Search results for: shallow box
174 Placer Gold Deposits in Madari Gold Mine, Southern Eastern Desert, Egypt: Orientation, Source and Distribution
Authors: Tarek Sedki
Abstract:
Madari gold mine is delineated by latitudes 22° 30' 29" and 22° 32' 33" N and longitudes 36° 24' 03" and 35°11' 44" E. Geologically, Madari rock units are classified into dismembered ophiolites, arc volcanic assemblage, syntectonic metagabbro-diorites and Mineralized quartz diorite and granodiorite. Deposition of gold in area occurred as a direct result of weathering of nearby gold-bearing veins. Main concentrations of gold are supposed to ensue close to the bed rock. Nevertheless, the several shallow channel-fill features covering lag deposits, arising throughout the alluvial fan sequence would definitely contain a percentage of the finer gold due to the limited washing and sorting capacity of the uncommon flood events. Gold deposits arise as disseminated and separate gold with limited pyrite, arsenopyrite and chalcopyrite everywhere veins in the wall rocks and lode gold deposits in quartz veins. In places, the wall rocks, in near district of the quartz vein, are grieved strong silicification, chloritization and pyritization as a result of a metasomatic alteration due to purification of external hydrothermal fluids. Quartz veins are mostly steeply dipping and display banding features and frequently sheared and brecciated.Keywords: Madari gold mine, placer deposits, southern eastern desert, gold mineralization, quartz veins
Procedia PDF Downloads 141173 Coupled Analysis for Hazard Modelling of Debris Flow Due to Extreme Rainfall
Authors: N. V. Nikhil, S. R. Lee, Do Won Park
Abstract:
Korean peninsula receives about two third of the annual rainfall during summer season. The extreme rainfall pattern due to typhoon and heavy rainfall results in severe mountain disasters among which 55% of them are debris flows, a major natural hazard especially when occurring around major settlement areas. The basic mechanism underlined for this kind of failure is the unsaturated shallow slope failure by reduction of matric suction due to infiltration of water and liquefaction of the failed mass due to generation of positive pore water pressure leading to abrupt loss of strength and commencement of flow. However only an empirical model cannot simulate this complex mechanism. Hence, we have employed an empirical-physical based approach for hazard analysis of debris flow using TRIGRS, a debris flow initiation criteria and DAN3D in mountain Woonmyun, South Korea. Debris flow initiation criteria is required to discern the potential landslides which can transform into debris flow. DAN-3D, being a new model, does not have the calibrated values of rheology parameters for Korean conditions. Thus, in our analysis we have used the recent 2011 debris flow event in mountain Woonmyun san for calibration of both TRIGRS model and DAN-3D, thereafter identifying and predicting the debris flow initiation points, path, run out velocity, and area of spreading for future extreme rainfall based scenarios.Keywords: debris flow, DAN-3D, extreme rainfall, hazard analysis
Procedia PDF Downloads 247172 Characteristics and Key Exploration Directions of Gold Deposits in China
Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao
Abstract:
Based on the geodynamic environment, basic geological characteristics of minerals and so on, gold deposits in China are divided into 11 categories, of which tectonic fracture altered rock, mid-intrudes and contact zone, micro-fine disseminated and continental volcanic types are the main prospecting kinds. The metallogenic age of gold deposits in China is dominated by the Mesozoic and Cenozoic. According to the geotectonic units, geological evolution, geological conditions, spatial distribution, gold deposits types, metallogenic factors etc., 42 gold concentration areas are initially determined and have a concentrated distribution feature. On the basis of the gold exploration density, gold concentration areas are divided into high, medium and low level areas. High ones are mainly distributed in the central and eastern regions. 93.04% of the gold exploration drillings are within 500 meters, but there are some problems, such as less and shallower of drilling verification etc.. The paper discusses the resource potentials of gold deposits and proposes the future prospecting directions and suggestions. The deep and periphery of old mines in the central and eastern regions and western area, especially in Xinjiang and Qinghai, will be the future key prospecting one and have huge potential gold reserves. If the exploration depth is extended to 2,000 meters shallow, the gold resources will double.Keywords: gold deposits, gold deposits types, gold concentration areas, prospecting, resource potentiality
Procedia PDF Downloads 77171 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression
Authors: Issam Aouari, Abdelmalek Abdelhamid
Abstract:
For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.Keywords: duration, earthquake, prediction, regression, soft soil
Procedia PDF Downloads 153170 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia
Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan
Abstract:
In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.Keywords: cushion coarse-grained sediments (CCS), expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale
Procedia PDF Downloads 317169 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed
Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar
Abstract:
The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement
Procedia PDF Downloads 302168 Water Accessibility at Household Levels in Zambia: A Case Study of Fitobaula Settlement
Authors: Emmanuel Sachikumba, Micheal Msoni, Westone Mafuleka
Abstract:
Zambia has a good climate with favourable rainfall pattern; this provides sufficient recharge for the surface and groundwater resources. In spite of the sufficient surface and ground water resources, accessibility to water at household levels is problematic both in quality and quantity. The study examined water accessibility as well as water quality at the household level. The research looked at the sources of water for the households and considered the complications of accessibility to water and the available opportunities therein. The investigation involved fifty households and the data was collected by the use of questionnaires (to assess accessibility) and laboratory tests (for ascertaining water quality). In addition to this, government departments such as the health, agriculture, forestry and education as well as the municipal council were interviewed on the topic under study. The study was descriptive in nature where clustered sampling procedures using simple random methods were utilised to select the households which were to participate in the study. The key findings were that; accessibility to water household levels is still a challenge in the settlement as most of the point sources (shallow wells, the stream and the river) were found to be contaminated. In addition to this, it was found that there was no direct relationship between the economic performance of a household and the accessibility to water. The study also observed that there were opportunities for the people in the settlement as they were increasingly getting into the education system, and adult literacy was being encouraged in the settlement. Furthermore, the settlement has groundwater resources which indicate that there can be sufficient water provision for the settlers.Keywords: accessibility, household, water, settlement
Procedia PDF Downloads 450167 Numerical Simulation for a Shallow Braced Excavation of Campus Building
Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu
Abstract:
In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.Keywords: excavation, numerical simulation, RIDO, retaining structure
Procedia PDF Downloads 262166 Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids
Authors: Devesh Motwani, Amey Kashyap
Abstract:
Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required.Keywords: economics, guargum, viscofier, CMC, thermal stability
Procedia PDF Downloads 469165 Pisolite Type Azurite/Malachite Ore in Sandstones at the Base of the Miocene in Northern Sardinia: The Authigenic Hypothesis
Authors: S. Fadda, M. Fiori, C. Matzuzzi
Abstract:
Mineralized formations in the bottom sediments of a Miocene transgression have been discovered in Sardinia. The mineral assemblage consists of copper sulphides and oxidates suggesting fluctuations of redox conditions in neutral to high-pH restricted shallow-water coastal basins. Azurite/malachite has been observed as authigenic and occurs as loose spheroidal crystalline particles associated with the transitional-littoral horizon forming the bottom of the marine transgression. Many field observations are consistent with a supergenic circulation of metals involving terrestrial groundwater-seawater mixing. Both clastic materials and metals come from Tertiary volcanic edifices while the main precipitating anions, carbonates, and sulphides species are of both continental and marine origin. Formation of Cu carbonates as a supergene secondary 'oxide' assemblage, does not agree with field evidences, petrographic observations along with textural evidences in the host-rock types. Samples were collected along the sedimentary sequence for different analyses: the majority of elements were determined by X-ray fluorescence and plasma-atomic emission spectroscopy. Mineral identification was obtained by X-ray diffractometry and scanning electron microprobe. Thin sections of the samples were examined in microscopy while porosity measurements were made using a mercury intrusion porosimeter. Cu-carbonates deposited at a temperature below 100 C° which is consistent with the clay minerals in the matrix of the host rock dominated by illite and montmorillonite. Azurite nodules grew during the early diagenetic stage through reaction of cupriferous solutions with CO₂ imported from the overlying groundwater and circulating through the sandstones during shallow burial. Decomposition of organic matter in the bottom anoxic waters released additional carbon dioxide to pore fluids for azurite stability. In this manner localized reducing environments were also generated in which Cu was fixed as Cu-sulphide and sulphosalts. Microscopic examinations of textural features of azurite nodules give evidence of primary malachite/azurite deposition rather than supergene oxidation in place of primary sulfides. Photomicrographs show nuclei of azurite and malachite surrounded by newly formed microcrystalline carbonates which constitute the matrix. The typical pleochroism of crystals can be observed also when this mineral fills microscopic fissures or cracks. Sedimentological evidence of transgression and regression indicates that the pore water would have been a variable mixture of marine water and groundwaters with a possible meteoric component in an alternatively exposed and subaqueous environment owing to water-level fluctuation. Salinity data of the pore fluids, assessed at random intervals along the mineralised strata confirmed the values between about 7000 and 30,000 ppm measured in coeval sediments at the base of Miocene falling in the range of a more or less diluted sea water. This suggests a variation in mean pore-fluids pH between 5.5 and 8.5, compatible with the oxidized and reduced mineral paragenesis described in this work. The results of stable isotopes studies reflect the marine transgressive-regressive cyclicity of events and are compatibile with carbon derivation from sea water. During the last oxidative stage of diagenesis, under surface conditions of higher activity of H₂O and O₂, CO₂ partial pressure decreased, and malachite becomes the stable Cu mineral. The potential for these small but high grade deposits does exist.Keywords: sedimentary, Cu-carbonates, authigenic, tertiary, Sardinia
Procedia PDF Downloads 131164 Ground Effect on Marine Midge Water Surface Locomotion
Authors: Chih-Hua Wu, Bang-Fuh Chen, Keryea Soong
Abstract:
Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface.Keywords: ground effect, water locomotion, CFD, aerodynamic lift
Procedia PDF Downloads 81163 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil
Authors: Md. Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed
Abstract:
The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm.Keywords: foundation settlement, liquefaction, peak ground acceleration, shake table test
Procedia PDF Downloads 77162 Effects of UV-B Radiation on the Growth of Ulva Pertusa Kjellman Seedling
Authors: HengJiang Cai, RuiJin Zhang, JinSong Gui
Abstract:
Enhanced UV-B (280-320nm) radiation resulting from ozone depletion was one of the global environmental problems. The effects of enhanced UV-B radiation on marine macro-algae were exposed to be the greatest in shallow intertidal environments because the macro-alga was often at or above the water during low tide. Ulva pertusa Kjellman was belonged to Chlorophyta (Phylum), Ulvales (Order), Ulvaceae (Family) which was widely distributed in the western Pacific coast, and the resources were extremely rich in China. Therefore, the effects of UV-B radiation on the growth of Ulva pertusa seedling were studied in this research. Ulva pertusa seedling appearances were mainly characterized by rod shapes and tadpole shapes. The percentage of rod shapes was 90.68%±2.50%. UV-B radiation could inhibit the growth of Ulva pertusa seedling, and the growth inhibition was more significant with the increased doses of UV-B radiation treatment. The relative inhibition rates of Ulva pertusa seedling length were16.11%, 24.98%and 39.04% respectively on the 30th day at different doses (30.96, 61.92 and 123.84 Jm-2d-1) of UV-B radiation. Ulva pertusa seedling had emerged death under UV-B radiation, and the death rates were increased with the increased doses of UV-B radiation treatment. Physiology and biochemistry of Ulva pertusa seedling could be affected by UV-B radiation treatment. The SOD (superoxide dismutase) activity was increased at low-dose UV-B radiation (30.96 Jm-2d-1), while was decreased at high-dose UV-B radiation (61.92 and 123.84 Jm-2d-1). UV-B radiation could inhibit CAT (catalase) activity all the while. It speculated that the reasons for growth inhibition and death of Ulva pertusa seedling were excess ROS (reactive oxygen species), which produced by UV-B radiation.Keywords: growth, physiology and biochemistry, Ulva pertusa Kjellman, UV-B radiation
Procedia PDF Downloads 281161 Exaptive Urbanism: Evolutionary Biology and the Regeneration of Mumbai’s Dhobighat
Authors: Piyush Bajpai, Sneha Pandey
Abstract:
Mumbai’s Dhobighat, 150 year old largest open laundry in the world, is the true live-work place and only source of income for some of Mumbai’s highest density ‘urban poor’ residents. The regeneration of Dhobighat, due to its ultra prime location and complex socio-political culture has been a complex issue. This once flourishing urban industrial core has been degrading for the past several decades mainly due to the decline of the open laundry business, the site’s over burdened infrastructure and conflicting socio-political and economic forces. The phenomena of ‘exaptation’ or ‘co-option’ has been observed by evolutionary biologists as a process responsible for producing highly tenacious and resilient offsprings within a species. The reddish egret uses its wings to cast shadow in shallow waters to attract small fish and hunt them. An unrelated feature used opportunistically to produce a very favorable result. How can this idea of co-option be applied to resolve the complex issue of Dhobighat’s regeneration? Our paper proposes a new methodology/approach for the regeneration of Dhobighat through the lens of evolutionary biology. Forces and systems (social, political, economic, cultural and ecological) that seem conflicting or unrelated by nature are opportunistically transformed into symbiotic and complimentary relationships that produce an inclusive, resilient and holistic solution for the regeneration of Dhobighat.Keywords: urban regeneration, exaptation, resilience, Dhobighat, Mumbai
Procedia PDF Downloads 296160 Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore
Authors: Almas Rajguru, Archana Kamath, Rachana Singh
Abstract:
The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area.Keywords: sequence stratigraphy, depositional facies, diagenesis petrography, early Oligocene, Mumbai offshore
Procedia PDF Downloads 77159 Magnetic Investigation and 2½D Gravity Profile Modelling across the Beattie Magnetic Anomaly in the Southeastern Karoo Basin, South Africa
Authors: Christopher Baiyegunhi, Oswald Gwavava
Abstract:
The location/source of the Beattie magnetic anomaly (BMA) and interconnectivity of geologic structures at depth have been a topic of investigation for over 30 years. Up to now, no relationship between geological structures (interconnectivity of dolerite intrusions) at depth has been established. Therefore, the environmental impact of fracking the Karoo for shale gas could not be assessed despite the fact that dolerite dykes are groundwater localizers in the Karoo. In this paper, we shed more light to the unanswered questions concerning the possible location of the source of the BMA, the connectivity of geologic structures like dolerite dykes and sills at depth and this relationship needs to be established before the tectonic evolution of the Karoo basin can be fully understood and related to fracking of the Karoo for shale gas. The result of the magnetic investigation and modelling of four gravity profiles that crosses the BMA in the study area reveals that the anomaly, which is part of the Beattie magnetic anomaly tends to divide into two anomalies and continue to trend in an NE-SW direction, the dominant gravity signatures is of long wavelength that is due to a deep source/interface inland and shallows towards the coast, the average depth to the top of the shallow and deep magnetic sources was estimated to be approximately 0.6 km and 15 km, respectively. The BMA become stronger with depth which could be an indication that the source(s) is deep possibly a buried body in the basement. The bean-shaped anomaly also behaves in a similar manner like the BMA thus it could possibly share the same source(s) with the BMA.Keywords: Beattie magnetic anomaly, magnetic sources, modelling, Karoo Basin
Procedia PDF Downloads 554158 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other
Abstract:
Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.Keywords: seismic behavior, twin tunnels, tunnel positions, TBM, optimum distance
Procedia PDF Downloads 296157 Distribution and Densities of Anopheles Mosquito in El Obied Town, Sudan
Authors: Adam Musa Adam Eissa
Abstract:
Environmental and weather changes especially rainfall affects the distribution and densities of mosquitoes. This work was carried out to study the distribution and densities of mosquitoes adults and larvae in a total of five selected stations in El Obied Town. A cross-sectional survey of Anopheline mosquito larval habitats was conducted. The survey was conducted during the dry season (January 2013). Larvae were collected by using the standard dipping technique, while adult stages were collected by rearing larvae in cage, because the density of adults Anopheles mosquito per room was zero by using spray sheet method by using Permethrin pesticide 25%E.C, during the study period. The results revealed that (2347) Anopheline mosquito larvae were found and collected from only one station. All of which (2347) larvae (100%) were classified as probably Anopheles Squamosus. The study also showed that, a number of 81 adults (100%) Anopheline mosquito were classified as probably Anopheles Squamosus. Anopheles Squamosus were found only in the shallow pond water habitat in Alrahma west area of El Obied, the mean Anopheline density in the study area for larvae was 0.313 per dip while the mean density of adult was 0 per room. The high mosquito larval density in Alrahma west area indicated that, this part of El Obied Town is at risk of mosquito-borne diseases including malaria. This study recommended to apply the control program against mosquito at this part of the Town.Keywords: anopheles, squamosus, Alrahma, distribution
Procedia PDF Downloads 285156 Hydrogeophysical Investigations of Groundwater Resources and Demarcation of Saltwater-Freshwater Interface in Kilwa Kisiwani Island, Se Tanzania
Authors: Simon R. Melchioly, Ibrahimu C. Mjemah, Isaac M. Marobhe
Abstract:
The main objective of this research was to identify new potential sources of groundwater resources using geophysical methods and also to demarcate the saltwater - freshwater interface. Kilwa Kisiwani Island geologically is covered mostly by Quaternary alluvial sediments, sand, and gravel. The geophysical techniques employed during the research include Vertical Electrical Sounding (VES), Earth Resistivity Tomography (ERT), and Transient Electromagnetics (TEM). Two-dimensional interpolated geophysical results show that there exist freshwater lenses formations that are potential aquifers on the Island with resistivity values ranging from 11.68 Ωm to 46.71 Ωm. These freshwater lenses are underlain by formation with brackish water in which the resistivity values are varying between 3.89 Ωm and 1.6 Ωm. Saltwater with resistivity less than 1 Ωm is found at the bottom being overlaid by brackish saturated formation. VES resistivity results show that 89% (16 out of 18) of the VES sites are potential for groundwater resources drilling while TEM results indicate that 75% (12 out of 16) of TEM sites are potential for groundwater borehole drilling. The recommended drilling depths for potential sites in Kilwa Kisiwani Island show that the maximum depth is 25 m and the minimum being 10 m below ground surface. The aquifer structure in Kilwa Kisiwani Island is a shallow, unconfined freshwater lenses floating above the seawater and the maximum thickness of the aquifer is 25 m for few selected VES and TEM sites while the minimum thickness being 10 m.Keywords: groundwater, hydrogeophysical, Kilwa Kisiwani, freshwater, saltwater, resistivity
Procedia PDF Downloads 200155 An Investigation of the Quantitative Correlation between Urban Spatial Morphology Indicators and Block Wind Environment
Authors: Di Wei, Xing Hu, Yangjun Chen, Baofeng Li, Hong Chen
Abstract:
To achieve the research purpose of guiding the spatial morphology design of blocks through the indicators to obtain a good wind environment, it is necessary to find the most suitable type and value range of each urban spatial morphology indicator. At present, most of the relevant researches is based on the numerical simulation of the ideal block shape and rarely proposes the results based on the complex actual block types. Therefore, this paper firstly attempted to make theoretical speculation on the main factors influencing indicators' effectiveness by analyzing the physical significance and formulating the principle of each indicator. Then it was verified by the field wind environment measurement and statistical analysis, indicating that Porosity(P₀) can be used as an important indicator to guide the design of block wind environment in the case of deep street canyons, while Frontal Area Density (λF) can be used as a supplement in the case of shallow street canyons with no height difference. Finally, computational fluid dynamics (CFD) was used to quantify the impact of block height difference and street canyons depth on λF and P₀, finding the suitable type and value range of λF and P₀. This paper would provide a feasible wind environment index system for urban designers.Keywords: urban spatial morphology indicator, urban microclimate, computational fluid dynamics, block ventilation, correlation analysis
Procedia PDF Downloads 137154 Thermal and Geometric Effects on Nonlinear Response of Incompressible Hyperelastic Cylindrical Shells
Authors: Morteza Shayan Arani, Mohammadamin Esmailzadehazimi, Mohammadreza Moeini, Mohammad Toorani, Aouni A. Lakis
Abstract:
This paper investigates the nonlinear response of thin, incompressible, hyperelastic cylindrical shells in the presence of a time-varying temperature field while considering initial geometric imperfections. The governing equations of motion are derived using an improved Donnell's shallow shell theory. The hyperelastic material is modeled using the Mooney-Rivlin model with two parameters, incorporating temperature-dependent terms. The Lagrangian method is applied to obtain the equation of motion. The resulting governing equation is addressed through the Lindstedt-Poincaré and Multiple Scale methods. The linear and nonlinear models presented in this study are verified against existing open literature, demonstrating the accuracy and reliability of the presented model. The study focuses on understanding the influence of temperature variations and geometrical imperfections on the natural frequency and amplitude-frequency response of the systems. Notably, the investigation reveals the coexistence of hardening and softening peaks in the amplitude-frequency response, which vary in magnitude depending on these parameters. Additionally, resonance peaks exhibit changes as a result of temperature and geometric imperfections.Keywords: hyperelastic material, cylindrical shell, geometrical nonlinearity, material naolinearity, initial geometric imperfection, temperature gradient, hardening and softening
Procedia PDF Downloads 72153 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares
Procedia PDF Downloads 73152 Sedimentology and Geochemistry of Carbonate Bearing-Argillites on the Southeastern Flank of Mount Cameroon, Likomba
Authors: Chongwain G. Mbzighaa, Christopher M. Agyingi, Josepha-Forba-Tendo
Abstract:
Background and aim: Sedimentological, geochemical and petrographic studies were carried out on carbonate-bearing argillites outcropping at the southeastern flank of Mount Cameroon (Likomba) to determine the lithofacies and their associations, major element geochemistry and mineralogy. Methods: Major elements of the rocks were analyzed using XRF technique. Thermal analysis and thin section studies were carried out accompanied with the determination of insoluble components of the carbonates. Results: The carbonates are classed as biomicrites with siderite being the major carbonate mineral. Clay, quartz and pyrite constitute the major insoluble components of these rocks. Geochemical results depict a broad variation in their concentrations with silica and iron showing the highest concentrations and sodium and manganese with the least concentrations. Two factors were revealed with the following elemental associations, Fe2O3-MgO-Mn2O3 (72.56 %) and TiO2-SiO2-Al2O3-K2O (23.20%) indicating both Fe-enrichment, the subsequent formation of the siderite and the contribution of the sediments to the formation of these rocks. Conclusion: The rocks consist of cyclic iron-rich carbonates alternating with sideritic-shales and might have been formed as a result of variations in the sea conditions as well as variation in sediment influx resulting from transgression and regression sequences occurring in a shallow to slightly deep marine environments.Keywords: sedimentology, geochemistry, petrography, iron carbonates, Likomba
Procedia PDF Downloads 444151 Meta-Analysis Comparing the Femoral Tunnel Length, Femoral Tunnel Position and Graft Bending Angle of Transtibial, Anteromedial and Outside-In Techniques for Single-Bundle Anterior Cruciate Ligament Reconstruction
Authors: Andrew Tan Hwee Chye, Yeo Zhen Ning
Abstract:
This study aims to meta-analyse clinical studies comparing femoral tunnel position (FTP), femoral tunnel length (FTL) and graft bending angle (GBA) of single-bundle Anterior Cruciate Ligament (ACL) reconstruction using Transtibial (TT), Anteromedial (AM) and Outside-in (OI) techniques. A meta-analysis comparing the FTP, FTL and GBA of single-bundle ACL reconstruction utilising the TT, AM and OI was performed. Prospective Comparative Studies (PCS) and Retrospective Comparative Studies (RCS) from PubMed, Cochrane Library, and Embase were included. A total of 17 studies were included in this study. TT had the longest FTL, when compared to AM (Mean difference = 7.38, 95% CI: 3.76 to 11.00, P < 0.001) and OI (Mean difference = 9.47, 95% CI: 4.89 to 14.05, P < 0.001). In the deep-to-shallow direction, the OI resulted in a significantly deeper femoral tunnel as compared to the TT (Mean difference = 4.36, 95% CI: 1.39 to 7.33, P = 0.004) (Figure 6B). The AM technique also contributed to a significantly lower tunnel position as compared to the OI technique (Mean difference = 2.34, 95% CI: 0.76 to 3.92, P = 0.004). There were no significant differences in the graft bending angle between TT, AM and OI techniques. AM and OI techniques provide a more anatomical position as compared to the TT. Although FTL in the TT is longer than the AM and OI, all three techniques exceed the critical length of 25mm. There are no differences in the GBA between the three techniques.Keywords: femoral tunnel position, femoral tunnel length, anterior cruciate ligament, transtibial, graft bending angle, anteromedial, outside-in
Procedia PDF Downloads 126150 Cadaver Free Fatty Acid Distribution Associated with Burial in Mangrove and Oil Palm Plantation Soils under Tropical Climate
Authors: Siti Sofo Ismail, Siti Noraina Wahida Mohd Alwi, Mohamad Hafiz Ameran, Masrudin M. Yusoff
Abstract:
Locating clandestine cadaver is crucially important in forensic investigations. However, it requires a lot of man power, costly and time consuming. Therefore, the development of a new method to locate the clandestine graves is urgently needed as the cases involve burial of cadaver in different types of soils under tropical climates are still not well explored. This study focused on the burial in mangrove and oil palm plantation soils, comparing the fatty acid distributions in different soil acidities. A stimulated burial experiment was conducted using domestic pig (Sus scrofa) to substitute human tissues. Approximately 20g of pig fatty flesh was allowed to decompose in mangrove and oil palm plantation soils, mimicking burial in a shallow grave. The associated soils were collected at different designated sampling points, corresponding different decomposition stages. Modified Bligh-Dyer Extraction method was applied to extract the soil free fatty acids. Then, the obtained free fatty acids were analyzed with gas chromatography-flame ionization (GC-FID). A similar fatty acid distribution was observed for both mangrove and oil palm plantations soils. Palmitic acid (C₁₆) was the most abundance of free fatty acid, followed by stearic acid (C₁₈). However, the concentration of palmitic acid (C₁₆) higher in oil palm plantation compare to mangrove soils. Conclusion, the decomposition rate of cadaver can be affected by different type of soils.Keywords: clandestine grave, burial, soils, free fatty acid
Procedia PDF Downloads 399149 Characterization of Mineralogy, Geochemical and Origin of Nephelinitic Jurf Ed-darawish Volcano in Western Central Jordan
Authors: Hassan Farhan Alfugha
Abstract:
the cenozoic volcanism in westt central jordan which show homohgenous lava from upper mantle.es represented by basaltic scoria cones and flows and covers approximately 10 km. fourtten nephelinitic rock samples were collected at jurf ed-darawish volcanism to analyze major minor and trace elements by using XRF.. geochemical parameters of these samp;es such as MG/MG+FE+2, the ratio range from 0.41 to 0.45 and high ti contents 3.09-3.28wt % indicate that the corresponding magmas are nearly of primary origin . this magma show low variable abundances of compatible and incompatible trace elements reflecting a homogenous source. the studied volcanic rocks, which are mainly nephlinites, belong to the alkaline rocks series containing 4.38-5.95wt% alkali oxides they are usually undersaturated in regard it the silica content, which ranges between 39.88-41.50wt.%.value compared to other jordanien basaltic rocks majorminor and trace elementes data as well as mantel xenoliths entrained in the volcanic rocks are spinel iherzolites that suggest the lithospheric mantle as the source for the pleistocene volcanism these xenoliths resided at shallow mantle depths (45 km ) because a geothermobarometric analysis yielded p-t conditions close to 15 kbar and 1100c the mantle nodules did not equilibrate with the melts indicating a fast transport from the mantle to the surface and a mgma >65 km deeper source area of the melts.Keywords: nephelinite plestocene western central jordan, western central jordan, volcano in western central jordan, central jordan
Procedia PDF Downloads 79148 Comparison between Experimental Modeling and HYDRUS-2D for Nitrate Transport through a Saturated Soil Column
Authors: Mohamed Eltarabily, Abdelazim Negm, Chihiro Yoshimura
Abstract:
Recently, the pollution of groundwater from the use of nitrogenous fertilizer is at the increase. Also, due to the increase in area under cultivation and regular use of fertilizer in irrigated agriculture, groundwater pollution from agricultural activities is becoming a major concern. Because of the high mobility of Nitrate (NO3-) in soil which is governed by electrostatic processes, particularly anion exclusion, nitrate can be intercepted by shallow subsurface drainage pipe systems and then discharged offsite into streams, rivers, and lakes causing many hazards. In order to solve these environmental problems associated with nitrate, a better understanding of how NO3- moves through the soil profile under flow conditions is required. In the present paper, the results of a comparative study between experimental and numerical modeling of Nitrate transport through a saturated soil column are presented and analyzed. In order to achieve that, three water fluxes densities; 0.008, 0.007, and 0.006 m sec-1 and N concentration rates 10 mol cm-3 were used. The same concentrations were used in the simulation using HYDRUS-2D. The physical and chemical properties of the collected soil samples were calculated. Besides, the soil texture was determined which was silty sand. Results showed that HYDRUS-2D can successfully predict the relative behavior of N transport in the present experiment. Nitrate concentrations will reach deeper depth with the increase in the water flux. Overall, it was overestimated in the final concentration of (NO3-) in the soil by numerical simulation than by experimental column test. The column experiment is a useful tool for assessing the nitrate concentrations in the soil profile.Keywords: groundwater, nitrate leaching, HYDRUS-2D, soil column
Procedia PDF Downloads 235147 Hydrofracturing for Low Temperature Waxy Reservoirs: Problems and Solutions
Authors: Megh Patel, Arjun Chauhan, Jay Thakkar
Abstract:
Hydrofracturing is the most prominent but at the same time expensive, highly skilled and time consuming well stimulation technique. Due to high cost and skilled labor involved, it is generally carried out as the consummate solution among other well stimulation techniques. Considering today’s global petroleum market, no gaffe or complications could be entertained during fracturing, as it would further hamper the current dwindling economy. The literature would be dealing with the challenges encountered during fracturing low temperature waxy reservoirs and the prominent solutions to overcome such teething troubles. During fracturing treatment for, shallow and high freezing point waxy oil reservoirs, the first line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid (fluid at ambient conditions). Injecting fracturing fluids at ambient conditions have the tendency to decrease the near wellbore reservoir temperature below the freezing point of oil reservoir and hence leading to wax deposition around the wellbore thereby hampering the fluid production as well as fracture propagation. To overcome such problems, solutions such as hot fracturing fluid injection, encapsulated heat generating hydraulic fracturing fluid system, and injection of wax inhibitor techniques would be discussed. The paper would also be throwing light on changes in rheological properties occurred during heating fracturing fluids and solutions to deal with it taking economic considerations into account.Keywords: hydrofracturing, waxy reservoirs, low temperature, viscosity, crosslinkers
Procedia PDF Downloads 256146 Mapping Thermal Properties Using Resistivity, Lithology and Thermal Conductivity Measurements
Authors: Riccardo Pasquali, Keith Harlin, Mark Muller
Abstract:
The ShallowTherm project is focussed on developing and applying a methodology for extrapolating relatively sparsely sampled thermal conductivity measurements across Ireland using mapped Litho-Electrical (LE) units. The primary data used consist of electrical resistivities derived from the Geological Survey Ireland Tellus airborne electromagnetic dataset, GIS-based maps of Irish geology, and rock thermal conductivities derived from both the current Irish Ground Thermal Properties (IGTP) database and a new programme of sampling and laboratory measurement. The workflow has been developed across three case-study areas that sample a range of different calcareous, arenaceous, argillaceous, and volcanic lithologies. Statistical analysis of resistivity data from individual geological formations has been assessed and integrated with detailed lithological descriptions to define distinct LE units. Thermal conductivity measurements from core and hand samples have been acquired for every geological formation within each study area. The variability and consistency of thermal conductivity measurements within each LE unit is examined with the aim of defining a characteristic thermal conductivity (or range of thermal conductivities) for each LE unit. Mapping of LE units, coupled with characteristic thermal conductivities, provides a method of defining thermal conductivity properties at a regional scale and facilitating the design of ground source heat pump closed-loop collectors.Keywords: thermal conductivity, ground source heat pumps, resistivity, heat exchange, shallow geothermal, Ireland
Procedia PDF Downloads 181145 Future Projection of Glacial Lake Outburst Floods Hazard: A Hydrodynamic Study of the Highest Lake in the Dhauliganga Basin, Uttarakhand
Authors: Ashim Sattar, Ajanta Goswami, Anil V. Kulkarni
Abstract:
Glacial lake outburst floods (GLOF) highly contributes to mountain hazards in the Himalaya. Over the past decade, high altitude lakes in the Himalaya has been showing notable growth in their size and number. The key reason is rapid retreat of its glacier front. Hydrodynamic modeling GLOF using shallow water equations (SWE) would result in understanding its impact in the downstream region. The present study incorporates remote sensing based ice thickness modeling to determine the future extent of the Dhauliganga Lake to map the over deepening extent around the highest lake in the Dhauliganga basin. The maximum future volume of the lake calculated using area-volume scaling is used to model a GLOF event. The GLOF hydrograph is routed along the channel using one dimensional and two dimensional model to understand the flood wave propagation till it reaches the 1st hydropower station located 72 km downstream of the lake. The present extent of the lake calculated using SENTINEL 2 images is 0.13 km². The maximum future extent of the lake, mapped by investigating the glacier bed has a calculated scaled volume of 3.48 x 106 m³. The GLOF modeling releasing the future volume of the lake resulted in a breach hydrograph with a peak flood of 4995 m³/s at just downstream of the lake. Hydraulic routingKeywords: GLOF, glacial lake outburst floods, mountain hazard, Central Himalaya, future projection
Procedia PDF Downloads 162