Search results for: resonant frequencies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 884

Search results for: resonant frequencies

674 Effect of CYP2B6 c.516G>T and c.983T>C Single Nucleotide Polymorphisms on Plasma Nevirapine Levels in Zimbabwean HIV/AIDS Patients

Authors: Doreen Duri, Danai Zhou, Babil Stray-Pedersen, Collet Dandara

Abstract:

Given the high prevalence of HIV/AIDS in sub-Saharan Africa, and the elusive search for a cure, understanding the pharmacogenetics of currently used drugs is critical in populations from the most affected regions. Compared to Asian and Caucasian populations, African population groups are more genetically diverse, making it difficult to extrapolate findings from one ethnic group to another. This study aimed to investigate the role of genetic variation in CYP2B6 (c.516G>T and c.983T>C) single nucleotide polymorphisms on plasma nevirapine levels among HIV-infected adult Zimbabwean patients. Using a cross-sectional study, patients on nevirapine-containing HAART, having reached steady state (more than six weeks on treatment) were recruited to participate. Blood samples were collected after patients provided consent and samples were used to extract DNA for genetic analysis or to measure plasma nevirapine levels. Genetic analysis was carried out using PCR and RFLP or Snapshot for the two single nucleotide polymorphisms; CYP2B6 c.516G>T and c.983T>C, while LC-MS/MS was used in analyzing nevirapine concentration. CYP2B6 c.516G>T and c.983T>C significantly predicted plasma nevirapine concentration with the c.516T and c.983T being associated with elevated plasma nevirapine concentrations. Comparisons of the variant allele frequencies observed in this group to those reported in some African, Caucasian and Asian populations showed significant differences. We conclude that pharmacogenetics of nevirapine can be creatively used to determine patients who are likely to develop nevirapine-associated side effects as well as too low plasma concentrations for viral suppression.

Keywords: allele frequencies, genetically diverse, nevirapine, single nucleotide polymorphism

Procedia PDF Downloads 433
673 Genetic Algorithm Optimization of Microcantilever Based Resonator

Authors: Manjula Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti

Abstract:

Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency.

Keywords: MEMS resonator, genetic algorithm, modelling and simulation, optimization

Procedia PDF Downloads 527
672 Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles

Authors: Yassine Ait-El-Aoud, Michael Okomoto, Andrew M. Luce, Alkim Akyurtlu, Richard M. Osgood III

Abstract:

Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography.

Keywords: dip coating, light-scattering, metal nanoparticles, nanosphere lithography

Procedia PDF Downloads 305
671 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 327
670 Experimental Investigation of Beams Having Spring Mass Resonators

Authors: Somya R. Patro, Arnab Banerjee, G. V. Ramana

Abstract:

A flexural beam carrying elastically mounted concentrated masses, such as engines, motors, oscillators, or vibration absorbers, is often encountered in mechanical, civil, and aeronautical engineering domains. To prevent resonance conditions, the designers must predict the natural frequencies of such a constrained beam system. This paper investigates experimental and analytical studies on vibration suppression in a cantilever beam with a tip mass with the help of spring-mass to achieve local resonance conditions. The system consists of a 3D printed polylactic acid (PLA) beam screwed at the base plate of the shaker system. The top of the free end is connected by an accelerometer which also acts as a tip mass. A spring and a mass are attached at the bottom to replicate the mechanism of the spring-mass resonator. The Fast Fourier Transform (FFT) algorithm converts time acceleration plots into frequency amplitude plots from which transmittance is calculated as a function of the excitation frequency. The mathematical formulation is based on the transfer matrix method, and the governing differential equations are based on Euler Bernoulli's beam theory. The experimental results are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. The beam spring-mass system is then converted to an equivalent two-degree of freedom system, from which frequency response function is obtained. The H2 optimization technique is also used to obtain the closed-form expression of optimum spring stiffness, which shows the influence of spring stiffness on the system's natural frequency and vibration response.

Keywords: euler bernoulli beam theory, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers

Procedia PDF Downloads 83
669 Hearing Conservation Program for Vector Control Workers: Short-Term Outcomes from a Cluster-Randomized Controlled Trial

Authors: Rama Krishna Supramanian, Marzuki Isahak, Noran Naqiah Hairi

Abstract:

Noise-induced hearing loss (NIHL) is one of the highest recorded occupational diseases, despite being preventable. Hearing Conservation Program (HCP) is designed to protect workers hearing and prevent them from developing hearing impairment due to occupational noise exposures. However, there is still a lack of evidence regarding the effectiveness of this program. The purpose of this study was to determine the effectiveness of a Hearing Conservation Program (HCP) in preventing or reducing audiometric threshold changes among vector control workers. This study adopts a cluster randomized controlled trial study design, with district health offices as the unit of randomization. Nine district health offices were randomly selected and 183 vector control workers were randomized to intervention or control group. The intervention included a safety and health policy, noise exposure assessment, noise control, distribution of appropriate hearing protection devices, training and education program and audiometric testing. The control group only underwent audiometric testing. Audiometric threshold changes observed in the intervention group showed improvement in the hearing threshold level for all frequencies except 500 Hz and 8000 Hz for the left ear. The hearing threshold changes range from 1.4 dB to 5.2 dB with largest improvement at higher frequencies mainly 4000 Hz and 6000 Hz. Meanwhile for the right ear, the mean hearing threshold level remained similar at 4000 Hz and 6000 Hz after 3 months of intervention. The Hearing Conservation Program (HCP) is effective in preserving the hearing of vector control workers involved in fogging activity as well as increasing their knowledge, attitude and practice towards noise-induced hearing loss (NIHL).

Keywords: adult, hearing conservation program, noise-induced hearing loss, vector control worker

Procedia PDF Downloads 134
668 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal

Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen

Abstract:

In this study, we demonstrate a high-resolution refractive index sensor based on a magnetic photonic crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.

Keywords: magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution

Procedia PDF Downloads 573
667 Two-Photon Ionization of Silver Clusters

Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian

Abstract:

Resonant two-photon ionization (TPI) is a valuable technique for the study of clusters due to its ultrahigh sensitivity. The comparison of the observed TPI spectra with results of calculations allows to deduce important information on the shape, rotational and vibrational temperatures of the clusters with high accuracy. In this communication we calculate the TPI cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is chosen to be close to the surface plasmon (SP) energy of cluster in dielectric media. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows to take into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.

Keywords: resonance enhancement, silver clusters, surface plasmon, two-photon ionization

Procedia PDF Downloads 406
666 Design and Analysis of Proximity Fed Single Band Microstrip Patch Antenna with Parasitic Lines

Authors: Inderpreet Kaur, Sukhjit Kaur, Balwinder Singh Sohi

Abstract:

The design proposed in this paper mainly focuses on implementation of a single feed compact rectangular microstrip patch antenna (MSA) for single band application. The antenna presented here also works in dual band but its best performance has been obtained when optimised to work in single band mode. In this paper, a new feeding structure is applied in the patch antenna design to overcome undesirable features of the earlier multilayer feeding structures while maintaining their interesting features.To make the proposed antenna more efficient the optimization of the antenna design parameters have been done using HFSS’s optometric. For the proposed antenna one resonant frequency has been obtained at 6.03GHz, with Bandwidth of 167MHz and return loss of -33.82db. The characteristics of the designed structure are investigated by using FEM based electromagnetic solver.

Keywords: bandwidth, retun loss, parasitic lines, microstrip antenna

Procedia PDF Downloads 441
665 Development of a Large-Scale Cyclic Shear Testing Machine Under Constant Normal Stiffness

Authors: S. M. Mahdi Niktabara, K. Seshagiri Raob, Amit Kumar Shrivastavac, Jiří Ščučkaa

Abstract:

The presence of the discontinuity in the form of joints is one of the most significant factors causing instability in the rock mass. On the other hand, dynamic loads, including earthquake and blasting induce cyclic shear loads along the joints in rock masses; therefore, failure of rock mass exacerbates along the joints due to changing shear resistance. Joints are under constant normal load (CNL) and constant normal stiffness (CNS) conditions. Normal stiffness increases on the joints with increasing depth, and it can affect shear resistance. For correct assessment of joint shear resistance under varying normal stiffness and number of cycles, advanced laboratory shear machine is essential for the shear test. Conventional direct shear equipment has limitations such as boundary conditions, working under monotonic movements only, or cyclic shear loads with constant frequency and amplitude of shear loads. Hence, a large-scale servo-controlled direct shear testing machine was designed and fabricated to perform shear test under the both CNL and CNS conditions with varying normal stiffness at different frequencies and amplitudes of shear loads. In this study, laboratory cyclic shear tests were conducted on non-planar joints under varying normal stiffness. In addition, the effects of different frequencies and amplitudes of shear loads were investigated. The test results indicate that shear resistance increases with increasing normal stiffness at the first cycle, but the influence of normal stiffness significantly decreases with an increase in the number of shear cycles. The frequency of shear load influences on shear resistance, i.e. shear resistance increases with increasing frequency. However, at low shear amplitude the number of cycles does not affect shear resistance on the joints, but it decreases with higher amplitude.

Keywords: cyclic shear load, frequency of load, amplitude of displacement, normal stiffness

Procedia PDF Downloads 122
664 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates

Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer

Abstract:

The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.

Keywords: vibration, composite materials, finite element, APDL ANSYS

Procedia PDF Downloads 22
663 Genetic Polymorphism of Milk Protein Gene and Association with Milk Production Traits in Local Latvian Brown Breed Cows

Authors: Daina Jonkus, Solvita Petrovska, Dace Smiltina, Lasma Cielava

Abstract:

The beta-lactoglobulin and kappa-casein are milk proteins which are important for milk composition. Cows with beta-lactoglobulin and kappa-casein gene BB genotypes have highest milk crude protein and fat content. The aim of the study was to determinate the frequencies of milk protein gene polymorphisms in local Latvian Brown (LB) cows breed and analyze the influence of beta-lactoglobulin and kappa-casein genotypes to milk productivity traits. 102 cows’ genotypes of milk protein genes were detected using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) and electrophoresis on 3% agarose gel. For beta-lactoglobulin were observed 2 types of alleles A and B and for kappa-casein 3 types: A, B and E. Highest frequency in beta-lactoglobulin gene was observed for B allele – 0.926. Molecular analysis of beta-lactoglobulin gene shows 86.3% of individuals are homozygous by B allele and animals are with genotypes BB and 12.7% of individuals are heterozygous with genotypes AB. The highest milk yield 4711.7 kg was for 1st lactation cows with AB genotypes, whereas the highest milk protein content (3.35%) and fat content (4.46 %) was for BB genotypes. Analysis of the kappa-casein locus showed a prevalence of the A allele – 0.750. The genetic variant of B was characterized by a low frequency – 0.240. Moreover, the frequency of E occurred in the LB cows’ population with very low frequency – 0.010. 54.9 % of cows are homozygous with genotypes AA, and only 4.9 % are homozygous with genotypes BB. 32.8 % of individuals are heterozygous with genotypes AB, and 2.0 % are with AE. The highest milk productivity was for 1st lactation cows with AB genotypes: milk yield 4620.3 kg, milk protein content 3.39% and fat content 4.53 %. According to the results, in local Latvian brown there are only 2.9% of cows are with BB-BB genotypes, which is related to milk coagulation ability and affected cheese production yield. Acknowledgment: the investigation is supported by VPP 2014-2017 AgroBioRes Project No. 3 LIVESTOCK.

Keywords: beta-lactoglobulin, cows, genotype frequencies, kappa-casein

Procedia PDF Downloads 249
662 Rheological Evaluation of Wall Materials and β-Carotene Loaded Microencapsules

Authors: Gargi Ghoshal, Ashay Jain, Deepika Thakur, U. S. Shivhare, O. P. Katare

Abstract:

The main objectives of this work were the rheological characterization of dispersions, emulsions at different pH used in the microcapsules preparation and the microcapsules obtain from gum arabic (A), guar gum (G), casein (C) and whey protein isolate (W) to keep β-carotene protected from degradation using the complex coacervation microencapsulation technique (CCM). The evaluation of rheological properties of dispersions, emulsions of different pH and so obtained microencapsules manifest the changes occur in the molecular structure of wall materials during the encapsulation process of β-carotene. These dispersions, emulsions of different pH and formulated microencapsules were subjected to go through various conducted experiments (flow curve test, amplitude sweep, and frequency sweep test) using controlled stress dynamic rheometer. Flow properties were evaluated as a function of apparent viscosity under steady shear rate ranging from 0.1 to 100 s-1. The frequency sweep test was conducted to determine the extent of viscosity and elasticity present in the samples at constant strain under changing angular frequency range from 0.1 to 100 rad/s at 25ºC. The dispersions and emulsion exhibited a shear thinning non-Newtonian behavior whereas microencapsules are considered as shear-thickening respectively. The apparent viscosity for dispersion, emulsions were decreased at low shear rates 20 s-1 and for microencapsules, it decreases up to ~50 s-1 besides these value, it has shown constant pattern. Oscillatory shear experiments showed a predominant viscous liquid behavior up to crossover frequencies of dispersions of C, W, A at 49.47 rad/s, 57.60 rad/s and 21.45 rad/s emulsion sample of AW at pH 5.0 it was 17.85 rad/s and GW microencapsules 61.40 rad/s respectively whereas no such crossover was found in G dispersion, emulsion with C and microencapsules still it showed more viscous behavior. Storage and loss modulus decreases with time also a shift of the crossover towards lower frequencies for A, W and C was observed respectively. However, their microencapsules showed more viscous behavior as compared to samples prior to blending.

Keywords: viscosity, gums, proteins, frequency sweep test, apparent viscosity

Procedia PDF Downloads 226
661 Investigation of the Evolutionary Equations of the Two-Planetary Problem of Three Bodies with Variable Masses

Authors: Zhanar Imanova

Abstract:

Masses of real celestial bodies change anisotropically and reactive forces appear, and they need to be taken into account in the study of these bodies' dynamics. We studied the two-planet problem of three bodies with variable masses in the presence of reactive forces and obtained the equations of perturbed motion in Newton’s form equations. The motion equations in the orbital coordinate system, unlike the Lagrange equation, are convenient for taking into account the reactive forces. The perturbing force is expanded in terms of osculating elements. The expansion of perturbing functions is a time-consuming analytical calculation and results in very cumber some analytical expressions. In the considered problem, we obtained expansions of perturbing functions by small parameters up to and including the second degree. In the non resonant case, we obtained evolution equations in the Newton equation form. All symbolic calculations were done in Wolfram Mathematica.

Keywords: two-planet, three-body problem, variable mass, evolutionary equations

Procedia PDF Downloads 33
660 Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Ícaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements.

Keywords: energy harvesting system, LE-FDTD, rectenna, rectifier, wireless power systems

Procedia PDF Downloads 109
659 Mobile Communication Technologies, Romantic Attachment and Relationship Quality: An Exploration of Partner Attunement

Authors: Jodie Bradnam, Mark Edwards, Bruce Watt

Abstract:

Mobile technologies have emerged as tools to create and sustain social and romantic relationships. The integration of technologies in close relationships has been of particular research interest with findings supporting the positive role of mobile phones in nurturing feelings of closeness and connection. More recently, the use of text messaging to manage conflict has become a focus of research attention. Four hundred and eleven adults in committed romantic relationships completed a series of questionnaires measuring attachment orientation, relationship quality, texting frequencies, attitudes, and response expectations. Attachment orientation, relationship length, texting for connection and disconnection were significant predictors of relationship quality, specifically relationship intimacy. Text frequency varied as a function of attachment orientation, with high attachment anxiety associated with high texting frequencies and with low relationship quality. Sending text messages of love and support was related to higher intimacy and relationship satisfaction scores, while sending critical or impersonal texts was associated with significantly lower intimacy and relationship satisfaction scores. The use of texting to manage relational conflict was a stronger negative predictor of relationship satisfaction than was the use of texting to express love and affection. Consistent with research on face-to-face communication in couples, the expression of negative sentiments via text were related to lower relationship quality, and these negative sentiments had a stronger and more enduring impact on relationship quality than did the expression of positive sentiments. Attachment orientation, relationship length and relationship status emerged as variables of interest in understanding the use of mobile technologies in romantic relationships.

Keywords: attachment, destructive conflict, intimacy, mobile communication, relationship quality, relationship satisfaction, texting

Procedia PDF Downloads 359
658 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application

Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham

Abstract:

E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.

Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management

Procedia PDF Downloads 68
657 Validation of the Formula for Air Attenuation Coefficient for Acoustic Scale Models

Authors: Katarzyna Baruch, Agata Szelag, Aleksandra Majchrzak, Tadeusz Kamisinski

Abstract:

Methodology of measurement of sound absorption coefficient in scaled models is based on the ISO 354 standard. The measurement is realised indirectly - the coefficient is calculated from the reverberation time of an empty chamber as well as a chamber with an inserted sample. It is crucial to maintain the atmospheric conditions stable during both measurements. Possible differences may be amended basing on the formulas for atmospheric attenuation coefficient α given in ISO 9613-1. Model studies require scaling particular factors in compliance with specified characteristic numbers. For absorption coefficient measurement, these are for example: frequency range or the value of attenuation coefficient m. Thanks to the possibilities of modern electroacoustic transducers, it is no longer a problem to scale the frequencies which have to be proportionally higher. However, it may be problematic to reduce values of the attenuation coefficient. It is practically obtained by drying the air down to a defined relative humidity. Despite the change of frequency range and relative humidity of the air, ISO 9613-1 standard still allows the calculation of the amendment for little differences of the atmospheric conditions in the chamber during measurements. The paper discusses a number of theoretical analyses and experimental measurements performed in order to obtain consistency between the values of attenuation coefficient calculated from the formulas given in the standard and by measurement. The authors performed measurements of reverberation time in a chamber made in a 1/8 scale in a corresponding frequency range, i.e. 800 Hz - 40 kHz and in different values of the relative air humidity (40% 5%). Based on the measurements, empirical values of attenuation coefficient were calculated and compared with theoretical ones. In general, the values correspond with each other, but for high frequencies and low values of relative air humidity the differences are significant. Those discrepancies may directly influence the values of measured sound absorption coefficient and cause errors. Therefore, the authors made an effort to determine an amendment minimizing described inaccuracy.

Keywords: air absorption correction, attenuation coefficient, dimensional analysis, model study, scaled modelling

Procedia PDF Downloads 401
656 Enhancement of Raman Scattering using Photonic Nanojet and Whispering Gallery Mode of a Dielectric Microstructure

Authors: A. Arya, R. Laha, V. R. Dantham

Abstract:

We report the enhancement of Raman scattering signal by one order of magnitude using photonic nanojet (PNJ) of a lollipop shaped dielectric microstructure (LSDM) fabricated by a pulsed CO₂ laser. Here, the PNJ is generated by illuminating sphere portion of the LSDM with non-resonant laser. Unlike the surface enhanced Raman scattering (SERS) technique, this technique is simple, and the obtained results are highly reproducible. In addition, an efficient technique is proposed to enhance the SERS signal with the help of high quality factor optical resonance (whispering gallery mode) of a LSDM. From the theoretical simulations, it has been found that at least an order of magnitude enhancement in the SERS signal could be achieved easily using the proposed technique. We strongly believe that this report will enable the research community for improving the Raman scattering signals.

Keywords: localized surface plasmons, photonic nanojet, SERS, whispering gallery mode

Procedia PDF Downloads 229
655 Analytical Response Characterization of High Mobility Transistor Channels

Authors: F. Z. Mahi, H. Marinchio, C. Palermo, L. Varani

Abstract:

We propose an analytical approach for the admittance response calculation of the high mobility InGaAs channel transistors. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The total currents and the potentials matrix relation between the gate and the drain terminals determine the frequency-dependent small-signal admittance response. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand, to control the appearance of plasma resonances, and on the other hand, can give significant information about the admittance phase frequency dependence.

Keywords: small-signal admittance, Poisson equation, currents and potentials matrix, the drain and the gate terminals, analytical model

Procedia PDF Downloads 523
654 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 123
653 Design of Compact Dual-Band Planar Antenna for WLAN Systems

Authors: Anil Kumar Pandey

Abstract:

A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.

Keywords: CPW antenna, dual-band, electromagnetic simulation, wireless local area network (WLAN)

Procedia PDF Downloads 187
652 Molecular Characterization of Grain Storage Proteins in Some Hordeum Species

Authors: Manar Makhoul, Buthainah Alsalamah, Salam Lawand, Hassan Azzam

Abstract:

The major storage proteins in endosperm of 33 cultivated and wild barley genotypes (H.vulgare, H. spontaneum, H. bulbosum, H. murinum, H. marinum) were analyzed to demonstrate the variation in the hordein polypeptides encoded by multigene families in grains. The SDS-PAGE revealed 13 and 17 alleles at the Hor1 and the Hor2 loci respectively, with frequencies from 0.83 to 14 and 0.56 to 13.41% respectively, while seven alleles at the Hor3 locus with frequencies from 3.63 to 30.91% were recognized. The phylogenetic analysis indicated to relevance of the polymorphism in hordein patterns as successful tool in identifying the individual genotypes and discriminating the species according to genome type. We also reported in this research complete nucleotide sequence B-hordein genes of seven wild and cultivated barley genotypes. A 152bp upstream sequence of B-hordein promoter contained a TATA box, CATC box, AAAG motif, N-motif and E-motif. In silico analysis of B-Hordein sequences demonstrated that the coding regions were not interrupted by any intron, and included the complete ORF which varied between 882 and 906 bp, and encoded mature proteins with 293-301 residues characterized by high contents of glutamine (29%), and proline (18%). Comparison of the predicted polypeptide sequences with the published ones suggested that all S-rich prolamins genes are descended from common ancestor. The sequence started at N-terminal with a signal peptide, and then followed directly by two domains; a repetitive one based on the repetition of the repeat unit PQQPFPQQ and C-terminal domain. Also, it was found that positions of the eight cysteine residues were highly conserved in all the B-hordein sequences, but Hordeum bulbosum had additional unpaired one. The phylogenetic tree of B-hordein polypeptide separated the genotypes in distinct seven subgroups. In general, the high homology between B-hordeins and LMW glutenin subunits suggests similar bread-making influences for these B-hordeins.

Keywords: hordeum, phylogenetic tree, sequencing, storage protein

Procedia PDF Downloads 237
651 Competitive DNA Calibrators as Quality Reference Standards (QRS™) for Germline and Somatic Copy Number Variations/Variant Allelic Frequencies Analyses

Authors: Eirini Konstanta, Cedric Gouedard, Aggeliki Delimitsou, Stefania Patera, Samuel Murray

Abstract:

Introduction: Quality reference DNA standards (QRS) for molecular testing by next-generation sequencing (NGS) are essential for accurate quantitation of copy number variations (CNV) for germline and variant allelic frequencies (VAF) for somatic analyses. Objectives: Presently, several molecular analytics for oncology patients are reliant upon quantitative metrics. Test validation and standardisation are also reliant upon the availability of surrogate control materials allowing for understanding test LOD (limit of detection), sensitivity, specificity. We have developed a dual calibration platform allowing for QRS pairs to be included in analysed DNA samples, allowing for accurate quantitation of CNV and VAF metrics within and between patient samples. Methods: QRS™ blocks up to 500nt were designed for common NGS panel targets incorporating ≥ 2 identification tags (IDTDNA.com). These were analysed upon spiking into gDNA, somatic, and ctDNA using a proprietary CalSuite™ platform adaptable to common LIMS. Results: We demonstrate QRS™ calibration reproducibility spiked to 5–25% at ± 2.5% in gDNA and ctDNA. Furthermore, we demonstrate CNV and VAF within and between samples (gDNA and ctDNA) with the same reproducibility (± 2.5%) in a clinical sample of lung cancer and HBOC (EGFR and BRCA1, respectively). CNV analytics was performed with similar accuracy using a single pair of QRS calibrators when using multiple single targeted sequencing controls. Conclusion: Dual paired QRS™ calibrators allow for accurate and reproducible quantitative analyses of CNV, VAF, intrinsic sample allele measurement, inter and intra-sample measure not only simplifying NGS analytics but allowing for monitoring clinically relevant biomarker VAF across patient ctDNA samples with improved accuracy.

Keywords: calibrator, CNV, gene copy number, VAF

Procedia PDF Downloads 131
650 Dynamic Wind Effects in Tall Buildings: A Comparative Study of Synthetic Wind and Brazilian Wind Standard

Authors: Byl Farney Cunha Junior

Abstract:

In this work the dynamic three-dimensional analysis of a 47-story building located in Goiania city when subjected to wind loads generated using both the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method is realized. To model the frames three different methodologies are used: the shear building model and both bi and three-dimensional finite element models. To start the analysis, a plane frame is initially studied to validate the shear building model and, in order to compare the results of natural frequencies and displacements at the top of the structure the same plane frame was modeled using the finite element method through the SAP2000 V10 software. The same steps were applied to an idealized 20-story spacial frame that helps in the presentation of the stiffness correction process applied to columns. Based on these models the two methods used to generate the Wind loads are presented: a discrete model proposed in the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method. The method uses the Davenport spectrum which is divided into a variety of frequencies to generate the temporal series of loads. Finally, the 47- story building was analyzed using both the three-dimensional finite element method through the SAP2000 V10 software and the shear building model. The models were loaded with Wind load generated by the Wind code NBR6123 (ABNT, 1988) and by the Synthetic-Wind method considering different wind directions. The displacements and internal forces in columns and beams were compared and a comparative study considering a situation of a full elevated reservoir is realized. As can be observed the displacements obtained by the SAP2000 V10 model are greater when loaded with NBR6123 (ABNT, 1988) wind load related to the permanent phase of the structure’s response.

Keywords: finite element method, synthetic wind, tall buildings, shear building

Procedia PDF Downloads 259
649 Enhancing of Laser Imaging by Using Ultrasound Effect

Authors: Hayder Raad Hafuze, Munqith Saleem Dawood, Jamal Abdul Jabbar

Abstract:

The effect of using both ultrasounds with laser in medical imaging of the biological tissue has been studied in this paper. Different wave lengths of incident laser light (405 nm, 532 nm, 650 nm, 808 nm and 1064 nm) were used with different ultrasound frequencies (1MHz and 3.3MHz). The results showed that, the change of acoustic intensity enhance the laser penetration of the tissue for different thickness. The existence of the ideal Raman-Nath diffraction pattern were investigated in terms of phase delay and incident angle.

Keywords: tissue, laser, ultrasound, effect, imaging

Procedia PDF Downloads 404
648 Design of Wireless Readout System for Resonant Gas Sensors

Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu

Abstract:

This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.

Keywords: gas sensor, GSWR, micromechanical system, UWT, volatile emissions

Procedia PDF Downloads 463
647 Happiness Determinants in MBA Student Life

Authors: Vivek Nair

Abstract:

The objective of this research is to find out happiness determinants in MBA student life. To figure out the factors influencing happiness in life is sorted by their personal profiles. This paper used survey method to collect data. The survey was mainly conducted among Management Students and is based on three hypothesis viz. Family relationship, Friendship and God as a source of happiness, and whether happiness is manageable and controllable. The statistics used for interpreting the results included the frequencies, percentages, and z test analysis. The findings revealed that family relationships and friendship have the same effect on individual happiness.

Keywords: happiness, family, MBA students, friends

Procedia PDF Downloads 286
646 Analysis of Automotive Sensor for Engine Knock System

Authors: Miroslav Gutten, Jozef Jurcik, Daniel Korenciak, Milan Sebok, Matej Kuceraa

Abstract:

This paper deals with the phenomenon of the undesirable detonation combustion in internal combustion engines. A control unit of the engine monitors these detonations using piezoelectric knock sensors. With the control of these sensors the detonations can be objectively measured just outside the car. If this component provides small amplitude of the output voltage it could happen that there would have been in the areas of the engine ignition combustion. The paper deals with the design of a simple device for the detection of this disorder. A construction of the testing device for the knock sensor suitable for diagnostics of knock combustion in internal combustion engines will be presented. The output signal of presented sensor will be described by Bessel functions. Using the first voltage extremes on the characteristics it is possible to create a reference for the evaluation of the polynomial residue. It should be taken into account that the velocity of sound in air is 330 m/s. This sound impinges on the walls of the combustion chamber and is detected by the sensor. The resonant frequency of the clicking of the motor is usually in the range from 5 kHz to 15 kHz. The sensor worked in the field to 37 kHz, which shall be taken into account on an own sensor resonance.

Keywords: diagnostics, knock sensor, measurement, testing device

Procedia PDF Downloads 427
645 Analyzing the Sound of Space - The Glissando of the Planets and the Spiral Movement on the Sound of Earth, Saturn and Jupiter

Authors: L. Tonia, I. Daglis, W. Kurth

Abstract:

The sound of the universe creates an affinity with the sounds of music. The analysis of the sound of space focuses on the existence of a tone material, the microstructure and macrostructure, and the form of the sound through the signals recorded during the flight of the spacecraft Van Allen Probes and Cassini’s mission. The sound becomes from the frequencies that belong to electromagnetic waves. Plasma Wave Science Instrument and Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) recorded the signals from space. A transformation of that signals to audio gave the opportunity to study and analyze the sound. Due to the fact that the musical tone pitch has a frequency and every electromagnetic wave produces a frequency too, the creation of a musical score, which appears as the sound of space, can give information about the form, the symmetry, and the harmony of the sound. The conversion of space radio emissions to audio provides a number of tone pitches corresponding to the original frequencies. Through the process of these sounds, we have the opportunity to present a music score that “composed” from space. In this score, we can see some basic features associated with the music form, the structure, the tone center of music material, the construction and deconstruction of the sound. The structure, which was built through a harmonic world, includes tone centers, major and minor scales, sequences of chords, and types of cadences. The form of the sound represents the symmetry of a spiral movement not only in micro-structural but also to macro-structural shape. Multiple glissando sounds in linear and polyphonic process of the sound, founded in magnetic fields around Earth, Saturn, and Jupiter, but also a spiral movement appeared on the spectrogram of the sound. Whistles, Auroral Kilometric Radiations, and Chorus emissions reveal movements similar to musical excerpts of works by contemporary composers like Sofia Gubaidulina, Iannis Xenakis, EinojuhamiRautavara.

Keywords: space sound analysis, spiral, space music, analysis

Procedia PDF Downloads 150