Search results for: mechanical metamaterials
3537 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study
Authors: Ana Rahma Yuniarti, Ki Moo Lim
Abstract:
Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model
Procedia PDF Downloads 2043536 Relation between Chronic Mechanical Low Back Pain and Hip Rotation
Authors: Mohamed M. Diab, Koura G. Mohamed, A. Balbaa, Radwan Sh. Ahamed
Abstract:
Background: Chronic mechanical low back pain (CMLBP) is the most common complaint of the working-age population. Mechanical low back pain is often a chronic, dull, aching pain of varying intensity that affects the lower spine. In the current proposal the hip rotation-CMLBP relationship is based on that limited hip motion will be compensated by motion in the lumbopelvic region and this increase force translates to the lumbar spine. The purpose of this study was to investigate if there a relationship between chronic mechanical low back pain (CMLBP) and hip medial and lateral rotation (peak torque and Range of motion (ROM) in patients with CMLBP. Methods: Sixty patients with CMLBP diagnosed by an orthopedist participated in the current study after signing a consent form. Their mean of age was (23.76±2.39) years, mean of weight (71.8±12.7) (Kg), mean of height (169.65±7.49) (Cm) and mean of BMI (25.5±3.86) (Kg/m2). Visual Analogue Scale (VAS) was used to assess pain. Fluid Filled Inclinometer was used to measure Hip rotation ROM (medial and lateral). Isokinetic Dynamometer was used to measure peak torque of hip rotators muscles (medial and lateral), concentric peak torque with tow Isokinetic speeds (60ᵒ/sec and 180ᵒ/sec) was selected to measure peak torque. Results: The results of this study demonstrated that there is poor relationship between pain and hip external rotation ROM, also there is poor relation between pain and hip internal rotation ROM. There is poor relation between pain and hip internal rotators peak torque and hip external rotators peak torque in both speeds. Conclusion: Depending on the current study it is not recommended to give an importance to hip rotation in treating Chronic Mechanical Low Back Pain.Keywords: hip rotation ROM, hip rotators strength, low back pain, chronic mechanical
Procedia PDF Downloads 3113535 Investigating the Physical Properties of Polycaprolactone/Eucomis autumnalis Nanocellulose Composite
Authors: Dolly Selikane, Thandi Gumede
Abstract:
Among the commonly studied organic fillers for polycaprolactone (PCL), cellulose is the most promising. It is available in various particle sizes and sources, providing numerous options for finding a suitable match for PCL matrices. In this study, cellulose was extracted from the leaves of E. autumnalis to create a PCL/nanocellulose composite through melt blending. The prepared nanocellulose was blended with PCL at a weight ratio of 97/3, and the resulting composite was characterized by its thermal and mechanical properties. The results showed that the addition of nanocellulose to PCL improved its mechanical properties, with a maximum increase of 29% in tensile strength and 31% in Young's modulus. The SEM analysis confirmed the successful blending of PCL and nanocellulose. The findings of this study suggest that the nanocellulose from Eucomis autumnalis plant has the potential to improve the mechanical properties of PCL and could be used in biomedical and packaging applications.Keywords: polycaprolactone, medicinal plants, Eucomis autumnalis, nanocellulose, composite
Procedia PDF Downloads 1243534 Development of Winter Wears Having Improved Thermal Comfort and Mechanical Properties
Authors: Samen Boota, Arslan Ishaq
Abstract:
More than 4 billion tons of chicken feathers are wasted yearly worldwide which is not environmental friendly. In order to make use of these 4 billion tons of feathers it is necessary to incorporate them to the textile materials. The main objective of this study is to develop the winter wears with improved thermal comfort and mechanical properties. Chick feathers were blended with cotton fibers to spin them into yarn, weave them dye them using reactive dyes. The developed fabric was tested for thermal comfort, tensile and tears strength. The results were also compared with pure cotton fabric of similar GSM. It is observed from the results that chicken feathers and cotton blended fabric was improved thermal comfort and mechanical properties.Keywords: Alambeta, compatibilizing, permeability, sliver
Procedia PDF Downloads 3413533 Study of Metakaolin-Based Geopolymer with Addition of Polymer Admixtures
Authors: Olesia Mikhailova, Pavel Rovnaník
Abstract:
In the present work, metakaolin-based geopolymer including different polymer admixtures was studied. Different types of commercial polymer admixtures VINNAPAS® and polyethylene glycol of different relative molecular weight were used as polymer admixtures. The main objective of this work is to investigate the influence of different types of admixtures on the properties of metakaolin-based geopolymer mortars considering their different dosage. Mechanical properties, such as flexural and compressive strength were experimentally determined. Also, study of the microstructure of selected specimens by using a scanning electron microscope was performed. The results showed that the specimen with addition of 1.5% of VINNAPAS® 7016 F and 10% of polyethylene glycol 400 achieved maximum mechanical properties.Keywords: geopolymer, mechanical properties, metakaolin, microstructure, polymer admixtures, porosity
Procedia PDF Downloads 2363532 Advances in Axonal Biomechanics and Mechanobiology: A Nanotechnology-Based Approach to the Study of Mechanotransduction of Axonal Growth
Authors: Alessandro Falconieri, Sara De Vincentiis, Vittoria Raffa
Abstract:
Mechanical force regulates axonal growth, elongation and maturation processes. This force is opening new frontiers in the field, contributing to a general understanding of the mechanisms of axon growth that, in the past, was thought to be governed exclusively by the growth cone and its ability to influence axonal growth in response to chemical signals. A method recently developed in our laboratory allows, through the labeling of neurons with magnetic nanoparticles (MNPs) and the use of permanent magnets, to apply extremely low mechanical forces, similar to those generated endogenously by the growth cone or by the increase of body mass during the organism growth. We found that these extremely low forces strongly enhance the spontaneous axonal elongation rate as well as neuronal sprouting. Data obtained don’t exclude that local phenomena, such as local transport and local translation, may be involved. These new advances could shed new light on what happens when the cell is subjected to external mechanical forces, opening new interesting scenarios in the field of mechanobiology.Keywords: axon, external mechanical forces, magnetic nanoparticles, mechanotransduction
Procedia PDF Downloads 1213531 Mechanical Characterization and Durability of Eco-Efficient Ultra High Performance Concrete
Authors: Valeria Corinaldesi, Nicola Generosi, Jacopo Donnini
Abstract:
Ultra high performance concrete (UHPC) is an innovative material which tends to exhibit superior properties such as incredible mechanical and durability performance and non-brittleness behavior. Over the last twenty years, phenomenal advances have taken place in the research and application of UHPC. Recently, the approach is to improve UHPC sustainability by reducing its embodied energy. First of all, this goal can be achieved by reducing Portland cement dosage. In this work, an experimental investigation was carried out to characterize the mechanical behavior and durability of UHPCs prepared by reducing the cement amount by 30% in order to verify the impact of lower cement content and higher water-to-cement ratio on both mechanical performance and durability, if any. Eight different UHPC mixtures were compared, with two different cement dosages (either 1000 or 700 kg) and four different brass-coated steel fibres dosages (0 - 50 - 100 - 150 kg), in terms of 28-day compressive and flexural strengths. Then, the mixtures prepared with the lower cement content were further investigated in terms of abrasion resistance, water absorption, freezing and thawing cycles, and resistance to sulphate attack. Results obtained showed the feasibility of reducing cement dosage without compromising mechanical performance and UHPC's extraordinary durability.Keywords: abrasion resistance, durability, eco-efficiency, freeze-thawing cycles, steel fibres, sulphate exposure, sustainability, UHPC
Procedia PDF Downloads 753530 Magnetorheological Elastomer Composites Obtained by Extrusion
Authors: M. Masłowski, M. Zaborski
Abstract:
Magnetorheological elastomer composites based on micro- and nano-sized magnetite, gamma iron oxide and carbonyl iron powder in ethylene-octene rubber are reported and studied. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy). The use of extrusion method instead of traditional preparation processes (two-roll mill, mixer) of composites is presented. Micro and nan-sized magnetites as well as gamma iron oxide and carbonyl iron powder were found to be an active fillers improving the mechanical properties of elastomers. They also changed magnetic properties of composites. Application of extrusion process also influenced the mechanical properties of composites and the dispersion of magnetic fillers. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Scanning electron microscopy images (SEM) show that the dispersion improvement had significant effect on the composites properties. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.Keywords: extrusion, magnetic fillers, magnetorheological elastomers, mechanical properties
Procedia PDF Downloads 3183529 The Effect of Pulsator on Washing Performance in a Front-Loading Washer
Authors: Eung Ryeol Seo, Hee Tae Lim, Eunsuk Bang, Soon Cheol Kweon, Jeoung-Kyo Jeoung, Ji-Hoon Choic
Abstract:
The object of this study is to investigate the effect of pulsator on washing performance quantitatively for front-loading washer. The front-loading washer with pulsator shows washing performance improvement of 18% and the particle-based body simulation technique has been applied to figure out the relation between washing performance and mechanical forces exerted on textile during washing process. As a result, the mechanical forces, such as collision force and strain force, acting on the textile have turned out to be about twice numerically. The washing performance improvement due to additional pulsate system has been utilized for customers to save 50% of washing time.Keywords: front-loading washer, mechanical force, fabric movement, pulsator, time-saving
Procedia PDF Downloads 2613528 Influence of Physical Properties on Estimation of Mechanical Strength of Limestone
Authors: Khaled Benyounes
Abstract:
Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah(Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Others correlations UCS-tensile strength, dynamic Young’s modulus-static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.Keywords: limestone, mechanical strength, Young’s modulus, porosity
Procedia PDF Downloads 4543527 Dynamic Mechanical Thermal Properties of Arenga pinnata Fibre Reinforced Epoxy Composite: Effects of Alkaline Treatment
Authors: Abdul Hakim Abdullah, Mohamad Syafiq Abdul Khadir
Abstract:
In present investigations, thermal behaviours of Arenga pinnata fibres prior and after alkaline treatment were studied. The alkaline treatments were applied on the Arenga pinnata fibres by immersing in the alkaline solution, 6% sodium hydroxide (NaOH). Using hand lay-out technique, composites were fabricated at 20% and 40% by Arenga pinnata fibres weight contents. The thermal behaviours of both untreated and treated composites were determined by employing Dynamic Mechanical Analysis (DMA). The results show that the TAP owned better results of Storage Modulus (E’), Loss Modulus (E”) and Tan Delta temperatures ranges from 0°C to 60°C.Keywords: composites, Arenga pinnata fibre, alkaline treatment, dynamic mechanical properties
Procedia PDF Downloads 3603526 The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22
Authors: Adnan I. O. Zaid
Abstract:
Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index.Keywords: addition, grain refinement, mechanical characteristics, microstructure, rare earth elements, ZA-22, Zinc- aluminum alloy
Procedia PDF Downloads 5243525 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads
Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin
Abstract:
Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.Keywords: FEM, tissue, indentation, properties
Procedia PDF Downloads 3583524 Portable Palpation Probe for Diabetic Foot Ulceration Monitoring
Authors: Bummo Ahn
Abstract:
Palpation is widely used to measure soft tissue firmness or stiffness in the living condition in order to apply detection, diagnosis, and treatment of tumors, scar tissue, abnormal muscle tone, or muscle spasticity. Since these methods are subjective and depend on the proficiency level, it is concluded that there are other diagnoses depending on the condition of the experts and the results are not objective. The mechanical property obtained by using the elasticity of the tissue is important to calculate a predictive variable for monitoring abnormal tissues. If the mechanical load such as reaction force on the foot increases in the same region under the same conditions, the mechanical property of the tissue is changed. Therefore, objective diagnosis is possible not only for experts but also for patients using this quantitative information. Furthermore, the portable system also allows non-experts to easily diagnose at home, not in hospitals or institutions. In this paper, we introduce a portable palpation system that can be used to measure the mechanical properties of human tissue, which can be applied to monitor diabetic foot ulceration patients with measuring the mechanical property change of foot tissue. The system was designed to be smaller and portable in comparison with the conventional palpation systems. It is consists of the probe, the force sensor, linear actuator, micro control unit, the display module, battery, and housing. Using this system, we performed validation experiments by applying different palpations (3 and 5 mm) to soft tissue (silicone rubber) and measured reaction forces. In addition, we estimated the elastic moduli of the soft tissue against different palpations and compare the estimated elastic moduli that show similar value even if the palpation depths are different.Keywords: palpation probe, portable, diabetic foot ulceration, monitoring, mechanical property
Procedia PDF Downloads 1203523 Physico-Mechanical Properties of Wood-Plastic Composites Produced from Polyethylene Terephthalate Plastic Bottle Wastes and Sawdust of Three Tropical Hardwood Species
Authors: Amos Olajide Oluyege, Akpanobong Akpan Ekong, Emmanuel Uchechukwu Opara, Sunday Adeniyi Adedutan, Joseph Adeola Fuwape, Olawale John Olukunle
Abstract:
This study was carried out to evaluate the influence of wood species and wood plastic ratio on the physical and mechanical properties of wood plastic composites (WPCs) produced from polyethylene terephthalate (PET) plastic bottle wastes and sawdust from three hardwood species, namely, Terminalia superba, Gmelina arborea, and Ceiba pentandra. The experimental WPCs were prepared from sawdust particle size classes of ≤ 0.5, 0.5 – 1.0, and 1.0 – 2.0 mm at wood/plastic ratios of 40:60, 50:50 and 60:40 (percentage by weight). The WPCs for each study variable combination were prepared in 3 replicates and laid out in a randomized complete block design (RCBD). The physical properties investigated water absorption (WA), linear expansion (LE) and thickness swelling (TS) while the mechanical properties evaluated were Modulus of Elasticity (MOE) and Modulus of Rupture (MOR). The mean values for WA, LE and TS ranged from 1.07 to 34.04, 0.11 to 1.76 and 0.11 to 4.05 %, respectively. The mean values of the three physical properties increased with decrease in wood plastic ratio. Wood plastic ratio of 40:60 at each particle size class generally resulted in the lowest values while wood plastic ratio of 60:40 had the highest values for each of the three species. For each of the physical properties, T. superba had the least mean values followed by G. arborea, while the highest values were observed C. pentandra. The mean values for MOE and MOR ranged from 458.17 to 1875.67 and 2.64 to 18.39 N/mm2, respectively. The mean values of the two mechanical properties decreased with increase in wood plastic ratio. Wood plastic ratio of 40:60 at each wood particle size class generally had the highest values while wood plastic ratio of 60:40 had the least values for each of the three species. For each of the mechanical properties, C. pentandra had the highest mean values followed by G. arborea, while the least values were observed T. superba. There were improvements in both the physical and mechanical properties due to decrease in sawdust particle size class with the particle size class of ≤ 0.5 mm giving the best result. The results of the Analysis of variance revealed significant (P < 0.05) effects of the three study variables – wood species, sawdust particle size class and wood/plastic ratio on all the physical and mechanical properties of the WPCs. It can be concluded from the results of this study that wood plastic composites from sawdust particle size ≤ 0.5 and PET plastic bottle wastes with acceptable physical and mechanical properties are better produced using 40:60 wood/plastic ratio, and that at this ratio, all the three species are suitable for the production of wood plastic composites.Keywords: polyethylene terephthalate plastic bottle wastes, wood plastic composite, physical properties, mechanical properties
Procedia PDF Downloads 2013522 Investigation of Optimized Mechanical Properties on Friction Stir Welded Al6063 Alloy
Authors: Lingaraju Dumpala, Narasa Raju Gosangi
Abstract:
Friction Stir Welding (FSW) is relatively new, environmentally friendly, versatile, and widely used joining technique for soft materials such as aluminum. FSW has got a lot of attention as a solid-state joining method which avoids many common problems of fusion welding and provides an improved way of producing aluminum joints in a faster way. FSW can be used for various aerospace, defense, automotive and transportation applications. It is necessary to understand the friction stir welded joints and its characteristics to use this new joining technique in critical applications. This study investigated the mechanical properties of friction stir welded aluminum 6063 alloys. FSW is carried out based on the design of experiments using L16 mixed level array by considering tool rotational speeds, tool feed rate and tool tilt angles as process parameters. The optimization of process parameters is carried by Taguchi based regression analysis and the significance of process parameters is analyzed using ANOVA. It is observed that the considered process parameters are high influences the mechanical properties of Al6063.Keywords: FSW, aluminum alloy, mechanical properties, optimization, Taguchi, ANOVA
Procedia PDF Downloads 1333521 Treatment of Dredged Marine Sediments for Their Reuse in Road Construction
Authors: F. Ben Abdelghani, W. Maherezi
Abstract:
Dredging operations generate, each year, a great quantity of marine sediments. These raw materials can not be used in road construction without a specific treatment process. Sediments suitability tests has shown that most of studied sediments are not suitable to be used in road construction. In order to improve their compacity and their mechanical performance, addition of a granular material is recommended. The use of a dredged sand, to improve the granular mixture containing sediments, allows a better management of the two types of dredge materials (sand and sediment). In this study, a new road material containing dredged marine sediments and dredged sand is formulated and treated by adding various binders. Mechanical performance investigation of different mixtures by measuring Proctor-IPI values and simple compressive strengths is realized.Keywords: dredged sediments, suitability tests, road construction, hydraulic binder, mechanical performance
Procedia PDF Downloads 3623520 Optimization in Friction Stir Processing Method with Emphasis on Optimized Process Parameters Laboratory Research
Authors: Atabak Rahimzadeh Ilkhch
Abstract:
Friction stir processing (FSP) has promised for application of thermo-mechanical processing techniques where aims to change the micro structural and mechanical properties of materials in order to obtain high performance and reducing the production time and cost. There are lots of studies focused on the microstructure of friction stir welded aluminum alloys. The main focus of this research is on the grain size obtained in the weld zone. Moreover in second part focused on temperature distribution effect over the entire weld zone and its effects on the microstructure. Also, there is a need to have more efforts on investigating to obtain the optimal value of effective parameters such as rotational speed on microstructure and to use the optimum tool designing method. the final results of this study will be present the variation of structural and mechanical properties of materials in the base of applying Friction stir processing and effect of (FSP) processing and tensile testing on surface quality. in the hand, this research addresses the FSP f AA-7020 aluminum and variation f ration of rotation and translational speeds.Keywords: friction stir processing, AA-7020, thermo-mechanical, microstructure, temperature
Procedia PDF Downloads 2803519 Evaluation of Mechanical Behavior of Gas Turbine Blade at High Temperature
Authors: Sung-Uk Wee, Chang-Sung Seok, Jae-Mean Koo, Jeong-Min Lee
Abstract:
Gas turbine blade is important part of power plant, so it is necessary to evaluate gas turbine reliability. For better heat efficiency, inlet temperature of gas turbine has been elevated more and more so gas turbine blade is exposed to high-temperature environment. Then, higher inlet temperature affects mechanical behavior of the gas turbine blade, so it is necessary that evaluation of mechanical property of gas turbine blade at high-temperature environment. In this study, tensile test and fatigue test were performed at various high temperature, and fatigue life was predicted by Coffin-Manson equation at each temperature. The experimental results showed that gas turbine blade has a lower elastic modulus and shorter fatigue life at higher temperature.Keywords: gas turbine blade, tensile test, fatigue life, stress-strain
Procedia PDF Downloads 4773518 Investigation of Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Aluminium Alloys
Authors: Gurpreet Singh, Hazoor Singh, Kulbir Singh Sandhu
Abstract:
Friction Stir Welding Process emerged as promising solid-state welding and eliminates various welding defects like cracks and porosity in joining of dissimilar aluminum alloys. In the present research, Friction Stir Welding (FSW) is carried out on dissimilar aluminum alloys 2000 series and 6000 series this combination of alloys are highly used in automobile and aerospace industry due to their good strength to weight ratio, mechanical, and corrosion properties. The joints characterized by applying various destructive and non-destructive tests. Three critical welding parameters were considered i.e. Tool Rotation speed, Transverse speed, and Tool Geometry. The effective range of tool rotation speed from 1200-1800 rpm and transverse speed from 60-240 mm/min and tool geometry was studied. The two-different difficult to weld alloys were successfully welded. All the samples showed different microstructure with different set of welding parameters. It has been revealed with microstructure scans that grain refinement plays a crucial role in mechanical properties.Keywords: aluminum alloys, friction stir welding, mechanical properties, microstructure
Procedia PDF Downloads 2783517 Effect of Shot Peening on the Mechanical Properties for Welded Joints of Aluminium Alloy 6061-T6
Authors: Muna Khethier Abbass, Khairia Salman Hussan, Huda Mohummed AbdudAlaziz
Abstract:
This work aims to study the effect of shot peening on the mechanical properties of welded joints which performed by two different welding processes: Tungsten inert gas (TIG) welding and friction stir welding (FSW) processes of aluminum alloy 6061 T6. Arc welding process (TIG) was carried out on the sheet with dimensions of (100x50x6 mm) to obtain many welded joints with using electrode type ER4043 (AlSi5) as a filler metal and argon as shielding gas. While the friction stir welding process was carried out using CNC milling machine with a tool of rotational speed (1000 rpm) and welding speed of (20 mm/min) to obtain the same butt welded joints. The welded pieces were tested by X-ray radiography to detect the internal defects and faulty welded pieces were excluded. Tensile test specimens were prepared from welded joints and base alloy in the dimensions according to ASTM17500 and then subjected to shot peening process using steel ball of diameter 0.9 mm and for 15 min. All specimens were subjected to Vickers hardness test and micro structure examination to study the effect of welding process (TIG and FSW) on the micro structure of the weld zones. Results showed that a general decay of mechanical properties of TIG and FSW welded joints comparing with base alloy while the FSW welded joint gives better mechanical properties than that of TIG welded joint. This is due to the micro structure changes during the welding process. It has been found that the surface hardening by shot peening improved the mechanical properties of both welded joints, this is due to the compressive residual stress generation in the weld zones which was measured using X-Ray diffraction (XRD) inspection.Keywords: friction stir welding, TIG welding, mechanical properties, shot peening
Procedia PDF Downloads 3393516 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites
Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro
Abstract:
Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers
Procedia PDF Downloads 6203515 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume
Authors: Jisong Zhang, Yinghua Zhao
Abstract:
The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete
Procedia PDF Downloads 4143514 Phase Stability and Grain Growth Kinetics of Oxide Dispersed CoCrFeMnNi
Authors: Prangya P. Sahoo, B. S. Murty
Abstract:
The present study deals with phase evolution of oxide dispersed CoCrFeMnNi high entropy alloy as a function of amount of added Y2O3 during mechanical alloying and analysis of grain growth kinetics of CoCrFeMnNi high entropy alloy without and with oxide dispersion. Mechanical alloying of CoCrFeMnNi resulted in a single FCC phase. However, evolution of chromium carbide was observed after heat treatment between 1073 and 1473 K. Comparison of grain growth time exponents and activation energy barrier is also reported. Micro structural investigations, using electron microscopy and EBSD techniques, were carried out to confirm the enhanced grain growth resistance which is attributed to the presence oxide dispersoids.Keywords: grain growth kinetics, mechanical alloying, oxide dispersion, phase evolution
Procedia PDF Downloads 4293513 An Experimental Investigation on Mechanical Behaviour of Fiber Reinforced Polymer (FRP) Composite Laminates Used for Pipe Applications
Authors: Tasnim Kallel, Rim Taktak
Abstract:
In this experimental work, fiber reinforced polymer (FRP) composite laminates were manufactured using hand lay-up technique. The unsaturated polyester (UP) and vinylester (VE) were considered as resins reinforced with different woven fabrics (bidirectional and quadriaxial rovings). The mechanical behaviour of the resulting composites was studied and then compared. A focus was essentially done on the evaluation of the effect of E-Glass fiber and ply orientation on the mechanical properties such as tensile strength, flexural strength, and hardness of the studied composite laminates. Also, crack paths and fracture surfaces were examined, and failure mechanisms were analyzed. From the main results, it was found that the quadriaxial composite laminates (QA/VE and QA/UP) with stacking sequences of [0°, +45°, 90°, -45°] present a very ductile tensile behaviour. The other laminate samples (R500/VE, RM/VE, R500/UP and RM/UP) show a very brittle behaviour whatever the used resin. The intrinsic toughness KIC of QA/VE laminate, obtained in fracture tests, are found more important than that of RM/VE composite. Thus, the QA/VE samples, as multidirectional laminate, presents the highest interlaminar fracture resistance.Keywords: crack growth, fiber orientation, fracture behavior, e-glass fiber fabric, laminate composite, mechanical behavior
Procedia PDF Downloads 2503512 Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator
Authors: Petr Mohyla, Ivo Hlavatý, Jiří Hrubý, Lucie Krejčí
Abstract:
This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples.Keywords: heat affected zone, impact test, thermal cycle simulator, time of tempering
Procedia PDF Downloads 3023511 Finite Element Modelling of Mechanical Connector in Steel Helical Piles
Authors: Ramon Omar Rosales-Espinoza
Abstract:
Pile-to-pile mechanical connections are used if the depth of the soil layers with sufficient bearing strength exceeds the original (“leading”) pile length, with the additional pile segment being termed “extension” pile. Mechanical connectors permit a safe transmission of forces from leading to extension pile while meeting strength and serviceability requirements. Common types of connectors consist of an assembly of sleeve-type external couplers, bolts, pins, and other mechanical interlock devices that ensure the transmission of compressive, tensile, torsional and bending stresses between leading and extension pile segments. While welded connections allow for a relatively simple structural design, mechanical connections are advantageous over welded connections because they lead to shorter installation times and significant cost reductions since specialized workmanship and inspection activities are not required. However, common practices followed to design mechanical connectors neglect important aspects of the assembly response, such as stress concentration around pin/bolt holes, torsional stresses from the installation process, and interaction between the forces at the installation (torsion), service (compression/tension-bending), and removal stages (torsion). This translates into potentially unsatisfactory designs in terms of the ultimate and service limit states, exhibiting either reduced strength or excessive deformations. In this study, the experimental response under compressive forces of a type of mechanical connector is presented, in terms of strength, deformation and failure modes. The tests revealed that the type of connector used can safely transmit forces from pile to pile. Using the results from the compressive tests, an analysis model was developed using the finite element (FE) method to study the interaction of forces under installation and service stages of a typical mechanical connector. The response of the analysis model is used to identify potential areas for design optimization, including size, gap between leading and extension piles, number of pin/bolts, hole sizes, and material properties. The results show the design of mechanical connectors should take into account the interaction of forces present at every stage of their life cycle, and that the torsional stresses occurring during installation are critical for the safety of the assembly.Keywords: piles, FEA, steel, mechanical connector
Procedia PDF Downloads 2643510 Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler
Authors: M. E. Ali Mohsin, Agus Arsad, Othman Y. Alothman
Abstract:
This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites. Transmission electron microscopy (TEM) images revealed that larger aggregates of CNTs were disappeared upon addition of these two components leading to the enhancement of thermo-mechanical properties for such composites.Keywords: secondary filler, montmorillonite, carbon nanotube, nanocomposite
Procedia PDF Downloads 3633509 Physical and Mechanical Characterization of Limestone in the Quarry of Meftah (Algeria)
Authors: Khaled Benyounes
Abstract:
Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah (Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Other correlations, UCS - tensile strength, dynamic Young’s modulus - static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.Keywords: limestone, mechanical strength, Young’s modulus, porosity
Procedia PDF Downloads 6373508 Effect of Volume Fraction of Fibre on the Mechanical Properties of Nanoclay Reinforced E-Glass-Epoxy Composites
Authors: K. Krushnamurty, D. Rasmitha, I. Srikanth, K. Ramji, Ch. Subrahmanyam
Abstract:
E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers.Keywords: e-glass-epoxy composite laminates, fiber volume fraction, e-glass fiber, mechanical properties, delamination
Procedia PDF Downloads 342