Search results for: soil transmitted helminthes
3264 Implementation of Successive Interference Cancellation Algorithms in the 5g Downlink
Authors: Mokrani Mohamed Amine
Abstract:
In this paper, we have implemented successive interference cancellation algorithms in the 5G downlink. We have calculated the maximum throughput in Frequency Division Duplex (FDD) mode in the downlink, where we have obtained a value equal to 836932 b/ms. The transmitter is of type Multiple Input Multiple Output (MIMO) with eight transmitting and receiving antennas. Each antenna among eight transmits simultaneously a data rate of 104616 b/ms that contains the binary messages of the three users; in this case, the Cyclic Redundancy Check CRC is negligible, and the MIMO category is the spatial diversity. The technology used for this is called Non-Orthogonal Multiple Access (NOMA) with a Quadrature Phase Shift Keying (QPSK) modulation. The transmission is done in a Rayleigh fading channel with the presence of obstacles. The MIMO Successive Interference Cancellation (SIC) receiver with two transmitting and receiving antennas recovers its binary message without errors for certain values of transmission power such as 50 dBm, with 0.054485% errors when the transmitted power is 20dBm and with 0.00286763% errors for a transmitted power of 32 dBm(in the case of user 1) as well as with 0.0114705% errors when the transmitted power is 20 dBm also with 0.00286763% errors for a power of 24 dBm(in the case of user2) by applying the steps involved in SIC.Keywords: 5G, NOMA, QPSK, TBS, LDPC, SIC, capacity
Procedia PDF Downloads 1033263 The Effects of Soil Chemical Characteristics on Accumulation of Native Selenium by Zea mays Grains in Maize Belt in Kenya
Authors: S. B. Otieno, T. S. Jayne, M. Muyanga
Abstract:
Selenium which is an-antioxidant is important for human health enters food chain through crops. In Kenya Zea mays is consumed by 96% of population hence is a cheap and convenient method to provide selenium to large number of population. Several soil factors are known to have antagonistic effects on selenium speciation hence the uptake by Zea mays. No investigation in Kenya has been done to determine the effects of soil characteristics (pH, Tcarbon, CEC, Eh) affect accumulation of selenium in Zea mays grains in Maize Belt in Kenya. About 100 Zea mays grain samples together with 100 soil samples were collected from the study site, put in separate labeled Ziplocs and were transported to laboratories at room temperature for analysis. Maize grains were analyzed for selenium while soil samples were analyzed for pH, Cat Ion Exchange Capacity, total carbon, and electrical conductivity. The mean selenium in Zea mays grains varied from 1.82 ± 0.76 mg/Kg to 11±0.86 mg/Kg. There was no significant difference between selenium levels between different grain batches {χ (Df =76) = 26.04 P= 1.00} The pH levels varied from 5.43± 0.58 to 5.85± 0.32. No significant correlations between selenium in grains and soil pH (Pearson’s correlations = - 0.143), and between selenium levels in grains and the four (pH,Tcarbon,CEC,Eh) soil chemical characteristics {F (4,91) = 0.721 p = 0.579} was observed.It can be concluded that the soil chemical characteristics in the study site did not significantly affect the accumulation of native selenium in Zea mays grains.Keywords: maize, native, soil, selenium
Procedia PDF Downloads 4563262 Assessing Vertical Distribution of Soil Organic Carbon Stocks in Westleigh Soil under Shrub Encroached Rangeland, Limpopo Province, South Africa
Authors: Abel L. Masotla, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa
Abstract:
Accurate quantification of the vertical distribution of soil organic carbon (SOC) in relation to land cover transformations, associated with shrub encroachment is crucial because deeper lying horizons have been shown to have greater capacity to sequester SOC. Despite this, in-depth soil carbon dynamics remain poorly understood, especially in arid and semi-arid rangelands. The objective of this study was to quantify and compare the vertical distribution of soil organic carbon stocks (SOCs) in shrub-encroached and open grassland sites. To achieve this, soil samples were collected vertically at 10 cm depth intervals under both sites. The results showed that SOC was on average 19% and 13% greater in the topsoil and subsoil respectively, under shrub-encroached grassland compared to open grassland. In both topsoil and subsoil, lower SOCs were found under shrub-encroached (4.53 kg m⁻² and 3.90 kgm⁻²) relative to open grassland (4.39 kgm⁻² and 3.67 kgm⁻²). These results demonstrate that deeper soil horizon play a critical role in the storage of SOC in savanna grassland.Keywords: savanna grasslands, shrub-encroachment, soil organic carbon, vertical distribution
Procedia PDF Downloads 1393261 Effects of Post-Emergence Herbicides on Soil Micro-Flora and Nitrogen Fixing Bacteria in Pea Field
Authors: Ali M. Zaid, Muftah Mayouf, Yahya Said Farouj
Abstract:
The effect of post emergence herbicides on soil micro-flora and nitrogen fixing bacteria was studied in pea field. Pea (Pisum sativum) was grown and treated with one or a mixture of two of several herbicides 2 weeks after sowing. Soil samples were collected 2 weeks after herbicides application. Average number of colony forming units per gram of soil of bacteria, actinomycetes and fungi were determined. Average number of nodules per plant was obtained at the end of the growing season. The results of the study showed MCPB, Bentazon, MCPB+Fluozifop-p-butyl, Bentazon+Fluozifop-p-butyl, Metribuzin, Flouzifop-p-butyl+Metribuzin, Cycloxydin, and Sethoxydin increased the population of soil fungi, with 4 to 10 times compared with the control. The herbicides used showed no significant effects on nitrogen fixing bacteria. The effects of herbicides on soil bacteria and actinomycetes were different. The study showed the use of herbicides could influence the biological balance of soil microflora, which has an important role in soil fertility and microbial ecosystem.Keywords: herbicides, post emergence, nitrogen fixing bacteria, environmental systems
Procedia PDF Downloads 4013260 A Study of Combined Mechanical and Chemical Stabilisation of Fine Grained Dredge Soil of River Jhelum
Authors: Adnan F. Sheikh, Fayaz A. Mir
Abstract:
After the recent devastating flood in Kashmir in 2014, dredging of the local water bodies, especially Jhelum River has become a priority for the government. Local government under the project name of 'Comprehensive Flood Management Programme' plans to undertake an increase in discharge of existing flood channels by removal of encroachments and acquisition of additional land, dredging and other works of the water bodies. The total quantity of soil to be dredged will be 16.15 lac cumecs. Dredged soil is a major component that would result from the project which requires disposal/utilization. This study analyses the effect of cement and sand on the engineering properties of soil. The tests were conducted with variable additions of sand (10%, 20% and 30%), whereas cement was added at 12%. Samples with following compositions: soil-cement (12%) and soil-sand (30%) were tested as well. Laboratory experiments were conducted to determine the engineering characteristics of soil, i.e., compaction, strength, and CBR characteristics. The strength characteristics of the soil were determined by unconfined compressive strength test and direct shear test. Unconfined compressive strength of the soil was tested immediately and for a curing period of seven days. CBR test was performed for unsoaked, soaked (worst condition- 4 days) and cured (4 days) samples.Keywords: comprehensive flood management programme, dredge soil, strength characteristics, flood
Procedia PDF Downloads 1743259 Soil and Environmental Management Awareness as Professional Competency of the Agricultural Extension Officers for Their Plans Implementation
Authors: Muhammad Zafarullah Khan
Abstract:
Agricultural Extension Officers’ (AEOs) competency level in soil and environmental management awareness is important for interacting with farming communities of different types of soil. Questionnaire was developed for all AEOs for data collection to know the present position and needed position of competency on Likert scale from 01-05 by assigning very low (01) and very high (05). Wide gap was found in competency of suitability of various soil types for horticultural and agronomic crops and reclamation of saline soil. We observed that suitability ranking of various soil types for horticultural crops (Diff. = 1.21), agronomic crops (Diff. = 1.20) and soil borne diseases (Diff. = 1.19) were the top three important competencies where training or improvement is needed. To better fill this gap we recommend that professional qualification of AEOs should be enhanced and training opportunities should be provided to them particularly to deal with soil and environmental management awareness. Thus training opportunities may increase their competency and will add highly skilled manpower to the system for sustainable development to protect environment. It is therefore, recommended that AEOs may be provided pre and in service trainings of soil environmental management in order to equip them with a capacity to work with farming community effectively to boost the living standard of farming community and alleviate poverty for environmental protection.Keywords: professional competency, agricultural extension officers, soil and environmental management awareness, plans implementation
Procedia PDF Downloads 3923258 Soil Moisture Regulation in Irrigated Agriculture
Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili
Abstract:
Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.Keywords: seepage, soil, velocity, water
Procedia PDF Downloads 4623257 Performance Evaluation of MIMO-OFDM Communication Systems
Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany
Abstract:
This paper evaluates the bit error rate (BER) performance of MIMO-OFDM communication system. MIMO system uses multiple transmitting and receiving antennas with different coding techniques to either enhance the transmission diversity or spatial multiplexing gain. Utilizing alamouti algorithm were the same information transmitted over multiple antennas at different time intervals and then collected again at the receivers to minimize the probability of error, combat fading and thus improve the received signal to noise ratio. While utilizing V-BLAST algorithm, the transmitted signals are divided into different transmitting channels and transferred over the channel to be received by different receiving antennas to increase the transmitted data rate and achieve higher throughput. The paper provides a study of different diversity gain coding schemes and spatial multiplexing coding for MIMO systems. A comparison of various channels' estimation and equalization techniques are given. The simulation is implemented using MATLAB, and the results had shown the performance of transmission models under different channel environments.Keywords: MIMO communication, BER, space codes, channels, alamouti, V-BLAST
Procedia PDF Downloads 1753256 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads
Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad
Abstract:
Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.Keywords: reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments
Procedia PDF Downloads 2973255 Soil Surface Insect Diversity of Tobacco Agricultural Ecosystem in Imogiri, Bantul District of Yogyakarta Special Region, Indonesia
Authors: Martina Faika Harianja, Zahtamal, Indah Nuraini, Septi Mutia Handayani, R. C. Hidayat Soesilohadi
Abstract:
Tobacco is a valuable commodity that supports economic growth in Indonesia. Soil surface insects are important components that influence productivity of tobacco. Thus, diversity of soil surface insects needs to be studied in order to acquire information about specific roles of each species in ecosystem. This research aimed to study the soil surface insect diversity of tobacco agricultural ecosystem in Imogiri, Bantul District of Yogyakarta Special Region, Indonesia. Samples were collected by pitfall-sugar bait trap in August 2015. Result showed 5 orders, 8 families, and 17 genera of soil surface insects were found. The diversity category of soil surface insects in tobacco agricultural ecosystem was poor. Dominant genus was Monomorium with dominance index score 0.07588. Percentages of insects’ roles were omnivores 43%, detritivores 24%, predators 19%, and herbivores 14%.Keywords: diversity, Indonesia, soil surface insect, tobacco
Procedia PDF Downloads 3403254 Soil Quality Response to Long-Term Intensive Resources Management and Soil Texture
Authors: Dalia Feiziene, Virginijus Feiza, Agne Putramentaite, Jonas Volungevicius, Kristina Amaleviciute, Sarunas Antanaitis
Abstract:
The investigations on soil conservation are one of the most important topics in modern agronomy. Soil management practices have great influence on soil physico-chemical quality and GHG emission. Research objective: To reveal the sensitivity and vitality of soils with different texture to long-term antropogenisation on Cambisol in Central Lithuania and to compare them with not antropogenised soil resources. Methods: Two long-term field experiments (loam on loam; sandy loam on loam) with different management intensity were estimated. Disturbed and undisturbed soil samples were collected from 5-10, 15-20 and 30-35 cm depths. Soil available P and K contents were determined by ammonium lactate extraction, total N by the dry combustion method, SOC content by Tyurin titrimetric (classical) method, texture by pipette method. In undisturbed core samples soil pore volume distribution, plant available water (PAW) content were determined. A closed chamber method was applied to quantify soil respiration (SR). Results: Long-term resources management changed soil quality. In soil with loam texture, within 0-10, 10-20 and 30-35 cm soil layers, significantly higher PAW, SOC and mesoporosity (MsP) were under no-tillage (NT) than under conventional tillage (CT). However, total porosity (TP) under NT was significantly higher only in 0-10 cm layer. MsP acted as dominant factor for N, P and K accumulation in adequate layers. P content in all soil layers was higher under NT than in CT. N and K contents were significantly higher than under CT only in 0-10 cm layer. In soil with sandy loam texture, significant increase in SOC, PAW, MsP, N, P and K under NT was only in 0-10 cm layer. TP under NT was significantly lower in all layers. PAW acted as strong dominant factor for N, P, K accumulation. The higher PAW the higher NPK contents were determined. NT did not secure chemical quality within deeper layers than CT. Long-term application of mineral fertilisers significantly increased SOC and soil NPK contents primarily in top-soil. Enlarged fertilization determined the significantly higher leaching of nutrients to deeper soil layers (CT) and increased hazards of top-soil pollution. Straw returning significantly increased SOC and NPK accumulation in top-soil. The SR on sandy loam was significantly higher than on loam. At dry weather conditions, on loam SR was higher in NT than in CT, on sandy loam SR was higher in CT than in NT. NPK fertilizers promoted significantly higher SR in both dry and wet year, but suppressed SR on sandy loam during usual year. Not antropogenised soil had similar SOC and NPK distribution within 0-35 cm layer and depended on genesis of soil profile horizons.Keywords: fertilizers, long-term experiments, soil texture, soil tillage, straw
Procedia PDF Downloads 2993253 Bearing Capacity of Sulphuric Acid Content Soil
Authors: R. N. Khare, J. P. Sahu, Rajesh Kumar Tamrakar
Abstract:
Tests were conducted to determine the property of soil with variation of H2SO4 content for soils under different stage. The soils had varying amounts of plasticity’s ranging from low to high plasticity. The unsaturated soil behavior was investigated for different conditions, covering a range of compactive efforts and water contents. The soil characteristic curves were more sensitive to changes in compaction effort than changes in compaction water content. In this research paper two types of water (Ground water Ph =7.9, Turbidity= 13 ppm; Cl =2.1mg/l and surface water Ph =8.65; Turbidity=18.5; Cl=1mg/l) were selected of Bhilai Nagar, State-Chhattisgarh, India which is mixed with a certain type of soil. Results shows that by the presence of ground water day by day the particles are becoming coarser in 7 days thereafter its size reduces; on the other hand by the presence of surface water the courser particles are disintegrating, finer particles are accumulating and also the dry density is reduces. Plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, soil characteristic for soils to be compacted in the laboratory and in the field are still under process for analyzing the bearing capacity. The bearing capacity was reduced 2 to 3 times in the presence of H2SO4.Keywords: soil compaction, H2SO4, soil water, water conditions
Procedia PDF Downloads 5393252 Use of Geoinformatics and Mathematical Equations to Assess Erosion and Soil Fertility in Cassava Growing Areas in Maha Sarakham Province, Thailand
Authors: Sasirin Srisomkiew, Sireewan Ratsadornasai, Tanomkwan Tipvong, Isariya Meesing
Abstract:
Cassava is an important food source in the tropics and has recently gained attention as a potential source of biofuel that can replace limited fossil fuel sources. As a result, the demand for cassava production to support industries both within the country and abroad has increased. In Thailand, most farmers prefer to grow cassava in sandy and sandy loam areas where the soil has low natural fertility. Cassava is a tuber plant that has large roots to store food, resulting in the absorption of large amounts of nutrients from the soil, such as nitrogen, phosphorus, and potassium. Therefore, planting cassava in the same area for a long period causes soil erosion and decreases soil fertility. The loss of soil fertility affects the economy, society, and food and energy security of the country. Therefore, it is necessary to know the level of soil fertility and the amount of nutrients in the soil. To address this problem, this study applies geo-informatics technology and mathematical equations to assess erosion and soil fertility and to analyze factors affecting the amount of cassava production in Maha Sarakham Province. The results show that the area for cassava cultivation has increased in every district of Maha Sarakham Province between 2015-2022, with the total area increasing to 180,922 rai or 5.47% of the province’s total area during this period. Furthermore, it was found that it is possible to assess areas with soil erosion problems that had a moderate level of erosion in areas with high erosion rates ranging from 5-15 T/rai/year. Soil fertility assessment and information obtained from the soil nutrient map for 2015–2023 reveal that farmers in the area have improved the soil by adding chemical fertilizers along with organic fertilizers, such as manure and green manure, to increase the amount of nutrients in the soil. This is because the soil resources of Maha Sarakham Province mostly have relatively low agricultural potential due to the soil texture being sand and sandy loam. In this scenario, the ability to absorb nutrients is low, and the soil holds little water, so it is naturally low in fertility. Moreover, agricultural soil problems were found, including the presence of saline soil, sandy soil, and acidic soil, which is a serious restriction on land use because it affects the release of nutrients into the soil. The results of this study may be used as a guideline for managing soil resources and improving soil quality to prevent soil degradation problems that may occur in the future.Keywords: Cassava, geoinformatics, soil erosion, soil fertility, land use change
Procedia PDF Downloads 523251 Dynamic Study on the Evaluation of the Settlement of Soil under Sea Dam
Authors: Faroudja Meziani, Amar Kahil
Abstract:
In order to study the variation in settlement of soil under a dyke dam, the modelisation in our study consists of applying an imposed displacement at the base of the mass of soil (consisting of a saturated sand). The imposed displacement follows the evolution of acceleration of the earthquake of Boumerdes 2003 in Algeria. Moreover, the gravity load is taken into consideration by taking account the specific weight of the materials constituting the dyke. The results obtained show that the gravity loads have a direct influence on the evolution of settlement, especially at the center of the dyke where these loads are higher.Keywords: settlement, dynamic analysis, rockfill dam, effect of earthquake, soil dynamics
Procedia PDF Downloads 1443250 Investigating the Potential of Spectral Bands in the Detection of Heavy Metals in Soil
Authors: Golayeh Yousefi, Mehdi Homaee, Ali Akbar Norouzi
Abstract:
Ongoing monitoring of soil contamination by heavy metals is critical for ecosystem stability and environmental protection, and food security. The conventional methods of determining these soil contaminants are time-consuming and costly. Spectroscopy in the visible near-infrared (VNIR) - short wave infrared (SWIR) region is a rapid, non-destructive, noninvasive, and cost-effective method for assessment of soil heavy metals concentration by studying the spectral properties of soil constituents. The aim of this study is to derive spectral bands and important ranges that are sensitive to heavy metals and can be used to estimate the concentration of these soil contaminants. In other words, the change in the spectral properties of spectrally active constituents of soil can lead to the accurate identification and estimation of the concentration of these compounds in soil. For this purpose, 325 soil samples were collected, and their spectral reflectance curves were evaluated at a range of 350-2500 nm. After spectral preprocessing operations, the partial least-squares regression (PLSR) model was fitted on spectral data to predict the concentration of Cu and Ni. Based on the results, the spectral range of Cu- sensitive spectra were 480, 580-610, 1370, 1425, 1850, 1920, 2145, and 2200 nm, and Ni-sensitive ranges were 543, 655, 761, 1003, 1271, 1415, 1903, 2199 nm. Finally, the results of this study indicated that the spectral data contains a lot of information that can be applied to identify the soil properties, such as the concentration of heavy metals, with more detail.Keywords: heavy metals, spectroscopy, spectral bands, PLS regression
Procedia PDF Downloads 843249 Effects of Adding Gypsum in Agricultural Land on Mitigating Splash Erosion on Sandy Loam and Loam Soil Textures, Afghanistan
Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani
Abstract:
Splash erosion in field has affected by factors; slope, rain intensity, soil properties, and plant cover. And also, soil erosion affects not only farmland productivity but also water quality downstream. There are a number of potential soil conservation practices, but many of these are complicated and relatively expensive, such as buffer strips, agro-forestry, counter banking, catchment canal, terracing, surface mulching, reduced tillage, etc. However, mitigation soil and water loss in agricultural land, particularly in arid and semi-arid climatic conditions, is indispensable for environmental protection and agricultural production. The objective of this study is to evaluate the effects of adding gypsum mineral on mitigating splash erosion caused by rain drop. The research was conducted in soil laboratory Badam Bagh Agricultural Researching Farm, Kabul, Afghanistan. The stainless steel cores were used, and constant water pressure was controlled by a Mariotte’s bottle with kinetic energy of raindrops 2.36 x 10⁻⁵J. Gypsum mineral was applied at a rate of 5 and 10 t ha⁻¹ and using a sandy loam and loam soil textures. The result was showed an average soil loss from sandy loam soil texture; control was 8.22%, 4.31% and 4.06% similar from loam soil texture, control was 7.26%, 2.89%, and 2.72% respectively. The application of gypsum mineral significantly (P < 0.05) reduced dispersion of soil particles caused by the impact of raindrops compared to control. Therefore, it was concluded that the addition of gypsum was effective as a measure for mitigating splash erosion.Keywords: gypsum, soil loss, splash erosion, Afghanistan
Procedia PDF Downloads 1323248 Secure Automatic Key SMS Encryption Scheme Using Hybrid Cryptosystem: An Approach for One Time Password Security Enhancement
Authors: Pratama R. Yunia, Firmansyah, I., Ariani, Ulfa R. Maharani, Fikri M. Al
Abstract:
Nowadays, notwithstanding that the role of SMS as a means of communication has been largely replaced by online applications such as WhatsApp, Telegram, and others, the fact that SMS is still used for certain and important communication needs is indisputable. Among them is for sending one time password (OTP) as an authentication media for various online applications ranging from chatting, shopping to online banking applications. However, the usage of SMS does not pretty much guarantee the security of transmitted messages. As a matter of fact, the transmitted messages between BTS is still in the form of plaintext, making it extremely vulnerable to eavesdropping, especially if the message is confidential, for instance, the OTP. One solution to overcome this problem is to use an SMS application which provides security services for each transmitted message. Responding to this problem, in this study, an automatic key SMS encryption scheme was designed as a means to secure SMS communication. The proposed scheme allows SMS sending, which is automatically encrypted with keys that are constantly changing (automatic key update), automatic key exchange, and automatic key generation. In terms of the security method, the proposed scheme applies cryptographic techniques with a hybrid cryptosystem mechanism. Proofing the proposed scheme, a client to client SMS encryption application was developed using Java platform with AES-256 as encryption algorithm, RSA-768 as public and private key generator and SHA-256 for message hashing function. The result of this study is a secure automatic key SMS encryption scheme using hybrid cryptosystem which can guarantee the security of every transmitted message, so as to become a reliable solution in sending confidential messages through SMS although it still has weaknesses in terms of processing time.Keywords: encryption scheme, hybrid cryptosystem, one time password, SMS security
Procedia PDF Downloads 1283247 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia
Authors: Ali H. Mahfouz, Hossam E. M. Sallam, Abdulwali Wazir, Hamod H. Kharezi
Abstract:
The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.Keywords: soft foundation soil, bearing capacity, bridge ramps, soil improvement, geogrid, PCC piles
Procedia PDF Downloads 3993246 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils
Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha
Abstract:
Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering
Procedia PDF Downloads 3383245 Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer
Authors: Munir Rusan
Abstract:
Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity.Keywords: composting, organic solid waste, soil, plant
Procedia PDF Downloads 823244 Consolidation Behavior of Lebanese Soil and Its Correlation with the Soil Parameters
Authors: Robert G. Nini
Abstract:
Soil consolidation is one of the biggest problem facing engineers. The consolidation process has an important role in settlement analysis for the embankments and footings resting on clayey soils. The settlement amount is related to the compression and the swelling indexes of the soil. Because the predominant upper soil layer in Lebanon is consisting mainly of clay, this layer is a real challenge for structural and highway engineering. To determine the effect of load and drainage on the engineering consolidation characteristics of Lebanese soil, a full experimental and synthesis study was conducted on different soil samples collected from many locations. This study consists of two parts. During the first part which is an experimental one, the Proctor test and the consolidation test were performed on the collected soil samples. After it, the identifications soil tests as hydrometer, specific gravity and Atterberg limits are done. The consolidation test which is the main test in this research is done by loading the soil for some days then an unloading cycle was applied. It takes two weeks to complete a typical consolidation test. Because of these reasons, during the second part of our research which is based on the analysis of the experiments results, some correlations were found between the main consolidation parameters as compression and swelling indexes with the other soil parameters easy to calculate. The results show that the compression and swelling indexes of Lebanese clays may be roughly estimated using a model involving one or two variables in the form of the natural void ratio and the Atterberg limits. These correlations have increasing importance for site engineers, and the proposed model also seems to be applicable to a wide range of clays worldwide.Keywords: atterberg limits, clay, compression and swelling indexes, settlement, soil consolidation
Procedia PDF Downloads 1373243 Nickel and Chromium Distributions in Soil and Plant Influenced by Geogenic Sources
Authors: Mohamad Sakizadeh, Fatemeh Mehrabi Sharafabadi, Hadi Ghorbani
Abstract:
Concentrations of Cr and Ni in 97 plant samples (belonged to eight different plant species) and the associated soil groups were considered in this study. The amounts of Ni in soil groups fluctuated between 26.8 and 36.8 mgkg⁻¹ whereas the related levels of chromium ranged from 67.7 to 94.3mgkg⁻¹. The index of geoaccumulation indicated that 87 percents of the studied soils for chromium and 98.8 percents for nickel are located in uncontaminated zone. The results of Mann-Whitney U-test proved that agricultural practices have not significantly influenced the values of Ni and Cr. In addition, tillage had also little impact on the Ni and Cr transfer in the surface soil. Ni showed higher accumulation and soil-to-plant transfer factor compared with that of chromium in the studied plants. There was a high similarity between the accumulation pattern of Cr and Fe in most of the plant species.Keywords: bioconcentration factor, chromium, geoaccumulation index, nickel
Procedia PDF Downloads 3583242 Improvement of Deficient Soils in Nigeria Using Bagasse Ash - A Review
Authors: Musa Alhassan, Alhaji Mohammed Mustapha
Abstract:
Review of studies carried out on the use of bagasse ash in the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizer (cement and lime), the studies generally showed improvement of geotechnical properties of the soils either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils. Thus suggesting that using this material at large scale level, in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in NigeriaKeywords: bagasse ash, black cotton soil, deficient soil, laterite, soil improvement
Procedia PDF Downloads 4173241 Sustainable Underground Structures Through Soil-Driven Bio-Protection of Concrete
Authors: Abdurahim Abogdera, Omar Hamza, David Elliott
Abstract:
The soil bacteria can be affected by some factors such as pH, calcium ions and Electrical conductivity. Fresh concrete has high pH value, which is between 11 and 13 and these values will be prevented the bacteria to produce CO₂ to participate with Calcium ions that released from the concrete to get calcite. In this study we replaced 15% and 25% of cement with Fly ash as the fly ash reduce the value of the pH at the concrete. The main goal of this study was investigated whether bacteria can be used on the soil rather than in the concrete to avoid the challenges and limitations of containing bacteria inside the concrete. This was achieved by incubating cracked cement mortar specimens into fully saturated sterilized and non-sterilized soil. The crack sealing developed in the specimens during the incubation period in both soil conditions were evaluated and compared. Visual inspection, water absorption test, scanning electron microscopy (SEM), and Energy Dispersive X-ray (EDX) were conducted to evaluate the healing process.Keywords: pH, calcium ions, MICP, salinity
Procedia PDF Downloads 1163240 Impact of Fly Ash on Soil Quality in Semi-Arid Region
Authors: Anjuri Srivastava, Akhouri Nishant Bhanu
Abstract:
Soil is a natural material with a distinctive form. It is regarded to be a natural source of nutrients and minerals for plants. It meets many of our needs through the crops, trees, and inhabited places that have grown on or underneath it. Productive and rich soil plays a crucial role in both its wealth and well-being. If any external substance changes the soil's composition, it directly impacts the plant that was grown in that soil. If the soil is deficient in one or more essential components, fly ash can be utilized as fertilizer by incorporating it into the soil. This can also increase the porosity of the soil. Fly ash has a sufficient concentration of essential components to promote the growth of plants. The high concentration of elements in fly ash, including C, Na, K, Fe, and Zn, increases crop yields. Hazardous compounds harm plant life as soon as they get into the soil. The US Environmental Protection Agency and other regulatory agencies have found it as non-hazardous. By employing fly ash as a potential fertilizer supplement for degraded soils, the problem of disposing of solid waste can be partially handled. Fly ash's rapid growth can slow down mineralization because it contains a higher proportion of harmful heavy metals. The chemical characteristics, inclusion ratio, and composting process of fly ash have a significant impact on the fly ash compost’s potential to improve soil nutrition. Research institutions and regulatory agencies have been thoroughly investigating fly ash for a long time. Guard cells on plant leaves that accumulate fly ash trigger the regulatory system. Fly ash increases both chemical and physical damage at certain humidity levels. The lengthy sowing period is caused by the high levels of fly ash in the soil, which also slows down seedling germination and growth. For the sake of human health, it is crucial to consider the bioaccumulation of dangerous heavy metals and their necessary concentrations in plant tissues and soil.Keywords: soil, fly ash, plant, fertilizer, composts
Procedia PDF Downloads 973239 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips
Authors: R. Ziaie Moayed, M. Hamidzadeh
Abstract:
The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.Keywords: improvement, shear strength, internal friction angle, sandy soil, rubber chip
Procedia PDF Downloads 1453238 Sustainable Improvement in Soil Properties and Maize Performance by Organic Fertilizers at Different Levels
Authors: Shahid Iqbal, Haroon Z. Khan, Muhammad Arif
Abstract:
A sustainable agricultural system involving the improvement in soil properties and crop performance cannot be developed without organic fertilizer use. The effects of poultry manure compost (PMC) and pressmud compost (PrMC) at different levels on improving the soil properties and maize performance has not been yet described by any study comprehensively. Thus, field experiments (2011 and 2012) were conducted at Agronomy Research Area, University of Agriculture Faisalabad (31°26'5" N and 73°4'6" E) in sandy loam soil to determine the improvement in soil properties and maize performance due to application of PMC and PrMC each at five different levels (2, 4, 6, 8 and 10 t ha-1). A control (unamended) treatment was also included for comparison. The results indicated that performance of PMC levels was superior to PrMC levels. Increasing both composts levels improved soil properties, maize growth, and stover yield. Results showed that during both years’ highest rates of PMC i.e. 10 and 8 t ha-1 improved the soil properties: ECe, pH, inorganic N, OM, and WHC higher than other treatments. While, 10 and 8 t PMC ha-1 also significantly increased leaf area index (LAI), crop growth rate (CGR) and net assimilation rate (NAR), and stover yield. Similarly, 10 and 8 t PMC ha-1 also improved the grain protein content, but contrarily, grain oil was lowest for 10 and 8 t ha-1 PMC during both years. Moreover, in both years highest gross and net income, and benefit cost ratio was also achieved by 10 and 8 t ha-1 PMC. It is concluded that PMC at rate of 10 and 8 t ha-1 sustainably improved soil properties and maize performance.Keywords: compost, soil, maize, growth, yield
Procedia PDF Downloads 3643237 Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion
Authors: Gavin Hutama Farandiarta, Hegi Adi Prabowo, Istiara Rizqillah Hanifah, Millati Hanifah Saprudin, Raden Iqrafia Ashna
Abstract:
The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again.Keywords: petroleum sewage sludge, remediation soil, thermal desorption, total petroleum hydrocarbon (TPH)
Procedia PDF Downloads 2473236 Assessment of Cadmium Levels in Soil and Vegetables Grown Along Kubanni Stream Channels, Zaria, Kaduna State
Authors: M. D. Saeed, S. O. Oladeji
Abstract:
Quantitative determination of cadmium levels in soil and vegetables grown along Kubanni stream channels were seasonally analyzed for a period of two years using Atomic Absorption Spectrophotometer (AAS). Results revealed cadmium concentrations ranging from 1.00 – 3.50 mg/Kg for the year 2013 and 1.31 – 7.15 mg/Kg in 2014 for the soil samples while the vegetables (carrot, lettuce, onion, spinach, cabbage, tomato and okro) had concentrations in the range of 0.20 – 6.10 mg/Kg in 2013 and 0.60 – 5.60 mg/Kg in 2014 respectively. Statistical analysis showed no significant difference in cadmium levels across the locations and seasons for soil and vegetable analyzed. Pearson correlation results for cadmium concentrations between the year 2013 and 2014 revealed negligible (r = 0.002) relationship for soils while low (r = 0.395) relationship was obtained for vegetable and these were attributed to heavy application of fertilizers and nature of wastewater use for irrigation. Cadmium levels for both soil and vegetable exceeded the maximum allowable limit set by Standard Organization such as FAO and WHO.Keywords: cadmium, level, soil, vegetables
Procedia PDF Downloads 5253235 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic
Authors: Miroslav Dumbrovsky
Abstract:
The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.Keywords: soil degradation, land consolidation, soil erosion, soil conservation
Procedia PDF Downloads 356