values and their fusion with contemporary culture. The study contributes significantly to ethnomusicology by showing how African traditional music traditions support other facets of culture and how indigenous knowledge might be helpful in contemporary society.Keywords: African musical practices, African music and dance, African society, indigenous musical practices
Procedia PDF Downloads 11517310 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 49017309 Open Education Resources a Gateway for Accessing Hospitality and Tourism Learning Materials
Authors: Isiya Shinkafi Salihu
Abstract:
Open education resources (OER) are open learning materials in different formats, course content and context to support learning globally. This study investigated the level of awareness of Hospitality and Tourism OER among students in the Department of Tourism and Hotel Management in a University. Specifically, it investigated students’ awareness, use and accessibility of OER in learning. The research design method used was the quantitative approach, using an online questionnaire. The thesis research shows that respondents frequently use OER but with little knowledge of the content and context of the material. Most of the respondents’ have little knowledge about the concept even though they use it. Information and communication technologies are tools for information gathering, social networking and knowledge sharing and transfer. OER are open education materials accessible online such as curriculum, maps, course materials, and videos that users create, adapt, reuse for learning and research. Few of the respondents that used OER in learning faced some challenges such as high cost of data, poor connectivity and lack of proper guidance. The results suggest a lack of awareness of OER among students in the faculty of tourism and the need for support from the teachers in the utilization of OER. The thesis also reveals that some of the international students are accessing the internet as beginners in their studies which require guidance. The research, however, recommends that further studies should be conducted to other faculties.Keywords: creative commons, open education resources, open licenses, information and communication technology
Procedia PDF Downloads 17817308 Conservation of Energy in Households in Urban Areas in India
Authors: Aashee Garg, Anusha Agarwal
Abstract:
India, as a country is very rich in terms of natural resources however as citizens, we have not respected this fact and have been continuously exploiting nature’s gift to mankind. Further as the population is ever increasing, the load on the consumption of resources is unprecedented. This has led to the depletion of natural resources such as coal, oil, gas etc., apart from the pollution it causes. It is time that we shift from use of these conventional resources to more effective new ways of energy generation. We should develop and encourage usage of renewable resources such as wind and solar in households to conserve energy in place of the above mentioned nonrenewable energy sources. This paper deals with the most effective ways in which the households in India can conserve energy thus reducing effect on environment and depletion of limited resources.Keywords: energy consumption, resources, India, renewable resources and environment
Procedia PDF Downloads 43617307 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline
Authors: Kenan Morani, Esra Kaya Ayana
Abstract:
This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation
Procedia PDF Downloads 13117306 Contextual Enablers and Behaviour Outputs for Action of Knowledge Workers
Authors: Juan-Gabriel Cegarra-Navarro, Alexeis Garcia-Perez, Denise Bedford
Abstract:
This paper provides guidelines for what constitutes a knowledge worker. Many graduates from non-managerial domains adopt, at some point in their professional careers, management roles at different levels, ranging from team leaders through to executive leadership. This is particularly relevant for professionals from an engineering background. Moving from a technical to an executive-level requires an understanding of those behaviour management techniques that can motivate and support individuals and their performance. Further, the transition to management also demands a shift of contextual enablers from tangible to intangible resources, which allows individuals to create new capacities, competencies, and capabilities. In this dynamic process, the knowledge worker becomes that key individual who can help members of the management board to transform information into relevant knowledge. However, despite its relevance in shaping the future of the organization in its transition to the knowledge economy, the role of a knowledge worker has not yet been studied to an appropriate level in the current literature. In this study, the authors review both the contextual enablers and behaviour outputs related to the role of the knowledge worker and relate these to their ability to deal with everyday management issues such as knowledge heterogeneity, varying motivations, information overload, or outdated information. This study highlights that the aggregate of capacities, competences and capabilities (CCCs) can be defined as knowledge structures, the study proposes several contextual enablers and behaviour outputs that knowledge workers can use to work cooperatively, acquire, distribute and knowledge. Therefore, this study contributes to a better comprehension of how CCCs can be managed at different levels through their contextual enablers and behaviour outputs.Keywords: knowledge workers, capabilities, capacities, competences, knowledge structures
Procedia PDF Downloads 15617305 Impact of Pedagogical Techniques on the Teaching of Sports Sciences
Authors: Muhammad Saleem
Abstract:
Background: The teaching of sports sciences encompasses a broad spectrum of disciplines, including biomechanics, physiology, psychology, and coaching. Effective pedagogical techniques are crucial in imparting both theoretical knowledge and practical skills necessary for students to excel in the field. The impact of these techniques on students’ learning outcomes, engagement, and professional preparedness remains a vital area of study. Objective: This study aims to evaluate the effectiveness of various pedagogical techniques used in the teaching of sports sciences. It seeks to identify which methods most significantly enhance student learning, retention, engagement, and practical application of knowledge. Methods: A mixed-methods approach was employed, including both quantitative and qualitative analyses. The study involved a comparative analysis of traditional lecture-based teaching, experiential learning, problem-based learning (PBL), and technology-enhanced learning (TEL). Data were collected through surveys, interviews, and academic performance assessments from students enrolled in sports sciences programs at multiple universities. Statistical analysis was used to evaluate academic performance, while thematic analysis was applied to qualitative data to capture student experiences and perceptions. Results: The findings indicate that experiential learning and PBL significantly improve students' understanding and retention of complex sports science concepts compared to traditional lectures. TEL was found to enhance engagement and provide students with flexible learning opportunities, but its impact on deep learning varied depending on the quality of the digital resources. Overall, a combination of experiential learning, PBL, and TEL was identified as the most effective pedagogical approach, leading to higher student satisfaction and better preparedness for real-world applications. Conclusion: The study underscores the importance of adopting diverse and student-centered pedagogical techniques in the teaching of sports sciences. While traditional lectures remain useful for foundational knowledge, integrating experiential learning, PBL, and TEL can substantially improve student outcomes. These findings suggest that educators should consider a blended approach to pedagogy to maximize the effectiveness of sports science education.Keywords: sport sciences, pedagogical techniques, health and physical education, problem-based learning, student engagement
Procedia PDF Downloads 2417304 Teachers' Attitude and Knowledge as Predictors of Effective Use of Digital Devices for the Education of Students with Special Needs in Oyo, Nigeria
Authors: Faseluka Olamide Tope
Abstract:
Giving quality education to students with special needs requires that all necessary resources should be harnessed and digital devices has become important part of resources used as instructional materials in educating students with special needs. Teachers who will make use of these technologies are considered as a part of the most important elements in any educational programme and the effective usage of these technologies largely depends on them. Out of numerous determinants of the effective use of these digital devices, this study examines teachers’ attitude and knowledge as predictors of effective use of digital technology for education of special needs student in Oyo state, Nigeria. The descriptive survey research design of the expo-facto type was adopted for the study, using simple random sampling technique. The study was carried out among sixty (60) participants. Two research questions and two research hypotheses were formulated and used. The data collected through the research instruments for the study were analysedusing frequency, percentage, mean and standard deviation, Pearson, Product, Moment Correlation (PPMC) and Multiple Regression Analysis. The study revealed a significant relationship between teachers attitude (50, < 0.05) and effective use of digital technologies for special needs students. Furthermore, there was a significant contribution F (F=4.289; R=0.876 and R2 =0.758) in the joint contribution of the independent variable (teacher’s attitude and teacher’s knowledge) and dependent variable (effective use of digital technologies) while teachers knowledge have the highest contribution(b=7.926, t=4.376), the study therefore revealed that teachers attitude and knowledge are potent factors that predicts the effective usage of digital technologies for the education of special needs student. The study recommended that due to the ever-changing nature of technology which comes with new features, teachers should be equipped with appropriate knowledge in order to effectively make use of them and teachers should also develop right attitude toward the use of digital technologiesKeywords: teachers’ knowledge, teachers’ attitude, digital devices, special needs students
Procedia PDF Downloads 4717303 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 10617302 Knowledge Integration from Concept to Practice: An Exploratory Study of Designing a Flood Resilient Urban Park in Viet Nam
Authors: To Quyen Le, Oswald Devisch, Tu Anh Trinh, Els Hannes
Abstract:
Urban centres worldwide are affected differently by flooding. In Vietnam this impact is increasingly negative caused by a process of rapid urbanisation. Traditional spatial planning and flood mitigation planning are not able to deal with this growing threat. This article therefore proposes to focus on increasing the participation of local communities in flood control and management. It explores, on the basis of a design studio exercise, how lay knowledge on flooding can be integrated within planning processes. The article presents a theoretical basis for the structured criterion for site selection for a flood resilient urban park from the perspective of science, then discloses the tacit and explicit knowledge of the flood-prone area and finally integrates this knowledge into the design strategies for flood resilient urban park design.Keywords: analytic hierarchy process, AHP, design resilience, flood resilient urban park, knowledge integration
Procedia PDF Downloads 17917301 An Enhanced Support Vector Machine Based Approach for Sentiment Classification of Arabic Tweets of Different Dialects
Authors: Gehad S. Kaseb, Mona F. Ahmed
Abstract:
Arabic Sentiment Analysis (SA) is one of the most common research fields with many open areas. Few studies apply SA to Arabic dialects. This paper proposes different pre-processing steps and a modified methodology to improve the accuracy using normal Support Vector Machine (SVM) classification. The paper works on two datasets, Arabic Sentiment Tweets Dataset (ASTD) and Extended Arabic Tweets Sentiment Dataset (Extended-AATSD), which are publicly available for academic use. The results show that the classification accuracy approaches 86%.Keywords: Arabic, classification, sentiment analysis, tweets
Procedia PDF Downloads 14917300 Agricultural Knowledge Management System Design, Use, and Consequence for Knowledge Sharing and Integration
Authors: Dejen Alemu, Murray E. Jennex, Temtim Assefa
Abstract:
This paper is investigated to understand the design, the use, and the consequence of Knowledge Management System (KMS) for knowledge systems sharing and integration. A KMS for knowledge systems sharing and integration is designed to meet the challenges raised by knowledge management researchers and practitioners: the technical, the human, and social factors. Agricultural KMS involves various members coming from different Communities of Practice (CoPs) who possess their own knowledge of multiple practices which need to be combined in the system development. However, the current development of the technology ignored the indigenous knowledge of the local communities, which is the key success factor for agriculture. This research employed the multi-methodological approach to KMS research in action research perspective which consists of four strategies: theory building, experimentation, observation, and system development. Using the KMS development practice of Ethiopian agricultural transformation agency as a case study, this research employed an interpretive analysis using primary qualitative data acquired through in-depth semi-structured interviews and participant observations. The Orlikowski's structuration model of technology has been used to understand the design, the use, and the consequence of the KMS. As a result, the research identified three basic components for the architecture of the shared KMS, namely, the people, the resources, and the implementation subsystems. The KMS were developed using web 2.0 tools to promote knowledge sharing and integration among diverse groups of users in a distributed environment. The use of a shared KMS allows users to access diverse knowledge from a number of users in different groups of participants, enhances the exchange of different forms of knowledge and experience, and creates high interaction and collaboration among participants. The consequences of a shared KMS on the social system includes, the elimination of hierarchical structure, enhance participation, collaboration, and negotiation among users from different CoPs having common interest, knowledge and skill development, integration of diverse knowledge resources, and the requirement of policy and guideline. The research contributes methodologically for the application of system development action research for understanding a conceptual framework for KMS development and use. The research have also theoretical contribution in extending structuration model of technology for the incorporation of variety of knowledge and practical implications to provide management understanding in developing strategies for the potential of web 2.0 tools for sharing and integration of indigenous knowledge.Keywords: communities of practice, indigenous knowledge, participation, structuration model of technology, Web 2.0 tools
Procedia PDF Downloads 25317299 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset
Authors: Jaiden X. Schraut
Abstract:
Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.Keywords: chest X-ray, deep learning, image segmentation, image classification
Procedia PDF Downloads 14417298 The Impact of the Flipped Classroom Instructional Model on MPharm Students in Two Pharmacy Schools in the UK
Authors: Mona Almanasef, Angel Chater, Jane Portlock
Abstract:
Introduction: A 'flipped classroom' uses technology to shift the traditional lecture outside the scheduled class time and uses the face-to-face time to engage students in interactive activities. Aim of the Study: Assess the feasibility, acceptability, and effectiveness of using the 'flipped classroom' teaching format with MPharm students in two pharmacy schools in the UK: UCL School of Pharmacy and the School of Pharmacy and Biomedical Sciences at University of Portsmouth. Methods: An experimental mixed methods design was employed, with final year MPharm students in two phases; 1) a qualitative study using focus groups, 2) a quasi-experiment measuring knowledge acquisition and satisfaction by delivering a session on rheumatoid arthritis, in two teaching formats: the flipped classroom and the traditional lecture. Results: The flipped classroom approach was preferred over the traditional lecture for delivering a pharmacy practice topic, and it was comparable or better than the traditional lecture with respect to knowledge acquisition. In addition, this teaching approach was found to overcome the perceived challenges of the traditional lecture method such as fast pace instructions, student disengagement and boredom due to lack of activities and/or social anxiety. However, high workload and difficult or new concepts could be barriers to pre-class preparation, and therefore successful flipped classroom. The flipped classroom encouraged learning scaffolding where students could benefit from application of knowledge, and interaction with peers and the lecturer, which might, in turn, facilitate learning consolidation and deep understanding. This research indicated that the flipped classroom was beneficial for all learning styles. Conclusion: Implementing the flipped classroom at both pharmacy institutions was successful and well received by final year MPharm students. Given the attention now being put on the Teaching Excellence Framework (TEF), understanding effective methods of teaching to enhance student achievement and satisfaction is now more valuable than ever.Keywords: blended learning, flipped classroom, inverted classroom, pharmacy education
Procedia PDF Downloads 13617297 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 7517296 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 11017295 A Comparison of South East Asian Face Emotion Classification based on Optimized Ellipse Data Using Clustering Technique
Authors: M. Karthigayan, M. Rizon, Sazali Yaacob, R. Nagarajan, M. Muthukumaran, Thinaharan Ramachandran, Sargunam Thirugnanam
Abstract:
In this paper, using a set of irregular and regular ellipse fitting equations using Genetic algorithm (GA) are applied to the lip and eye features to classify the human emotions. Two South East Asian (SEA) faces are considered in this work for the emotion classification. There are six emotions and one neutral are considered as the output. Each subject shows unique characteristic of the lip and eye features for various emotions. GA is adopted to optimize irregular ellipse characteristics of the lip and eye features in each emotion. That is, the top portion of lip configuration is a part of one ellipse and the bottom of different ellipse. Two ellipse based fitness equations are proposed for the lip configuration and relevant parameters that define the emotions are listed. The GA method has achieved reasonably successful classification of emotion. In some emotions classification, optimized data values of one emotion are messed or overlapped to other emotion ranges. In order to overcome the overlapping problem between the emotion optimized values and at the same time to improve the classification, a fuzzy clustering method (FCM) of approach has been implemented to offer better classification. The GA-FCM approach offers a reasonably good classification within the ranges of clusters and it had been proven by applying to two SEA subjects and have improved the classification rate.Keywords: ellipse fitness function, genetic algorithm, emotion recognition, fuzzy clustering
Procedia PDF Downloads 54617294 An Empirical Exploration of Factors Influencing Lecturers' Acceptance of Open Educational Resources for Enhanced Knowledge Sharing in North-East Nigerian Universities
Authors: Bello, A., Muhammed Ibrahim Abba., Abdullahi, M., Dauda, Sabo, & Shittu, A. T.
Abstract:
This study investigated the Predictors of Lecturers Knowledge Sharing Acceptance on Open Educational Resources (OER) in North-East Nigerian in Universities. The study population comprised of 632 lecturers of Federal Universities in North-east Nigeria. The study sample covered 338 lecturers who were selected purposively from Adamawa, Bauchi and Borno State Federal Universities in Nigeria. The study adopted a prediction correlational research design. The instruments used for data collection was the questionnaire. Experts in the field of educational technology validated the instrument and tested it for reliability checks using Cronbach’s alpha. The constructs on lecturers’ acceptance to share OER yielded a reliability coefficient of; α = .956 for Performance Expectancy, α = .925; for Effort Expectancy, α = .955; for Social Influence, α = .879; for Facilitating Conditions and α = .948 for acceptance to share OER. the researchers contacted the Deanery of faculties of education and enlisted local coordinators to facilitate the data collection process at each university. The data was analysed using multiple sequential regression statistic at a significance level of 0.05 using SPSS version 23.0. The findings of the study revealed that performance expectancy (β = 0.658; t = 16.001; p = 0.000), effort expectancy (β = 0.194; t = 3.802; p = 0.000), social influence (β = 0.306; t = 5.246; p = 0.000), collectively indicated that the variables have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. However, the finding revealed that facilitating conditions (β = .053; t = .899; p = 0.369), does not have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. Based on these findings, the study recommends among others that the university management should consider adjusting OER policy to be centered around actualizing lecturers career progression.Keywords: acceptance, lecturers, open educational resources, knowledge sharing
Procedia PDF Downloads 7317293 Development of Management System of the Experience of Defensive Modeling and Simulation by Data Mining Approach
Authors: D. Nam Kim, D. Jin Kim, Jeonghwan Jeon
Abstract:
Defense Defensive Modeling and Simulation (M&S) is a system which enables impracticable training for reducing constraints of time, space and financial resources. The necessity of defensive M&S has been increasing not only for education and training but also virtual fight. Soldiers who are using defensive M&S for education and training will obtain empirical knowledge and know-how. However, the obtained knowledge of individual soldiers have not been managed and utilized yet since the nature of military organizations: confidentiality and frequent change of members. Therefore, this study aims to develop a management system for the experience of defensive M&S based on data mining approach. Since individual empirical knowledge gained through using the defensive M&S is both quantitative and qualitative data, data mining approach is appropriate for dealing with individual empirical knowledge. This research is expected to be helpful for soldiers and military policy makers.Keywords: data mining, defensive m&s, management system, knowledge management
Procedia PDF Downloads 25417292 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 38617291 Semi-Automatic Method to Assist Expert for Association Rules Validation
Authors: Amdouni Hamida, Gammoudi Mohamed Mohsen
Abstract:
In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process.Keywords: association rules, rule-based classification, classification quality, validation
Procedia PDF Downloads 43917290 Spatial Audio Player Using Musical Genre Classification
Authors: Jun-Yong Lee, Hyoung-Gook Kim
Abstract:
In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing
Procedia PDF Downloads 42917289 Comparative Study of Traditional Classroom Learning and Distance Learning in Pakistan
Authors: Muhammad Afzal Malik
Abstract:
Traditional Learning & Distance based learning are the two systems prevailing in Pakistan. These systems affect the level of education standard. The purpose of this study was to compare the traditional classroom learning and distance learning in Pakistan: (a) To explore the effectiveness of the traditional to Distance learning in Pakistan; (b) To identify the factors that affect traditional and distance learning. This review found that, on average, students in traditional classroom conditions performed better than those receiving education in and distance learning. The difference between student outcomes for traditional Classroom and distance learning classes —measured as the difference between treatment and control means, divided by the pooled standard deviation— was larger in those studies contrasting conditions that blended elements of online and face-to-face instruction with conditions taught entirely face-to-face. This research was conducted to highlight the impact of distance learning education system on education standard. The education standards were institutional support, course development, learning process, student support, faculty support, evaluation and assessment. A well developed questionnaire was administered and distributed among 26 faculty members of GCET, H-9 and Virtual University of Pakistan from each. Data was analyzed through correlation and regression analysis. Results confirmed that there is a significant relationship and impact of DLE system on education standards. This will also provide baseline for future research. It will add value to the existing body of knowledge.Keywords: distance learning education, higher education, education standards, student performance
Procedia PDF Downloads 28017288 Evaluation of the Efficacy of Basic Life Support Teaching in Second and Third Year Medical Students
Authors: Bianca W. O. Silva, Adriana C. M. Andrade, Gustavo C. M. Lucena, Virna M. S. Lima
Abstract:
Introduction: Basic life support (BLS) involves the immediate recognition of cardiopulmonary arrest. Each year, 359.400 and 275.000 individuals with cardiac arrest are attended in emergency departments in USA and Europe. Brazilian data shows that 200.000 cardiac arrests occur every year, and half of them out of the hospital. Medical schools around the world teach BLS in the first years of the course, but studies show that there is a decline of the knowledge as the years go by, affecting the chain of survival. The objective was to analyze the knowledge of medical students about BLS and the retention of this learning throughout the course. Methods: This study included 150 students who were at the second and third year of a medical school in Salvador, Bahia, Brazil. The instrument of data collection was a structured questionnaire composed of 20 questions based on the 2015 American Heart Association guideline. The Pearson Chi-square test was used in order to study the association between previous training, sex and semester with the degree of knowledge of the students. The Kruskal-Wallis test was used to evaluate the different yields obtained between the various semesters. The number of correct answers was described by average and quartiles. Results: Regarding the degree of knowledge, 19.6% of the female students reached the optimal classification, a better outcome than the achieved by the male participants. Of those with previous training, 33.33% were classified as good and optimal, none of the students reached the optimal classification and only 2.2% of them were classified as bad (those who did not have 52.6% of correct answers). The analysis of the degree of knowledge related to each semester revealed that the 5th semester had the highest outcome: 30.5%. However, the acquaintance presented by the semesters was generally unsatisfactory, since 50% of the students, or more, demonstrated knowledge levels classified as bad or regular. When confronting the different semesters and the achieved scores, the value of p was 0.831. Conclusion: It is important to focus on the training of medical professionals that are capable of facing emergency situations, improving the systematization of care, and thereby increasing the victims' possibility of survival.Keywords: basic life support, cardiopulmonary ressucitacion, education, medical students
Procedia PDF Downloads 18617287 The Effectiveness of Exchange of Tacit and Explicit Knowledge Using Digital and Face to Face Sharing
Authors: Delio I. Castaneda, Paul Toulson
Abstract:
The purpose of this study was to investigate the knowledge sharing effectiveness of two types of knowledge, tacit and explicit, depending on two channels: face to face or digital. Participants were 217 knowledge workers in New Zealand and researchers who attended a knowledge management conference in the United Kingdom. In the study, it was found that digital tools are effective to share explicit knowledge. In addition, digital tools that facilitated dialogue were effective to share tacit knowledge. It was also found that face to face communication was an effective way to share tacit and explicit knowledge. Results of this study contribute to clarify in what cases digital tools are effective to share tacit knowledge. Additionally, even though explicit knowledge can be easily shared using digital tools, this type of knowledge is also possible to be shared through dialogue. Result of this study may support practitioners to redesign programs and activities based on knowledge sharing to make strategies more effective.Keywords: digital knowledge, explicit knowledge, knowledge sharing, tacit knowledge
Procedia PDF Downloads 25517286 Development of Fuzzy Logic Control Ontology for E-Learning
Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof
Abstract:
Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.Keywords: engineering knowledge, fuzzy logic control ontology, ontology development, table of content
Procedia PDF Downloads 29917285 A Framework for Customer Knowledge Management (CKM) as a Key Role in Relationship
Authors: Mehrnoosh Askarizadeh
Abstract:
The customer’s value has become obvious for the leading companies in today’s competitive environment. Therefore they are constantly trying to improve their relationship with customers. Customer Knowledge has been recognized as a strategic resource and a key to the success of any company. Talking about the Customer Knowledge Management is closely associated with Knowledge Management and Customer Relationship Management (CRM). Recent studies conducted in the fields of Knowledge Management (KM) and Customer Relationship Management (CRM) has explained that the two approaches can have great synergies. In this paper, our aim is to provide an understanding of Customer Knowledge Management (CKM) as an integrated management approach and competence it requires. We describe CKM as an ongoing process of generating, disseminating and using customer knowledge within an organization and between an organization and its customers. In addition, we propose a comprehensive framework of CKM, the ability to integrate customer knowledge into customer relationship management processes.Keywords: e-commerce, knowledge management (KM), customer relationship management (CRM), customer knowledge management (CKM)
Procedia PDF Downloads 55717284 Hydrologic Balance and Surface Water Resources of the Cheliff-Zahrez Basin
Authors: Mehaiguene Madjid, Touhari Fadhila, Meddi Mohamed
Abstract:
The Cheliff basin offers a good hydrological example for the possibility of studying the problem which elucidated in the future, because of the unclearity in several aspects and hydraulic installation. Thus, our study of the Cheliff basin is divided into two principal parts: The spatial evaluation of the precipitation: also, the understanding of the modes of the reconstitution of the resource in water supposes a good knowledge of the structuring of the precipitation fields in the studied space. In the goal of a good knowledge of revitalizes them in water and their management integrated one judged necessary to establish a precipitation card of the Cheliff basin for a good understanding of the evolution of the resource in water in the basin and that goes will serve as basis for all study of hydraulic planning in the Cheliff basin. Then, the establishment of the precipitation card of the Cheliff basin answered a direct need of setting to the disposition of the researchers for the region and a document of reference that will be completed therefore and actualized. The hydrological study, based on the statistical hydrometric data processing will lead us to specify the hydrological terms of the assessment hydrological and to clarify the fundamental aspects of the annual flow, seasonal, extreme and thus of their variability and resources surface water.Keywords: hydrological assessment, surface water resources, Cheliff, Algeria
Procedia PDF Downloads 30417283 Documents Emotions Classification Model Based on TF-IDF Weighting Measure
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms
Procedia PDF Downloads 484