Search results for: share price
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2411

Search results for: share price

2201 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 92
2200 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques

Authors: Ved Kulkarni, Karthik Kini

Abstract:

This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.

Keywords: data mining, language processing, artificial neural networks, sentiment analysis

Procedia PDF Downloads 20
2199 Factors Affecting Mobile Internet Adoption in an Emerging Market

Authors: Maha Mourad, Fady Todros

Abstract:

The objective of this research is to find an explanatory model to define the most important variables and factors that affect the acceptance of Mobile Internet in the Egyptian market. A qualitative exploratory research was conducted to support the conceptual framework followed with a quantitative research in the form of a survey distributed among 411 respondents. It was clear that relative advantage, complexity, compatibility, perceived price level and perceived playfulness have a dominant role in influencing consumers to adopt mobile internet, while observability is correlated to the adoption but when measured with the other factors it lost its value. The perceived price level has a negative relationship with the adoption as well the compatibility.

Keywords: innovation, Egypt, communication technologies, diffusion, innovation adoption, emerging market

Procedia PDF Downloads 453
2198 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 348
2197 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands

Authors: Julio Albuja, David Zaldumbide

Abstract:

Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.

Keywords: algorithms, data, decision tree, transformation

Procedia PDF Downloads 375
2196 The Marketing Mix in Small Sized Hotels: A Case of Pattaya, Thailand

Authors: Anyapak Prapannetivuth

Abstract:

The purpose of this research is to investigate the marketing mix that is perceived to be important for the small sized hotels in Pattaya. Unlike previous studies, this research provides insights through a review of the marketing activities performed by the small sized hotels. Nine owners and marketing manager of small sized hotels and resorts, all local Chonburi people, were selected for an in-depth interview. A snowball sampling process was employed. The research suggests that seven marketing mixes (e.g. Product, Price, Place, Promotion, People, Physical Evidence and Process) were commonly used by these hotels, however, three types – People, price and physical evidence were considered most important by the owners.

Keywords: marketing mix, marketing tools, small sized hotels, pattaya

Procedia PDF Downloads 288
2195 Analysis of the Production Time in a Pharmaceutical Company

Authors: Hanen Khanchel, Karim Ben Kahla

Abstract:

Pharmaceutical companies are facing competition. Indeed, the price differences between competing products can be such that it becomes difficult to compensate them by differences in value added. The conditions of competition are no longer homogeneous for the players involved. The price of a product is a given that puts a company and its customer face to face. However, price fixing obliges the company to consider internal factors relating to production costs and external factors such as customer attitudes, the existence of regulations and the structure of the market on which the firm evolved. In setting the selling price, the company must first take into account internal factors relating to its costs: costs of production fall into two categories, fixed costs and variable costs that depend on the quantities produced. The company cannot consider selling below what it costs the product. It, therefore, calculates the unit cost of production to which it adds the unit cost of distribution, enabling it to know the unit cost of production of the product. The company adds its margin and thus determines its selling price. The margin is used to remunerate the capital providers and to finance the activity of the company and its investments. Production costs are related to the quantities produced: large-scale production generally reduces the unit cost of production, which is an asset for companies with mass production markets. This shows that small and medium-sized companies with limited market segments need to make greater efforts to ensure their profit margins. As a result, and faced with high and low market prices for raw materials and increasing staff costs, the company must seek to optimize its production time in order to reduce loads and eliminate waste. Then, the customer pays only value added. Thus, and based on this principle we decided to create a project that deals with the problem of waste in our company, and having as objectives the reduction of production costs and improvement of performance indicators. This paper presents the implementation of the Value Stream Mapping (VSM) project in a pharmaceutical company. It is structured as follows: 1) determination of the family of products, 2) drawing of the current state, 3) drawing of the future state, 4) action plan and implementation.

Keywords: VSM, waste, production time, kaizen, cartography, improvement

Procedia PDF Downloads 151
2194 Impact of Macroeconomic Variables on Indian Mutual Funds: A Time Series Analysis

Authors: Sonali Agarwal

Abstract:

The investor perception about investment avenues is affected to a great degree by the current happenings, within the country, and on the global stage. The influencing events can range from government policies, bilateral trade agreements, election agendas, to changing exchange rates, appreciation and depreciation of currency, recessions, meltdowns, bankruptcies etc. The current research attempts to discover and unravel the effect of various macroeconomic variables (crude oil price, gold price, silver price and USD exchange rate) on the Indian mutual fund industry in general and the chosen funds (Axis Gold Fund, BSL Gold Fund, Kotak Gold Fund & SBI gold fund) in particular. Cointegration tests and Vector error correction equations prove that the chosen variables have strong effect on the NAVs (net asset values) of the mutual funds. However, the greatest influence is felt from the fund’s own past and current information and it is found that when an innovation of fund’s own lagged NAVs is given, variance caused is high that changes the current NAVs markedly. The study helps to highlight the interplay of macroeconomic variables and their repercussion on mutual fund industry.

Keywords: cointegration, Granger causality, impulse response, macroeconomic variables, mutual funds, stationarity, unit root test, variance decomposition, VECM

Procedia PDF Downloads 245
2193 Board Chairman, Share Ownership and Financial Reporting Quality of Microfinance Banks in Nigeria: Impact of Regulatory Changes

Authors: Muhammad Umar Kibiya

Abstract:

The study aims to examine whether regulatory changes have an impact on the financial reporting quality of Microfinance Banks in Nigeria. The research employed a panel data analysis technique, using data from 2018 to 2022. The sample includes 72 microfinance banks, using regression analyses to examine the relationship between variables. The findings indicate that Board Chairmanship has a positive and significant effect on financial reporting quality. It also reveals that share ownership has a negative and significant impact on financial reporting quality. The results suggest that regulatory changes have a positive and significant influence on financial reporting quality. Thus, findings have important implications for microfinance banks in Nigeria. It suggests that having a strong and competent board chairperson can enhance financial reporting quality, leading to more transparent and reliable information for stakeholders. Furthermore, the study highlights the importance of regulatory changes in improving financial reporting practices in the microfinance banking sector. The study contributes to the extant literature by providing empirical evidence on the relationship between board chairmanship, share ownership, financial reporting quality, and regulatory changes in microfinance banks. It further supports the concept that governance mechanisms and regulatory reforms play a crucial role in ensuring transparency and accountability within the microfinance banking sector. It recommends that microfinance banks should appoint experienced and qualified individuals as board chairpersons to enhance financial reporting quality. Furthermore, policymakers and regulatory authorities should continue to implement and enforce regulations that promote transparent financial reporting practices in microfinance banks.

Keywords: board chairman, share ownership, financial reporting quality, microfinance, regulatory changes

Procedia PDF Downloads 67
2192 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds

Authors: Periklis Brakatsoulas

Abstract:

Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.

Keywords: forecasting, long memory, momentum, returns

Procedia PDF Downloads 103
2191 Consumer Welfare in the Platform Economy

Authors: Prama Mukhopadhyay

Abstract:

Starting from transport to food, today’s world platform economy and digital markets have taken over almost every sphere of consumers’ lives. Sellers and buyers are getting connected through platforms, which is acting as an intermediary. It has made consumer’s life easier in terms of time, price, choice and other factors. Having said that, there are several concerns regarding platforms. There are competition law concerns like unfair pricing, deep discounting by the platforms which affect the consumer welfare. Apart from that, the biggest problem is lack of transparency with respect to the business models, how it operates, price calculation, etc. In most of the cases, consumers are unaware of how their personal data are being used. In most of the cases, they are unaware of how algorithm uses their personal data to determine the price of the product or even to show the relevant products using their previous searches. Using personal or non-personal data without consumer’s consent is a huge legal concern. In addition to this, another major issue lies with the question of liability. If a dispute arises, who will be responsible? The seller or the platform? For example, if someone ordered food through a food delivery app and the food was bad, in this situation who will be liable: the restaurant or the food delivery platform? In this paper, the researcher tries to examine the legal concern related to platform economy from the consumer protection and consumer welfare perspectives. The paper analyses the cases from different jurisdictions and approach taken by the judiciaries. The author compares the existing legislation of EU, US and other Asian Countries and tries to highlight the best practices.

Keywords: competition, consumer, data, platform

Procedia PDF Downloads 146
2190 Challenges of Carbon Trading Schemes in Africa

Authors: Bengan Simbarashe Manwere

Abstract:

The entire African continent, comprising 55 countries, holds a 2% share of the global carbon market. The World Bank attributes the continent’s insignificant share and participation in the carbon market to the limited access to electricity. Approximately 800 million people spread across 47 African countries generate as much power as Spain, with a population of 45million. Only South Africa and North Africa have carbon-reduction investment opportunities on the continent and dominate the 2% market share of the global carbon market. On the back of the 2015 Paris Agreement, South Africa signed into law the Carbon Tax Act 15 of 2019 and the Customs and Excise Amendment Act 13 of 2019 (Gazette No. 4280) on 1 June 2019. By these laws, South Africa was ushered into the league of active global carbon market players. By increasing the cost of production by the rate of R120/tCO2e, the tax intentionally compels the internalization of pollution as a cost of production and, relatedly, stimulate investment in clean technologies. The first phase covered the 1 June 2019 – 31 December 2022 period during which the tax was meant to escalate at CPI + 2% for Scope 1 emitters. However, in the second phase, which stretches from 2023 to 2030, the tax will escalate at the inflation rate only as measured by the consumer price index (CPI). The Carbon Tax Act provides for carbon allowances as mitigation strategies to limit agents’ carbon tax liability by up to 95% for fugitive and process emissions. Although the June 2019 Carbon Tax Act explicitly makes provision for a carbon trading scheme (CTS), the carbon trading regulations thereof were only finalised in December 2020. This points to a delay in the establishment of a carbon trading scheme (CTS). Relatedly, emitters in South Africa are not able to benefit from the 95% reduction in effective carbon tax rate from R120/tCO2e to R6/tCO2e as the Johannesburg Stock Exchange (JSE) has not yet finalized the establishment of the market for trading carbon credits. Whereas most carbon trading schemes have been designed and constructed from the beginning as new tailor-made systems in countries the likes of France, Australia, Romania which treat carbon as a financial product, South Africa intends, on the contrary, to leverage existing trading infrastructure of the Johannesburg Stock Exchange (JSE) and the Clearing and Settlement platforms of Strate, among others, in the interest of the Paris Agreement timelines. Therefore the carbon trading scheme will not be constructed from scratch. At the same time, carbon will be treated as a commodity in order to align with the existing institutional and infrastructural capacity. This explains why the Carbon Tax Act is silent about the involvement of the Financial Sector Conduct Authority (FSCA).For South Africa, there is need to establish they equilibrium stability of the CTS. This is important as South Africa is an innovator in carbon trading and the successful trading of carbon credits on the JSE will lead to imitation by early adopters first, followed by the middle majority thereafter.

Keywords: carbon trading scheme (CTS), Johannesburg stock exchange (JSE), carbon tax act 15 of 2019, South Africa

Procedia PDF Downloads 72
2189 A Preliminary Analysis of Sustainable Development in the Belgrade Metropolitan Area

Authors: Slavka Zeković, Miodrag Vujošević, Tamara Maričić

Abstract:

The paper provides a comprehensive analysis of the sustainable development in the Belgrade Metropolitan Region - BMA (level NUTS 2) preliminary evaluating the three chosen components: 1) economic growth and developmental changes; 2) competitiveness; and 3) territorial concentration and industrial specialization. First, we identified the main results of development changes and economic growth by applying Shift-share analysis on the metropolitan level. Second, the empirical evaluation of competitiveness in the BMA is based on the analysis of absolute and relative values of eight indicators by Spider method. Paper shows that the consideration of the national share, industrial mix and metropolitan/regional share in total Shift share of the BMA, as well as economic/functional specialization of the BMA indicate very strong process of deindustrialization. Allocative component of the BMA economic growth has positive value, reflecting the above-average sector productivity compared to the national average. Third, the important positive role of metropolitan/regional component in decomposition of the BMA economic growth is highlighted as one of the key results. Finally, comparative analysis of the industrial territorial concentration in the BMA in relation to Serbia is based on location quotient (LQ) or Balassa index as a valid measure. The results indicate absolute and relative differences in decrease of industry territorial concentration as well as inefficiency of utilizing territorial capital in the BMA. Results are important for the increase of regional competitiveness and territorial distribution in this area as well as for improvement of sustainable metropolitan and sector policies, planning and governance on this level.

Keywords: Belgrade Metropolitan Area (BMA), comprehensive analysis / evaluation, economic growth, competitiveness, sustainable development

Procedia PDF Downloads 445
2188 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 158
2187 An Evaluation of the Effects of Special Safeguards in Meat upon International Trade and the Brazilian Economy

Authors: Cinthia C. Costa, Heloisa L. Burnquist, Joaquim J. M. Guilhoto

Abstract:

This study identified the impact of special agricultural safeguards (SSG) for the global market of meat and for the Brazilian economy. The tariff lines subject to SSG were selected and the period of analysis was 1995 (when the rules about the SSGs were established) to 2015 (more recent period for which there are notifications). The value of additional tariff was calculated for each of the most important tariff lines. The import volume and the price elasticities for imports were used to estimate the impacts of each additional tariff estimated on imports. Finally, the effect of Brazilian exports of meat without SSG taxes was calculated as well as its impact in the country’s economy by using an input-output matrix. The most important markets that applied SSGs were the U.S. for beef and European Union for poultry. However, the additional tariffs could be estimated in only two of the sixteen years that the U.S. applied SSGs on beef imports, suggesting that its use has been enforced when the average annual price has been higher than the trigger price level. The results indicated that the value of the bovine and poultry meat that could not be exported by Brazil due to SSGs to both markets (EU and the U.S.) was equivalent to BRL 804 million. The impact of this loss in trade was about: BRL 3.7 billion of the economy’s production value (at 2015 prices) and almost BRL 2 billion of the Brazilian Gross Domestic Product (GDP).

Keywords: beef, poultry meat, SSG tariff, input-output matrix, Brazil

Procedia PDF Downloads 122
2186 Risk Management of Natural Disasters on Insurance Stock Market

Authors: Tarah Bouaricha

Abstract:

The impact of worst natural disasters is analysed in terms of insured losses which happened between 2010 and 2014 on S&P insurance index. Event study analysis is used to test whether natural disasters impact insurance index stock market price. There is no negative impact on insurance stock market price around the disasters event. To analyse the reaction of insurance stock market, normal returns (NR), abnormal returns (AR), cumulative abnormal returns (CAR), cumulative average abnormal returns (CAAR) and a parametric test on AR and on CAR are used.

Keywords: study event, natural disasters, insurance, reinsurance, stock market

Procedia PDF Downloads 396
2185 Causal Relationship between Macro-Economic Indicators and Fund Unit Price Behaviour: Evidence from Malaysian Equity Unit Trust Fund Industry

Authors: Anwar Hasan Abdullah Othman, Ahamed Kameel, Hasanuddeen Abdul Aziz

Abstract:

In this study, an attempt has been made to investigate the relationship specifically the causal relation between fund unit prices of Islamic equity unit trust fund which measure by fund NAV and the selected macro-economic variables of Malaysian economy by using VECM causality test and Granger causality test. Monthly data has been used from Jan, 2006 to Dec, 2012 for all the variables. The findings of the study showed that industrial production index, political election and financial crisis are the only variables having unidirectional causal relationship with fund unit price. However, the global oil prices is having bidirectional causality with fund NAV. Thus, it is concluded that the equity unit trust fund industry in Malaysia is an inefficient market with respect to the industrial production index, global oil prices, political election and financial crisis. However, the market is approaching towards informational efficiency at least with respect to four macroeconomic variables, treasury bill rate, money supply, foreign exchange rate and corruption index.

Keywords: fund unit price, unit trust industry, Malaysia, macroeconomic variables, causality

Procedia PDF Downloads 470
2184 Loan Supply and Asset Price Volatility: An Experimental Study

Authors: Gabriele Iannotta

Abstract:

This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.

Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment

Procedia PDF Downloads 125
2183 A Research on Inference from Multiple Distance Variables in Hedonic Regression Focus on Three Variables

Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro

Abstract:

In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.

Keywords: hedonic regression, urban node, distance variables, multicollinerity, collinearity

Procedia PDF Downloads 465
2182 Influence of European Funds on the Sector of Bovine Milk and Meat in Romania in the Period 2007-2013

Authors: Andrei-Marius Sandu

Abstract:

This study aims to analyze the bovine meat and milk sector for the period 2007-2013. For the period analyzed, it is known that Romania has benefited from EU funding through the National Rural Development Programme 2007-2013. In this programme, there were measures that addressed exclusively the animal husbandry sector in Romania. This paper presents data on bovine production of meat, milk and livestock in Romania, but also data on the price and impact the European Funds implementation had on them.

Keywords: European funds, measures, national rural development programme, price

Procedia PDF Downloads 423
2181 The LNG Paradox: The Role of Gas in the Energy Transition

Authors: Ira Joseph

Abstract:

The LNG paradox addresses the issue of how the most expensive form of gas supply, which is LNG, will grow in an end user market where demand is most competitive, which is power generation. In this case, LNG demand growth is under siege from two entirely different directions. At one end is price; it will be extremely difficult for gas to replace coal in Asia due to the low price of coal and the age of the generation plants. Asia's coal fleet, on average, is less than two decades old and will need significant financial incentives to retire before its state lifespan. While gas would cut emissions in half relative to coal, it would also more than double the price of the fuel source for power generation, which puts it in a precarious position. In most countries in Asia other than China, this cost increase, particularly from imports, is simply not realistic when it is also necessary to focus on economic growth and social welfare. On the other end, renewables are growing at an exponential rate for three reasons. One is that prices are dropping. Two is that policy incentives are driving deployment, and three is that China is forcing renewables infrastructure into the market to take a political seat at the global energy table with Saudi Arabia, the US, and Russia. Plus, more renewables will lower import growth of oil and gas in China, if not end it altogether. Renewables are the predator at the gate of gas demand in power generation and in every year that passes, renewables cut into demand growth projections for gas; in particular, the type of gas that is most expensive, which is LNG. Gas does have a role in the future, particularly within a domestic market. Once it crosses borders in the form of LNG or even pipeline gas, it quickly becomes a premium fuel and must be marketed and used this way. Our research shows that gas will be able to compete with batteries as an intermittency and storage tool and does offer a method to harmonize with renewables as part of the energy transition. As a baseload fuel, however, the role of gas, particularly, will be limited by cost once it needs to cross a border. Gas converted into blue or green hydrogen or ammonia is also an option for storage depending on the location. While this role is much reduced from the primary baseload role that gas once aspired to land, it still offers a credible option for decades to come.

Keywords: natural gas, LNG, demand, price, intermittency, storage, renewables

Procedia PDF Downloads 62
2180 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 128
2179 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 170
2178 Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment

Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut

Abstract:

Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.

Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems

Procedia PDF Downloads 464
2177 Dynamics of Marital Status and Information Search through Consumer Generated Media: An Exploratory Study

Authors: Shivkumar Krishnamurti, Ruchi Agarwal

Abstract:

The study examines the influence of marital status on consumers of products and services using blogs as a source of information. A pre-designed questionnaire was used to collect the primary data from the respondents (experiences). Data were collected from one hundred and eighty seven respondents residing in and around the Emirates of Sharjah and Dubai of the United Arab Emirates. The collected data was analyzed with the help of statistical tools such as averages, percentages, factor analysis, student’s t-test and structural equation modeling technique. Objectives of the study are to know the reasons how married and unmarried or single consumers of products and services are motivated to use blogs as a source of information, to know whether the consumers of products and services irrespective of their marital status share their views and experiences with other bloggers and to know the respondents’ future intentions towards blogging. The study revealed the following: Majority of the respondents have the motivation to blog because they are willing to receive comments on what they post about services, convenience of blogs to search for information about services and products, by blogging respondents share information on the symptoms of a disease/ disorder that may be experienced by someone, helps to share information about ready to cook mix products and are keen to spend more time blogging in the future.

Keywords: blog, consumer, information, marital status

Procedia PDF Downloads 386
2176 The Antecedents of Green Purchase Intention in Nigeria: Mediating Effect of Perceived Behavioral Control

Authors: Victoria Masi Haruna Karatu, Nik Kamariah Nikmat

Abstract:

In recent times awareness about the environment and green purchase has been on the increase across nations due to global warming. Previous researchers have attempted to determine what actually influences the purchase intention of consumers in this environmentally conscious epoch. The consumers too have become conscious of what to buy and who to buy from in their purchasing decisions as this action will reflect their concern about the environment and their personal well-being. This trend is a widespread phenomenon in most developed countries of the world. On the contrary evidence revealed that only 5% of the populations of Nigeria involve in green purchase activities thus making the country lag behind its counterparts in green practices. This is not a surprise as Nigeria is facing problems of inadequate green knowledge, non-enforcement of environmental regulations, sensitivity to the price of green products when compared with the conventional ones and distrust towards green products which has been deduced from prior studies of other regions. The main objectives of this study is to examine the direct antecedents of green purchase intention (green availability, government regulations, perceived green knowledge, perceived value and green price sensitivity) in Nigeria and secondly to establish the mediating role of perceived behavioral control on the relationship between these antecedents and green purchase intention. The study adopts quantitative method whereby 700 questionnaires were administered to lecturers in three Nigerian universities. 502 datasets were collected which represents 72 percent response rate. After screening the data only 440 were usable and analyzed using structural equation modeling (SEM) and bootstrapping. From the findings, three antecedents have significant direct relationships with green purchase intention (perceived green knowledge, perceived behavioral control, and green availability) while two antecedents have positive and significant direct relationship with perceived behavioral control (perceived value and green price sensitivity). On the other hand, PBC does not mediate any of the paths from the predictors to criterion variable. This result is discussed in the Nigerian context.

Keywords: Green Availability, Green Price Sensitivity, Green Purchase Intention, Perceived Green Knowledge, Perceived Value

Procedia PDF Downloads 427
2175 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 91
2174 Digital Media Market, Multimedia, and Computer Graphic Analysis Amidst Fluctuating Global and Local Scale Economy

Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke

Abstract:

The study centred on investigating the influence of multimedia systems and computer graphic design on global and local scale economies. Firstly, the study pinpointed the significant participants and top five global digital media distribution in the digital media market. Then, the study investigated whether a tie or variance existed between the digital media vendor and market shares. Also, the paper probed whether the global and local desktop, mobile, and tablet markets differ while assessing the association between the top five digital media and global market shares. Finally, the study explored the extent of growth, economic gains, major setbacks, and opportunities within the industry amidst global and local scale economic flux. A multiple regression analysis method was employed to analyse the significant influence of the top five global digital media on the total market share, and the Analysis of Variance (ANOVA) was used to analyse the global digital media vendor market share data. The findings were intriguing and significant.

Keywords: computer graphics, digital media market, global market share, market size, media vendor, multimedia, social media, systems design

Procedia PDF Downloads 36
2173 House Price Index Predicts a Larger Impact of Habitat Loss than Primary Productivity on the Biodiversity of North American Avian Communities

Authors: Marlen Acosta Alamo, Lisa Manne, Richard Veit

Abstract:

Habitat loss due to land use change is one of the leading causes of biodiversity loss worldwide. This form of habitat loss is a non-random phenomenon since the same environmental factors that make an area suitable for supporting high local biodiversity overlap with those that make it attractive for urban development. We aimed to compare the effect of two non-random habitat loss predictors on the richness, abundance, and rarity of nature-affiliated and human-affiliated North American breeding birds. For each group of birds, we simulated the non-random habitat loss using two predictors: the House Price Index as a measure of the attractiveness of an area for humans and the Normalized Difference Vegetation Index as a proxy for primary productivity. We compared the results of the two non-random simulation sets and one set of random habitat loss simulations using an analysis of variance and followed up with a Tukey-Kramer test when appropriate. The attractiveness of an area for humans predicted estimates of richness loss and increase of rarity higher than primary productivity and random habitat loss for nature-affiliated and human-affiliated birds. For example, at 50% of habitat loss, the attractiveness of an area for humans produced estimates of richness at least 5% lower and of a rarity at least 40% higher than primary productivity and random habitat loss for both groups of birds. Only for the species abundance of nature-affiliated birds, the attractiveness of an area for humans did not outperform primary productivity as a predictor of biodiversity following habitat loss. We demonstrated the value of the House Price Index, which can be used in conservation assessments as an index of the risks of habitat loss for natural communities. Thus, our results have relevant implications for sustainable urban land-use planning practices and can guide stakeholders and developers in their efforts to conserve local biodiversity.

Keywords: biodiversity loss, bird biodiversity, house price index, non-random habitat loss

Procedia PDF Downloads 88
2172 Evaluation of Australian Open Banking Regulation: Balancing Customer Data Privacy and Innovation

Authors: Suman Podder

Abstract:

As Australian ‘Open Banking’ allows customers to share their financial data with accredited Third-Party Providers (‘TPPs’), it is necessary to evaluate whether the regulators have achieved the balance between protecting customer data privacy and promoting data-related innovation. Recognising the need to increase customers’ influence on their own data, and the benefits of data-related innovation, the Australian Government introduced ‘Consumer Data Right’ (‘CDR’) to the banking sector through Open Banking regulation. Under Open Banking, TPPs can access customers’ banking data that allows the TPPs to tailor their products and services to meet customer needs at a more competitive price. This facilitated access and use of customer data will promote innovation by providing opportunities for new products and business models to emerge and grow. However, the success of Open Banking depends on the willingness of the customers to share their data, so the regulators have augmented the protection of data by introducing new privacy safeguards to instill confidence and trust in the system. The dilemma in policymaking is that, on the one hand, lenient data privacy laws will help the flow of information, but at the risk of individuals’ loss of privacy, on the other hand, stringent laws that adequately protect privacy may dissuade innovation. Using theoretical and doctrinal methods, this paper examines whether the privacy safeguards under Open Banking will add to the compliance burden of the participating financial institutions, resulting in the undesirable effect of stifling other policy objectives such as innovation. The contribution of this research is three-fold. In the emerging field of customer data sharing, this research is one of the few academic studies on the objectives and impact of Open Banking in the Australian context. Additionally, Open Banking is still in the early stages of implementation, so this research traces the evolution of Open Banking through policy debates regarding the desirability of customer data-sharing. Finally, the research focuses not only on the customers’ data privacy and juxtaposes it with another important objective of promoting innovation, but it also highlights the critical issues facing the data-sharing regime. This paper argues that while it is challenging to develop a regulatory framework for protecting data privacy without impeding innovation and jeopardising yet unknown opportunities, data privacy and innovation promote different aspects of customer welfare. This paper concludes that if a regulation is appropriately designed and implemented, the benefits of data-sharing will outweigh the cost of compliance with the CDR.

Keywords: consumer data right, innovation, open banking, privacy safeguards

Procedia PDF Downloads 141