Search results for: speech emotion classification
3044 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction
Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung
Abstract:
In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality
Procedia PDF Downloads 4723043 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 5443042 A Cross-Dialect Statistical Analysis of Final Declarative Intonation in Tuvinian
Authors: D. Beziakina, E. Bulgakova
Abstract:
This study continues the research on Tuvinian intonation and presents a general cross-dialect analysis of intonation of Tuvinian declarative utterances, specifically the character of the tone movement in order to test the hypothesis about the prevalence of level tone in some Tuvinian dialects. The results of the analysis of basic pitch characteristics of Tuvinian speech (in general and in comparison with two other Turkic languages - Uzbek and Azerbaijani) are also given in this paper. The goal of our work was to obtain the ranges of pitch parameter values typical for Tuvinian speech. Such language-specific values can be used in speaker identification systems in order to get more accurate results of ethnic speech analysis. We also present the results of a cross-dialect analysis of declarative intonation in the poorly studied Tuvinian language.Keywords: speech analysis, statistical analysis, speaker recognition, identification of person
Procedia PDF Downloads 4683041 A Profile of the Patients at the Hearing and Speech Clinic at the University of Jordan: A Retrospective Study
Authors: Maisa Haj-Tas, Jehad Alaraifi
Abstract:
The significance of the study: This retrospective study examined the speech and language profiles of patients who received clinical services at the University of Jordan Hearing and Speech Clinic (UJ-HSC) from 2009 to 2014. The UJ-HSC clinic is located in the capital Amman and was established in the late 1990s. It is the first hearing and speech clinic in Jordan and one of first speech and hearing clinics in the Middle East. This clinic provides services to an annual average of 2000 patients who are diagnosed with different communication disorders. Examining the speech and language profiles of patients in this clinic could provide an insight about the most common disorders seen in patients who attend similar clinics in Jordan. It could also provide information about community awareness of the role of speech therapists in the management of speech and language disorders. Methodology: The researchers examined the clinical records of 1140 patients (797 males and 343 females) who received clinical services at the UJ-HSC between the years 2009 and 2014 for the purpose of data analysis for this study. The main variables examined in the study were disorder type and gender. Participants were divided into four age groups: children, adolescents, adults, and older adults. The examined disorders were classified as either speech disorders, language disorders, or dysphagia (i.e., swallowing problems). The disorders were further classified as childhood language impairments, articulation disorders, stuttering, cluttering, voice disorders, aphasia, and dysphagia. Results: The results indicated that the prevalence for language disorders was the highest (50.7%) followed by speech disorders (48.3%), and dysphagia (0.9%). The majority of patients who were seen at the JU-HSC were diagnosed with childhood language impairments (47.3%) followed consecutively by articulation disorders (21.1%), stuttering (16.3%), voice disorders (12.1%), aphasia (2.2%), dysphagia (0.9%), and cluttering (0.2%). As for gender, the majority of patients seen at the clinic were males in all disorders except for voice disorders and cluttering. Discussion: The results of the present study indicate that the majority of examined patients were diagnosed with childhood language impairments. Based on this result, the researchers suggest that there seems to be a high prevalence of childhood language impairments among children in Jordan compared to other types of speech and language disorders. The researchers also suggest that there is a need for further examination of the actual prevalence data on speech and language disorders in Jordan. The fact that many of the children seen at the UJ-HSC were brought to the clinic either as a result of parental concern or teacher referral indicates that there seems to an increased awareness among parents and teachers about the services speech pathologists can provide about assessment and treatment of childhood speech and language disorders. The small percentage of other disorders (i.e., stuttering, cluttering, dysphasia, aphasia, and voice disorders) seen at the UJ-HSC may indicate a little awareness by the local community about the role of speech pathologists in the assessment and treatment of these disorders.Keywords: clinic, disorders, language, profile, speech
Procedia PDF Downloads 3103040 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines
Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder
Abstract:
One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots
Procedia PDF Downloads 2343039 The Relationship between Fight-Flight-Freeze System, Level of Expressed Emotion in Family, and Emotion Regulation Difficulties of University Students: Comparison Experienced to Inexperienced Non-Suicidal Self-Injury Students (NSSI)
Authors: Hyojung Shin, Munhee Kweon
Abstract:
Non-suicide Self Injuri (NSSI) can be defined as the act of an individual who does not intend to die directly and intentionally damaging his or her body tissues. According to a study conducted by the Korean Ministry of Education in 2018, the NSSI is widely spreading among teenagers, with 7.9 percent of all middle school students and 6.4 percent of high school students reporting experience in NSSI. As such, it is understood that the first time of the NSSI is in adolescence. However, the NSSI may not start and stop at a certain time, but may last longer. However, despite the widespread prevalence of NSSI among teenagers, little is known about the process and maintenance of NSSI college students on a continuous development basis. Korea's NSSI research trends are mainly focused on individual internal vulnerabilities (high levels of painful emotions/awareness, lack of pain tolerance) and interpersonal vulnerabilities (poor communication skills and social problem solving), and little studies have been done on individuals' unique characteristics and environmental factors such as substrate or environmental vulnerability factors. In particular, environmental factors are associated with the occurrence of NSSI by acting as a vulnerability factor that can interfere with the emotional control of individuals, whereas individual factors play a more direct role by contributing to the maintenance of NSSI, so it is more important to consider this for personal environmental involvement in NSSI. This study focused on the Fight-Flight-Freeze System as a factor in the defensive avoidance system of Reward Sensitivity in individual factors. Also, Environmental factors include the level of expressed emotion in family. Wedig and Nock (2007) said that if parents with a self-critical cognitive style take the form of criticizing their children, the experience of NSSI increases. The high level of parental criticism is related to the increasing frequency of NSSI acts as well as to serious levels of NSSI. If the normal coping mechanism fails to control emotions, people want to overcome emotional difficulties even through NSSI, and emotional disturbances experienced by individuals within an unsupported social relationship increase vulnerability to NSSI. Based on these theories, this study is to find ways to prevent NSSI and intervene in counseling effectively by verifying the differences between the characteristics experienced NSSI persons and non-experienced NSSI persons. Therefore, the purpose of this research was to examine the relationship of Fight-Flight-Freeze System (FFFS), level of expressed emotion in family and emotion regulation difficulties, comparing those who experienced Non-Suicidal Self-Injury (NSSI) with those who did not experienced Non-Suicidal Self-Injury (NSSI). The data were collected from university students in Seoul Korea and Gyeonggi-do province. 99 subjects were experienced student of NSSI, while 375 were non- experienced student of NSSI. The results of this study are as follows. First, the result of t-test indicated that NSSI attempters showed a significant difference in fight-flight-freeze system, level of expressed emotion and emotion regulation difficulties, compared with non-attempters. Second, fight-flight-freeze system, level of expressed emotion in family and emotion regulation difficulties of NSSI attempters showed a significant difference in correlation. The correlation was significant only freeze system of fight-flight-freeze system, Level of expressed emotion in family and emotion regulation difficulties. Third, freeze system and level of expressed emotion in family predicted emotion regulation difficulties of NSSI attempters. Fight-freeze system and level of expressed emotion in family predicted emotion regulation difficulties of non-NSSI attempters. Lastly, Practical implications for counselors and limitations of this study are discussed.Keywords: fight-flight-freeze system, level of expressed emotion in family, emotion regulation difficulty, non-suicidal self injury
Procedia PDF Downloads 1093038 The Relationship Between Teachers’ Attachment Insecurity and Their Classroom Management Efficacy
Authors: Amber Hatch, Eric Wright, Feihong Wang
Abstract:
Research suggests that attachment in close relationships affects one’s emotional processes, mindfulness, conflict-management behaviors, and interpersonal interactions. Attachment insecurity is often associated with maladaptive social interactions and suboptimal relationship qualities. Past studies have considered how the nature of emotion regulation and mindfulness in teachers may be related to student or classroom outcomes. Still, no research has examined how the relationship between such internal experiences and classroom management outcomes may also be related to teachers’ attachment insecurity. This study examined the interrelationships between teachers’ attachment insecurity, mindfulness tendencies, emotion regulation abilities, and classroom management efficacy as indexed by students’ classroom behavior and teachers’ response effectiveness. Teachers’ attachment insecurity was evaluated using the global ECRS-SF, which measures both attachment anxiety and avoidance. The present study includes a convenient sample of 357 American elementary school teachers who responded to a survey regarding their classroom management efficacy, attachment in/security, dispositional mindfulness, emotion regulation strategies, and difficulties in emotion regulation, primarily assessed via pre-existing instruments. Good construct validity was demonstrated for all scales used in the survey. Sample demographics, including gender (94% female), race (92% White), age (M = 41.9 yrs.), years of teaching experience (M = 15.2 yrs.), and education level were similar to the population from which it was drawn, (i.e., American elementary school teachers). However, white women were slightly overrepresented in our sample. Correlational results suggest that teacher attachment insecurity is associated with poorer classroom management efficacy as indexed by students’ disruptive behavior and teachers’ response effectiveness. Attachment anxiety was a much stronger predictor of adverse student behaviors and ineffective teacher responses to adverse behaviors than attachment avoidance. Mindfulness, emotion regulation abilities, and years of teaching experience predicted positive classroom management outcomes. Attachment insecurity and mindfulness were more strongly related to frequent adverse student behaviors, while emotion regulation abilities were more strongly related to teachers’ response effectiveness. The teaching experience was negatively related to attachment insecurity and positively related to mindfulness and emotion regulation abilities. Although the data were cross-sectional, path analyses revealed that attachment insecurity is directly related to classroom management efficacy. Through two routes, this relationship is further mediated by emotion regulation and mindfulness in teachers. The first route of indirect effect suggests double mediation by teacher’s emotion regulation and then teacher mindfulness in the relationship between teacher attachment insecurity and classroom management efficacy. The second indirect effect suggests mindfulness directly mediated the relationship between attachment insecurity and classroom management efficacy, resulting in improved model fit statistics. However, this indirect effect is much smaller than the double mediation route through emotion regulation and mindfulness in teachers. Given the significant predication of teacher attachment insecurity, mindfulness, and emotion regulation on teachers’ classroom management efficacy both directly and indirectly, the authors recommend improving teachers’ classroom management efficacy via a three-pronged approach aiming at enhancing teachers’ secure attachment and supporting their learning adaptive emotion regulation strategies and mindfulness techniques.Keywords: Classroom management efficacy, student behavior, teacher attachment, teacher emotion regulation, teacher mindfulness
Procedia PDF Downloads 843037 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition
Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi
Abstract:
In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector
Procedia PDF Downloads 3713036 Role of Speech Articulation in English Language Learning
Authors: Khadija Rafi, Neha Jamil, Laiba Khalid, Meerub Nawaz, Mahwish Farooq
Abstract:
Speech articulation is a complex process to produce intelligible sounds with the help of precise movements of various structures within the vocal tract. All these structures in the vocal tract are named as articulators, which comprise lips, teeth, tongue, and palate. These articulators work together to produce a range of distinct phonemes, which happen to be the basis of language. It starts with the airstream from the lungs passing through the trachea and into oral and nasal cavities. When the air passes through the mouth, the tongue and the muscles around it form such coordination it creates certain sounds. It can be seen when the tongue is placed in different positions- sometimes near the alveolar ridge, soft palate, roof of the mouth or the back of the teeth which end up creating unique qualities of each phoneme. We can articulate vowels with open vocal tracts, but the height and position of the tongue is different every time depending upon each vowel, while consonants can be pronounced when we create obstructions in the airflow. For instance, the alphabet ‘b’ is a plosive and can be produced only by briefly closing the lips. Articulation disorders can not only affect communication but can also be a hurdle in speech production. To improve articulation skills for such individuals, doctors often recommend speech therapy, which involves various kinds of exercises like jaw exercises and tongue twisters. However, this disorder is more common in children who are going through developmental articulation issues right after birth, but in adults, it can be caused by injury, neurological conditions, or other speech-related disorders. In short, speech articulation is an essential aspect of productive communication, which also includes coordination of the specific articulators to produce different intelligible sounds, which are a vital part of spoken language.Keywords: linguistics, speech articulation, speech therapy, language learning
Procedia PDF Downloads 603035 Hate Speech in Selected Nigerian Newspapers
Authors: Laurel Chikwado Madumere, Kevin O. Ugorji
Abstract:
A speech is said to be full of hate when it appropriates disparaging and vituperative locutions and/or appellations, which are riddled with prejudices and misconceptions about an antagonizing party on the grounds of gender, race, political orientation, religious affiliations, tribe, etc. Due largely to the dichotomies and polarities that exist in Nigeria across political ideological spectrum, tribal affiliations, and gender contradistinctions, there are possibilities for the existence of socioeconomic, religious and political conditions that would induce, provoke and catalyze hate speeches in Nigeria’s mainstream media. Therefore the aim of this paper is to investigate, using select daily newspapers in Nigeria, the extent and complexity of those likely hate speeches that emanate from the pluralism in Nigeria and to set in to relief, the discrepancies and contrariety in the interpretation of those hate words. To achieve the above, the paper shall be qualitative in orientation as it shall be using the Speech Act Theory of J. L. Austin and J. R. Searle to interpret and evaluate the hate speeches in the select Nigerian daily newspapers. Also this paper shall help to elucidate the conditions that generate hate, and inform the government and NGOs how best to approach those conditions and put an end to the possible violence and extremism that emanate from extreme cases of hate.Keywords: extremism, gender, hate speech, pluralism, prejudice, speech act theory
Procedia PDF Downloads 1443034 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations
Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang
Abstract:
A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification
Procedia PDF Downloads 4553033 Intrinsic Motivational Factor of Students in Learning Mathematics and Science Based on Electroencephalogram Signals
Authors: Norzaliza Md. Nor, Sh-Hussain Salleh, Mahyar Hamedi, Hadrina Hussain, Wahab Abdul Rahman
Abstract:
Motivational factor is mainly the students’ desire to involve in learning process. However, it also depends on the goal towards their involvement or non-involvement in academic activity. Even though, the students’ motivation might be in the same level, but the basis of their motivation may differ. In this study, it focuses on the intrinsic motivational factor which student enjoy learning or feeling of accomplishment the activity or study for its own sake. The intrinsic motivational factor of students in learning mathematics and science has found as difficult to be achieved because it depends on students’ interest. In the Program for International Student Assessment (PISA) for mathematics and science, Malaysia is ranked as third lowest. The main problem in Malaysian educational system, students tend to have extrinsic motivation which they have to score in exam in order to achieve a good result and enrolled as university students. The use of electroencephalogram (EEG) signals has found to be scarce especially to identify the students’ intrinsic motivational factor in learning science and mathematics. In this research study, we are identifying the correlation between precursor emotion and its dynamic emotion to verify the intrinsic motivational factor of students in learning mathematics and science. The 2-D Affective Space Model (ASM) was used in this research in order to identify the relationship of precursor emotion and its dynamic emotion based on the four basic emotions, happy, calm, fear and sad. These four basic emotions are required to be used as reference stimuli. Then, in order to capture the brain waves, EEG device was used, while Mel Frequency Cepstral Coefficient (MFCC) was adopted to be used for extracting the features before it will be feed to Multilayer Perceptron (MLP) to classify the valence and arousal axes for the ASM. The results show that the precursor emotion had an influence the dynamic emotions and it identifies that most students have no interest in mathematics and science according to the negative emotion (sad and fear) appear in the EEG signals. We hope that these results can help us further relate the behavior and intrinsic motivational factor of students towards learning of mathematics and science.Keywords: EEG, MLP, MFCC, intrinsic motivational factor
Procedia PDF Downloads 3643032 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1183031 Absence of Developmental Change in Epenthetic Vowel Duration in Japanese Speakers’ English
Authors: Takayuki Konishi, Kakeru Yazawa, Mariko Kondo
Abstract:
This study examines developmental change in the production of epenthetic vowels by Japanese learners of English in relation to acquisition of L2 English speech rhythm. Seventy-two Japanese learners of English in the J-AESOP corpus were divided into lower- and higher-level learners according to their proficiency score and the frequency of vowel epenthesis. Three learners were excluded because no vowel epenthesis was observed in their utterances. The analysis of their read English speech data showed no statistical difference between lower- and higher-level learners, implying the absence of any developmental change in durations of epenthetic vowels. This result, together with the findings of previous studies, will be discussed in relation to the transfer of L1 phonology and manifestation of L2 English rhythm.Keywords: vowel epenthesis, Japanese learners of English, L2 speech corpus, speech rhythm
Procedia PDF Downloads 2653030 Measuring Emotion Dynamics on Facebook: Associations between Variability in Expressed Emotion and Psychological Functioning
Authors: Elizabeth M. Seabrook, Nikki S. Rickard
Abstract:
Examining time-dependent measures of emotion such as variability, instability, and inertia, provide critical and complementary insights into mental health status. Observing changes in the pattern of emotional expression over time could act as a tool to identify meaningful shifts between psychological well- and ill-being. From a practical standpoint, however, examining emotion dynamics day-to-day is likely to be burdensome and invasive. Utilizing social media data as a facet of lived experience can provide real-world, temporally specific access to emotional expression. Emotional language on social media may provide accurate and sensitive insights into individual and community mental health and well-being, particularly with focus placed on the within-person dynamics of online emotion expression. The objective of the current study was to examine the dynamics of emotional expression on the social network platform Facebook for active users and their relationship with psychological well- and ill-being. It was expected that greater positive and negative emotion variability, instability, and inertia would be associated with poorer psychological well-being and greater depression symptoms. Data were collected using a smartphone app, MoodPrism, which delivered demographic questionnaires, psychological inventories assessing depression symptoms and psychological well-being, and collected the Status Updates of consenting participants. MoodPrism also delivered an experience sampling methodology where participants completed items assessing positive affect, negative affect, and arousal, daily for a 30-day period. The number of positive and negative words in posts was extracted and automatically collated by MoodPrism. The relative proportion of positive and negative words from the total words written in posts was then calculated. Preliminary analyses have been conducted with the data of 9 participants. While these analyses are underpowered due to sample size, they have revealed trends that greater variability in the emotion valence expressed in posts is positively associated with greater depression symptoms (r(9) = .56, p = .12), as is greater instability in emotion valence (r(9) = .58, p = .099). Full data analysis utilizing time-series techniques to explore the Facebook data set will be presented at the conference. Identifying the features of emotion dynamics (variability, instability, inertia) that are relevant to mental health in social media emotional expression is a fundamental step in creating automated screening tools for mental health that are temporally sensitive, unobtrusive, and accurate. The current findings show how monitoring basic social network characteristics over time can provide greater depth in predicting risk and changes in depression and positive well-being.Keywords: emotion, experience sampling methods, mental health, social media
Procedia PDF Downloads 2493029 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach
Authors: Sanchali Das, Swapan Debbarma
Abstract:
Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.Keywords: Christian Kokborok song, mood classification, music information retrieval, regression
Procedia PDF Downloads 2183028 Speech and Swallowing Function after Tonsillo-Lingual Sulcus Resection with PMMC Flap Reconstruction: A Case Study
Authors: K. Rhea Devaiah, B. S. Premalatha
Abstract:
Background: Tonsillar Lingual sulcus is the area between the tonsils and the base of the tongue. The surgical resection of the lesions in the head and neck results in changes in speech and swallowing functions. The severity of the speech and swallowing problem depends upon the site and extent of the lesion, types and extent of surgery and also the flexibility of the remaining structures. Need of the study: This paper focuses on the importance of speech and swallowing rehabilitation in an individual with the lesion in the Tonsillar Lingual Sulcus and post-operative functions. Aim: Evaluating the speech and swallow functions post-intensive speech and swallowing rehabilitation. The objectives are to evaluate the speech intelligibility and swallowing functions after intensive therapy and assess the quality of life. Method: The present study describes a report of an individual aged 47years male, with the diagnosis of basaloid squamous cell carcinoma, left tonsillar lingual sulcus (pT2n2M0) and underwent wide local excision with left radical neck dissection with PMMC flap reconstruction. Post-surgery the patient came with a complaint of reduced speech intelligibility, and difficulty in opening the mouth and swallowing. Detailed evaluation of the speech and swallowing functions were carried out such as OPME, articulation test, speech intelligibility, different phases of swallowing and trismus evaluation. Self-reported questionnaires such as SHI-E(Speech handicap Index- Indian English), DHI (Dysphagia handicap Index) and SESEQ -K (Self Evaluation of Swallowing Efficiency in Kannada) were also administered to know what the patient feels about his problem. Based on the evaluation, the patient was diagnosed with pharyngeal phase dysphagia associated with trismus and reduced speech intelligibility. Intensive speech and swallowing therapy was advised weekly twice for the duration of 1 hour. Results: Totally the patient attended 10 intensive speech and swallowing therapy sessions. Results indicated misarticulation of speech sounds such as lingua-palatal sounds. Mouth opening was restricted to one finger width with difficulty chewing, masticating, and swallowing the bolus. Intervention strategies included Oro motor exercise, Indirect swallowing therapy, usage of a trismus device to facilitate mouth opening, and change in the food consistency to help to swallow. A practice session was held with articulation drills to improve the production of speech sounds and also improve speech intelligibility. Significant changes in articulatory production and speech intelligibility and swallowing abilities were observed. The self-rated quality of life measures such as DHI, SHI and SESE Q-K revealed no speech handicap and near-normal swallowing ability indicating the improved QOL after the intensive speech and swallowing therapy. Conclusion: Speech and swallowing therapy post carcinoma in the tonsillar lingual sulcus is crucial as the tongue plays an important role in both speech and swallowing. The role of Speech-language and swallowing therapists in oral cancer should be highlighted in treating these patients and improving the overall quality of life. With intensive speech-language and swallowing therapy post-surgery for oral cancer, there can be a significant change in the speech outcome and swallowing functions depending on the site and extent of lesions which will thereby improve the individual’s QOL.Keywords: oral cancer, speech and swallowing therapy, speech intelligibility, trismus, quality of life
Procedia PDF Downloads 1113027 Dancing with Perfectionism and Emotional Inhibition on the Ground of Disordered Eating Behaviors: Investigating Emotion Regulation Difficulties as Mediating Factor
Authors: Merve Denizci Nazligul
Abstract:
Dancers seem to have much higher risk levels for the development of eating disorders, compared to non-dancing counterparts. In a remarkably competitive nature of dance environment, perfectionism and emotion regulation difficulties become inevitable risk factors. Moreover, early maladaptive schemas are associated with various eating disorders. In the current study, it was aimed to investigate the mediating role of difficulties with emotion regulation on the relationship between perfectionism and disordered eating behaviors, as well as on the relationship between early maladaptive schemas and disordered eating behaviors. A total of 70 volunteer dancers (n = 47 women, n = 23 men) were recruited in the study (M age = 25.91, SD = 8.9, range 19–63) from the university teams or private clubs in Turkey. The sample included various types of dancers (n = 26 ballets or ballerinas, n =32 Latin, n = 10 tango, n = 2 hiphop). The mean dancing hour per week was 11.09 (SD = 7.09) within a range of 1-30 hours. The participants filled a questionnaire set including demographic information form, Dutch Eating Behavior Questionnaire, Multidimensional Perfectionism Scale, three subscales (Emotional Inhibition, Unrelenting Standards-Hypercriticalness, Approval Seeking-Recognition Seeking) from Young Schema Questionnaire-Short Form-3 and Difficulties in Emotion Regulation Scale. The mediation hypotheses were tested using the PROCESS macro in SPSS. The findings revealed that emotion regulation difficulties significantly mediated the relationship between three distinct subtypes of perfectionism and emotional eating. The results of the Sobel test suggested that there were significant indirect effects of self-oriented perfectionism (b = .06, 95% CI = .0084, .1739), other-oriented perfectionism (b = .15, 95% CI = .0136, .4185), and socially prescribed perfectionism (b = .09, 95% CI = .0104, .2344) on emotional eating through difficulties with emotion regulation. Moreover, emotion regulation difficulties significantly mediated the relationship between emotional inhibition and emotional eating (F(1,68) = 4.67, R2 = .06, p < .05). These results seem to provide some evidence that perfectionism might become a risk factor for disordered eating behaviors when dancers are not able to regulate their emotions. Further, gaining an understanding of how inhibition of emotions leads to inverse effects on eating behavior may be important to develop intervention strategies to manage their disordered eating patterns in risk groups. The present study may also support the importance of using unified protocols for transdiagnostic approaches which focus on identifying, accepting, prompting to express maladaptive emotions and appraisals.Keywords: dancers, disordered eating, emotion regulation difficulties, perfectionism
Procedia PDF Downloads 1443026 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: classification, data mining, spam filtering, naive bayes, decision tree
Procedia PDF Downloads 4083025 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification
Authors: Mohammad Sarchami, Mohsen Zeinalkhani
Abstract:
Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm
Procedia PDF Downloads 2473024 The Role of Emotions in the Consumer: Theoretical Review and Analysis of Components
Authors: Mikel Alonso López
Abstract:
The early eighties saw the rise of a new research trend in several prestigious journals, mainly articles that related emotions with the decision-making processes of the consumer, and stopped treating them as external elements. That is why we ask questions such as: what are emotions? Are there different types of emotions? What components do they have? Which theories exist about them? In this study, we will review the main theories and components of emotion analysing the cognitive factor and the different emotional states that are generally recognizable with a focus in the classic debate as to whether they occur before the cognitive process or the affective process.Keywords: emotion, consumer behaviour, feelings, decision making
Procedia PDF Downloads 3453023 Beyond Text: Unveiling the Emotional Landscape in Academic Writing
Authors: Songyun Chen
Abstract:
Recent scholarly attention to sentiment analysis has provided researchers with a deeper understanding of how emotions are conveyed in writing and leveraged by academic authors as a persuasive tool. Using the National Research Council (NRC) Sentiment Lexicons (version 1.0) created by the National Research Council Canada, this study examined specific emotions in research articles (RAs) across four disciplines, including literature, education, biology, and computer & information science based on four datasets totaling over three million tokens, aiming to reveal how the emotions are conveyed by authors in academic writing. The results showed that four emotions—trust, anticipation, joy, and surprise—were observed in all four disciplines, while sadness emotion was spotted solely in literature. With the emotion of trust being overwhelmingly prominent, the rest emotions varied significantly across disciplines. The findings contribute to our understanding of emotion strategy applied in academic writing and genre characteristics of RAs.Keywords: sentiment analysis, specific emotions, emotional landscape, research articles, academic writing
Procedia PDF Downloads 273022 Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia
Authors: Avyarthana Dey, Naren P. Rao, Arpitha Jacob, Chaitra V. Hiremath, Shivarama Varambally, Ganesan Venkatasubramanian, Rose Dawn Bharath, Bangalore N. Gangadhar
Abstract:
Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia.Keywords: recognition, functional connectivity, oxytocin, schizophrenia, social cognition
Procedia PDF Downloads 2183021 Dyadic Video Evidence on How Emotions in Parent Verbal Bids Affect Child Compliance in a British Sample
Authors: Iris Sirirada Pattara-Angkoon, Rory Devine, Anja Lindberg, Wendy Browne, Sarah Foley, Gabrielle McHarg, Claire Hughes
Abstract:
Introduction: The “Terrible Twos” is a phrase used to describe toddlers 18-30 months old. It characterizes a transition from high dependency to their caregivers in infancy to more autonomy and mastery of the body and environment. Toddlers at this age may also show more willfulness and stubbornness that could predict a future trajectory leading to conduct disorders. Thus, an important goal for this age group is to promote responsiveness to their caregivers (i.e., compliance). Existing literature tends to focus on praise to increase desirable child behavior. However, this relationship is not always straightforward as some studies have found no or negative association between praise and child compliance. Research suggests positive emotions and affection showed through body language (e.g., smiles) and actions (e.g., hugs, kisses) along with positive parent-child relationship can strengthen the praise and child compliance association. Nonetheless, few studies have examined the influences of positive emotionality within the speech. This is important as implementing verbal positive emotionality is easier than physical adjustments. The literature also tends not to include fathers in the study sample as mothers were traditionally the primary caregiver. However, as child-caring duties are increasing shared equally between mothers and fathers, it is important to include fathers within the study as studies have frequently found differences between female and male caregiver characteristics. Thus, the study will address the literary gap in two ways: 1. explore the influences of positive emotionality in parental speech and 2. include an equal sample of mothers and fathers. Positive emotionality is expected to positively correlate with and predict child compliance. Methodology: This study analyzed toddlers (18-24 months) in their dyadic interactions with mothers and fathers. A Duplo (block) task was used where parents had to work with their children to build the Duplo according to the given photo for four minutes. Then, they would be told to clean up the blocks. Parental positive emotionality in different speech types (e.g., bids, praises, affirmations) and child compliance were measured. Results: The study found that mothers (M = 28.92, SD = 12.01) were significantly more likely than fathers (M = 23.01, SD = 12.28) to use positive verbal emotionality in their speech, t(105) = 4.35, p< .001. High positive emotionality in bids during Duplo task and Clean Up was positively correlated with more child compliance in each task, r(273) = .35, p< .001 and r(264) = .58, p< .001, respectively. Overall, parental positive emotionality in speech significantly predicted child compliance, F(6, 218) = 13.33, p< .001, R² = .27) with emotionality in verbal bids (t = 6.20, p< .001) and affirmations (t = 3.12, p = .002) being significant predictors. Conclusion: Positive verbal emotions may be useful for increasing compliance in toddlers. This can be beneficial for compliance interventions as well as to the parent-child relationship quality through reduction of conflict and child defiance. As this study is correlational in nature, it will be important for future research to test the directional influence of positive emotionality within speech.Keywords: child temperament, compliance, positive emotion, toddler, verbal bids
Procedia PDF Downloads 1803020 Evaluation of Vehicle Classification Categories: Florida Case Study
Authors: Ren Moses, Jaqueline Masaki
Abstract:
This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic
Procedia PDF Downloads 1783019 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University
Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang
Abstract:
Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University
Procedia PDF Downloads 3143018 Investigating the Online Effect of Language on Gesture in Advanced Bilinguals of Two Structurally Different Languages in Comparison to L1 Native Speakers of L2 and Explores Whether Bilinguals Will Follow Target L2 Patterns in Speech and Co-speech
Authors: Armita Ghobadi, Samantha Emerson, Seyda Ozcaliskan
Abstract:
Being a bilingual involves mastery of both speech and gesture patterns in a second language (L2). We know from earlier work in first language (L1) production contexts that speech and co-speech gesture form a tightly integrated system: co-speech gesture mirrors the patterns observed in speech, suggesting an online effect of language on nonverbal representation of events in gesture during the act of speaking (i.e., “thinking for speaking”). Relatively less is known about the online effect of language on gesture in bilinguals speaking structurally different languages. The few existing studies—mostly with small sample sizes—suggests inconclusive findings: some show greater achievement of L2 patterns in gesture with more advanced L2 speech production, while others show preferences for L1 gesture patterns even in advanced bilinguals. In this study, we focus on advanced bilingual speakers of two structurally different languages (Spanish L1 with English L2) in comparison to L1 English speakers. We ask whether bilingual speakers will follow target L2 patterns not only in speech but also in gesture, or alternatively, follow L2 patterns in speech but resort to L1 patterns in gesture. We examined this question by studying speech and gestures produced by 23 advanced adult Spanish (L1)-English (L2) bilinguals (Mage=22; SD=7) and 23 monolingual English speakers (Mage=20; SD=2). Participants were shown 16 animated motion event scenes that included distinct manner and path components (e.g., "run over the bridge"). We recorded and transcribed all participant responses for speech and segmented it into sentence units that included at least one motion verb and its associated arguments. We also coded all gestures that accompanied each sentence unit. We focused on motion event descriptions as it shows strong crosslinguistic differences in the packaging of motion elements in speech and co-speech gesture in first language production contexts. English speakers synthesize manner and path into a single clause or gesture (he runs over the bridge; running fingers forward), while Spanish speakers express each component separately (manner-only: el corre=he is running; circle arms next to body conveying running; path-only: el cruza el puente=he crosses the bridge; trace finger forward conveying trajectory). We tallied all responses by group and packaging type, separately for speech and co-speech gesture. Our preliminary results (n=4/group) showed that productions in English L1 and Spanish L1 differed, with greater preference for conflated packaging in L1 English and separated packaging in L1 Spanish—a pattern that was also largely evident in co-speech gesture. Bilinguals’ production in L2 English, however, followed the patterns of the target language in speech—with greater preference for conflated packaging—but not in gesture. Bilinguals used separated and conflated strategies in gesture in roughly similar rates in their L2 English, showing an effect of both L1 and L2 on co-speech gesture. Our results suggest that online production of L2 language has more limited effects on L2 gestures and that mastery of native-like patterns in L2 gesture might take longer than native-like L2 speech patterns.Keywords: bilingualism, cross-linguistic variation, gesture, second language acquisition, thinking for speaking hypothesis
Procedia PDF Downloads 743017 Cognitive Semantics Study of Conceptual and Metonymical Expressions in Johnson's Speeches about COVID-19
Authors: Hussain Hameed Mayuuf
Abstract:
The study is an attempt to investigate the conceptual metonymies is used in political discourse about COVID-19. Thus, this study tries to analyze and investigate how the conceptual metonymies in Johnson's speech about coronavirus are constructed. This study aims at: Identifying how are metonymies relevant to understand the messages in Boris Johnson speeches and to find out how can conceptual blending theory help people to understand the messages in the political speech about COVID-19. Lastly, it tries to Point out the kinds of integration networks are common in political speech. The study is based on the hypotheses that conceptual blending theory is a powerful tool for investigating the intended messages in Johnson's speech and there are different processes of blending networks and conceptual mapping that enable the listeners to identify the messages in political speech. This study presents a qualitative and quantitative analysis of four speeches about COVID-19; they are said by Boris Johnson. The selected data have been tackled from the cognitive-semantic perspective by adopting Conceptual Blending Theory as a model for the analysis. It concludes that CBT is applicable to the analysis of metonymies in political discourse. Its mechanisms enable listeners to analyze and understand these speeches. Also the listener can identify and understand the hidden messages in Biden and Johnson's discourse about COVID-19 by using different conceptual networks. Finally, it is concluded that the double scope networks are the most common types of blending of metonymies in the political speech.Keywords: cognitive, semantics, conceptual, metonymical, Covid-19
Procedia PDF Downloads 1273016 The Effects of Emotional Working Memory Training on Trait Anxiety
Authors: Gabrielle Veloso, Welison Ty
Abstract:
Trait anxiety is a pervasive tendency to attend to and experience fears and worries to a disproportionate degree, across various situations. This study sought to determine if participants who undergo emotional working memory training will have significantly lower scores on the trait anxiety scales post-intervention. The study also sought to determine if emotional regulation mediated the relationship between working memory training and trait anxiety. Forty-nine participants underwent 20 days of computerized emotional working memory training called Emotional Dual n-back, which involves viewing a continuous stream of emotional content on a grid, and then remembering the location and color of items presented on the grid. Participants of the treatment group had significantly lower trait anxiety compared to controls post-intervention. Mediation analysis determined that working memory training had no significant relationship to anxiety as measured by the Beck’s Anxiety Inventory-Trait (BAIT), but was significantly related to anxiety as measured by form Y2 of the Spielberger State-Trait Anxiety Inventory (STAI-Y2). Emotion regulation, as measured by the Emotional Regulation Questionnaire (ERQ), was found not to mediate between working memory training and trait anxiety reduction. Results suggest that working memory training may be useful in reducing psychoemotional symptoms rather than somatic symptoms of trait anxiety. Moreover, it proposes for future research to further look into the mediating role of emotion regulation via neuroimaging and the development of more comprehensive measures of emotion regulation.Keywords: anxiety, emotion regulation, working-memory, working-memory training
Procedia PDF Downloads 1493015 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses
Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas
Abstract:
We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.Keywords: transient noise pulses, noise reduction, dynamic time warping, speech recognition
Procedia PDF Downloads 556