Search results for: influent aquifer
32 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil
Authors: Juliana A. Galhardi, Daniel M. Bonotto
Abstract:
Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.Keywords: radon, radium, acid mine drainage, coal
Procedia PDF Downloads 43731 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure
Authors: Q. Giraud, J. Gonçalvès, B. Paris
Abstract:
Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media
Procedia PDF Downloads 17530 Evaluation of Compatibility between Produced and Injected Waters and Identification of the Causes of Well Plugging in a Southern Tunisian Oilfield
Authors: Sonia Barbouchi, Meriem Samcha
Abstract:
Scale deposition during water injection into aquifer of oil reservoirs is a serious problem experienced in the oil production industry. One of the primary causes of scale formation and injection well plugging is mixing two waters which are incompatible. Considered individually, the waters may be quite stable at system conditions and present no scale problems. However, once they are mixed, reactions between ions dissolved in the individual waters may form insoluble products. The purpose of this study is to identify the causes of well plugging in a southern Tunisian oilfield, where fresh water has been injected into the producing wells to counteract the salinity of the formation waters and inhibit the deposition of halite. X-ray diffraction (XRD) mineralogical analysis has been carried out on scale samples collected from the blocked well. Two samples collected from both formation water and injected water were analysed using inductively coupled plasma atomic emission spectroscopy, ion chromatography and other standard laboratory techniques. The results of complete waters analysis were the typical input parameters, to determine scaling tendency. Saturation indices values related to CaCO3, CaSO4, BaSO4 and SrSO4 scales were calculated for the water mixtures at different share, under various conditions of temperature, using a computerized scale prediction model. The compatibility study results showed that mixing the two waters tends to increase the probability of barite deposition. XRD analysis confirmed the compatibility study results, since it proved that the analysed deposits consisted predominantly of barite with minor galena. At the studied temperatures conditions, the tendency for barite scale is significantly increasing with the increase of fresh water share in the mixture. The future scale inhibition and removal strategies to be implemented in the concerned oilfield are being derived in a large part from the results of the present study.Keywords: compatibility study, produced water, scaling, water injection
Procedia PDF Downloads 16929 Investigation of Produced and Ground Water Contamination of Al Wahat Area South-Eastern Part of Sirt Basin, Libya
Authors: Khalifa Abdunaser, Salem Eljawashi
Abstract:
Study area is threatened by numerous petroleum activities. The most important risk is associated with dramatic dangers of misuse and oil and gas pollutions, such as significant volumes of produced water, which refers to waste water generated during the production of oil and natural gas and disposed on the surface surrounded oil and gas fields. This work concerns the impact of oil exploration and production activities on the physical and environment fate of the area, focusing on the investigation and observation of crude oil migration as toxic fluid. Its penetration in groundwater resulted from the produced water impacted by oilfield operations disposed to the earth surface in Al Wahat area. Describing the areal distribution of the dominant groundwater quality constituents has been conducted to identify the major hydro-geochemical processes that affect the quality of water and to evaluate the relations between rock types and groundwater flow to the quality and geochemistry of water in Post-Eocene aquifer. The chemical and physical characteristics of produced water, where it is produced, and its potential impacts on the environment and on oil and gas operations have been discussed. Field work survey was conducted to identify and locate a large number of monitoring wells previously drilled throughout the study area. Groundwater samples were systematically collected in order to detect the fate of spills resulting from the various activities at the oil fields in the study area. Spatial distribution maps of the water quality parameters were built using Kriging methods of interpolation in ArcMap software. Thematic maps were generated using GIS and remote sensing techniques, which were applied to include all these data layers as an active database for the area for the purpose of identifying hot spots and prioritizing locations based on their environmental conditions as well as for monitoring plans.Keywords: Sirt Basin, produced water, Al Wahat area, Ground water
Procedia PDF Downloads 14328 A Review on Investigating the Relations between Water Harvesting and Water Conflicts
Authors: B. Laurita
Abstract:
The importance of Water Harvesting (WH) as an effective mean to deal with water scarcity is universally recognized. The collection and storage of rainwater, floodwater or quick runoff and their conversion to productive uses can ensure water availability for domestic and agricultural use, enabling a lower exploitation of the aquifer, preventing erosion events and providing significant ecosystem services. At the same time, it has been proven that it can reduce the insurgence of water conflicts if supported by a cooperative process of planning and management. On the other hand, the construction of water harvesting structures changes the hydrological regime, affecting upstream-downstream dynamics and changing water allocation, often causing contentions. Furthermore, dynamics existing between water harvesting and water conflict are not properly investigated yet. Thus, objective of this study is to analyze the relations between water harvesting and the insurgence of water conflicts, providing a solid theoretical basis and foundations for future studies. Two search engines were selected in order to perform the study: Google Scholar and Scopus. Separate researches were conducted on the mutual influences between water conflicts and the four main water harvesting techniques: rooftop harvesting, surface harvesting, underground harvesting, runoff harvesting. Some of the aforementioned water harvesting techniques have been developed and implemented on scales ranging from the small, household-sided ones, to gargantuan dam systems. Instead of focusing on the collisions related to large-scale systems, this review is aimed to look for and collect examples of the effects that the implementation of small water harvesting systems has had on the access to the water resource and on water governance. The present research allowed to highlight that in the studies that have been conducted up to now, water harvesting, and in particular those structures that allow the collection and storage of water for domestic use, is usually recognized as a positive, palliative element during contentions. On the other hand, water harvesting can worsen and, in some cases, even generate conflicts for water management. This shows the necessity of studies that consider both benefits and negative influences of water harvesting, analyzing its role respectively as triggering or as mitigating factor of conflicting situations.Keywords: arid areas, governance, water conflicts, water harvesting
Procedia PDF Downloads 20327 Using GIS and Map Data for the Analysis of the Relationship between Soil and Groundwater Quality at Saline Soil Area of Kham Sakaesaeng District, Nakhon Ratchasima, Thailand
Authors: W. Thongwat, B. Terakulsatit
Abstract:
The study area is Kham Sakaesaeng District in Nakhon Ratchasima Province, the south section of Northeastern Thailand, located in the Lower Khorat-Ubol Basin. This region is the one of saline soil area, located in a dry plateau and regularly experience standing with periods of floods and alternating with periods of drought. Especially, the drought in the summer season causes the major saline soil and saline water problems of this region. The general cause of dry land salting resulted from salting on irrigated land, and an excess of water leading to the rising water table in the aquifer. The purpose of this study is to determine the relationship of physical and chemical properties between the soil and groundwater. The soil and groundwater samples were collected in both rainy and summer seasons. The content of pH, electrical conductivity (EC), total dissolved solids (TDS), chloride and salinity were investigated. The experimental result of soil and groundwater samples show the slightly pH less than 7, EC (186 to 8,156 us/cm and 960 to 10,712 us/cm), TDS (93 to 3,940 ppm and 480 to 5,356 ppm), chloride content (45.58 to 4,177,015 mg/l and 227.90 to 9,216,736 mg/l), and salinity (0.07 to 4.82 ppt and 0.24 to 14.46 ppt) in the rainy and summer seasons, respectively. The distribution of chloride content and salinity content were interpolated and displayed as a map by using ArcMap 10.3 program, according to the season. The result of saline soil and brined groundwater in the study area were related to the low-lying topography, drought area, and salt-source exposure. Especially, the Rock Salt Member of Maha Sarakham Formation was exposed or lies near the ground surface in this study area. During the rainy season, salt was eroded or weathered from the salt-source rock formation and transported by surface flow or leached into the groundwater. In the dry season, the ground surface is dry enough resulting salt precipitates from the brined surface water or rises from the brined groundwater influencing the increasing content of chloride and salinity in the ground surface and groundwater.Keywords: environmental geology, soil salinity, geochemistry, groundwater hydrology
Procedia PDF Downloads 12026 Analysis of Aquifer Productivity in the Mbouda Area (West Cameroon)
Authors: Folong Tchoffo Marlyse Fabiola, Anaba Onana Achille Basile
Abstract:
Located in the western region of Cameroon, in the BAMBOUTOS department, the city of Mbouda belongs to the Pan-African basement. The water resources exploited in this region consist of surface water and groundwater from weathered and fractured aquifers within the same basement. To study the factors determining the productivity of aquifers in the Mbouda area, we adopted a methodology based on collecting data from boreholes drilled in the region, identifying different types of rocks, analyzing structures, and conducting geophysical surveys in the field. The results obtained allowed us to distinguish two main types of rocks: metamorphic rocks composed of amphibolites and migmatitic gneisses and igneous rocks, namely granodiorites and granites. Several types of structures were also observed, including planar structures (foliation and schistosity), folded structures (folds), and brittle structures (fractures and lineaments). A structural synthesis combines all these elements into three major phases of deformation. Phase D1 is characterized by foliation and schistosity, phase D2 is marked by shear planes and phase D3 is characterized by open and sealed fractures. The analysis of structures (fractures in outcrops, Landsat lineaments, subsurface structures) shows a predominance of ENE-WSW and WNW-ESE directions. Through electrical surveys and borehole data, we were able to identify the sequence of different geological formations. Four geo-electric layers were identified, each with a different electrical conductivity: conductive, semi-resistive, or resistive. The last conductive layer is considered a potentially aquiferous zone. The flow rates of the boreholes ranged from 2.6 to 12 m3/h, classified as moderate to high according to the CIEH classification. The boreholes were mainly located in basalts, which are mineralogically rich in ferromagnesian minerals. This mineral composition contributes to their high productivity as they are more likely to be weathered. The boreholes were positioned along linear structures or at their intersections.Keywords: Mbouda, Pan-African basement, productivity, west-Cameroon
Procedia PDF Downloads 6325 Groundwater Geophysical Studies in the Developed and Sub-Urban BBMP Area, Bangalore, Karnataka, South India
Authors: G. Venkatesha, Urs Samarth, H. K. Ramaraju, Arun Kumar Sharma
Abstract:
The projection for Groundwater states that the total domestic water demand for greater Bangalore would increase from 1,170 MLD in 2010 to 1,336 MLD in 2016. Dependence on groundwater is ever increasing due to rapid Industrialization & Urbanization. It is estimated that almost 40% of the population of Bangalore is dependent on groundwater. Due to the unscientific disposal of domestic and industrial waste generated, groundwater is getting highly polluted in the city. The scale of this impact will depend mainly upon the water-service infrastructure, the superficial geology and the regional setting. The quality of ground water is equally important as that of quantity. Jointed and fractured granites and gneisses constitute the major aquifer system of BBMP area. Two new observatory Borewells were drilled and lithology report has been prepared. Petrographic Analysis (XRD/XRF) and Water quality Analysis were carried out as per the standard methods. Petrographic samples were analysed by collecting chip of rock from the borewell for every 20ft depth, most of the samples were similar and samples were identified as Biotite-Gneiss, Schistose Amphibolite. Water quality analysis was carried out for individual chemical parameters for two borewells drilled. 1st Borewell struck water at 150ft (Total depth-200ft) & 2nd struck at 740ft (Total depth-960ft). 5 water samples were collected till end of depth in each borewell. Chemical parameter values such as, Total Hardness (360-348, 280-320) mg/ltr, Nitrate (12.24-13.5, 45-48) mg/ltr, Chloride (104-90, 70-70)mg/ltr, Fe (0.75-0.09, 1.288-0.312)mg/ltr etc. are calculated respectively. Water samples were analysed from various parts of BBMP covering 750 sq kms, also thematic maps (IDW method) of water quality is generated for these samples for Post-Monsoon season. The study aims to explore the sub-surface Lithological layers and the thickness of weathered zone, which indirectly helps to know the Groundwater pollution source near surface water bodies, dug wells, etc. The above data are interpreted for future ground water resources planning and management.Keywords: lithology, petrographic, pollution, urbanization
Procedia PDF Downloads 29324 Field Study of Chlorinated Aliphatic Hydrocarbons Degradation in Contaminated Groundwater via Micron Zero-Valent Iron Coupled with Biostimulation
Authors: Naijin Wu, Peizhong Li, Haijian Wang, Wenxia Wei, Yun Song
Abstract:
Chlorinated aliphatic hydrocarbons (CAHs) pollution poses a severe threat to human health and is persistent in groundwater. Although chemical reduction or bioremediation is effective, it is still hard to achieve their complete and rapid dechlorination. Recently, the combination of zero-valent iron and biostimulation has been considered to be one of the most promising strategies, but field studies of this technology are scarce. In a typical site contaminated by various types of CAHs, basic physicochemical parameters of groundwater, CAHs and their product concentrations, and microbial abundance and diversity were monitored after a remediation slurry containing both micron zero-valent iron (mZVI) and biostimulation components were directly injected into the aquifer. Results showed that groundwater could form and keep low oxidation-reduction potential (ORP), a neutral pH, and anoxic conditions after different degrees of fluctuations, which was benefit for the reductive dechlorination of CAHs. The injection also caused an obvious increase in the total organic carbon (TOC) concentration and sulfate reduction. After 253 days post-injection, the mean concentration of total chlorinated ethylene (CEE) from two monitoring wells decreased from 304 μg/L to 8 μg/L, and total chlorinated ethane (CEA) decreased from 548 μg/L to 108 μg/L. Occurrence of chloroethane (CA) suggested that hydrogenolysis dechlorination was one of the main degradation pathways for CEA, and also hints that biological dechlorination was activated. A significant increase of ethylene at day 67 post-injection indicated that dechlorination was complete. Additionally, the total bacterial counts increased by 2-3 orders of magnitude after 253 days post-injection. And the microbial species richness decreased and gradually changed to anaerobic/fermentative bacteria. The relative abundance of potential degradation bacteria increased corresponding to the degradation of CAHs. This work demonstrates that mZVI and biostimulation can be combined to achieve the efficient removal of various CAHs from contaminated groundwater sources.Keywords: chlorinated aliphatic hydrocarbons, groundwater, field study, zero-valent iron, biostimulation
Procedia PDF Downloads 16823 Transient Freshwater-Saltwater Transition-Zone Dynamics in Heterogeneous Coastal Aquifers
Authors: Antoifi Abdoulhalik, Ashraf Ahmed
Abstract:
The ever growing threat of saltwater intrusion has prompted the need to further advance the understanding of underlying processes related to SWI for effective water resource management. While research efforts have mainly been focused on steady state analysis, studies on the transience of saltwater intrusion mechanism remain very scarce and studies considering transient SWI in heterogeneous medium are, as per our knowledge, simply inexistent. This study provides for the first time a quantitative analysis of the effect of both inland and coastal water level changes on the transition zone under transient conditions in layered coastal aquifer. In all, two sets of four experiments were completed, including a homogeneous case, and four layered cases: case LH and case HL presented were two bi-layered scenarios where a low K layer was set at the top and the bottom, respectively; case HLH and case LHL presented two stratified aquifers with High K–Low K–High K and Low K–High K– Low K pattern, respectively. Experimental automated image analysis technique was used here to quantify the main SWI parameters under high spatial and temporal resolution. The findings of this study provide an invaluable insight on the underlying processes responsible of transition zone dynamics in coastal aquifers. The results show that in all the investigated cases, the width of the transition zone remains almost unchanged throughout the saltwater intrusion process regardless of where the boundary change occurs. However, the results demonstrate that the width of the transition zone considerably increases during the retreat, with largest amplitude observed in cases LH and LHL, where a low K was set at the top of the system. In all the scenarios, the amplitude of widening was slightly smaller when the retreat was prompted by instantaneous drop of the saltwater level than when caused by inland freshwater rise, despite equivalent absolute head change magnitude. The magnitude of head change significantly caused larger widening during the saltwater wedge retreat, while having no impact during the intrusion phase.Keywords: freshwater-saltwater transition-zone dynamics, heterogeneous coastal aquifers, laboratory experiments, transience seawater intrusion
Procedia PDF Downloads 24122 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar
Authors: H. Aljabiry, L. Bailey, S. Young
Abstract:
Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands
Procedia PDF Downloads 13521 Efficient Treatment of Azo Dye Wastewater with Simultaneous Energy Generation by Microbial Fuel Cell
Authors: Soumyadeep Bhaduri, Rahul Ghosh, Rahul Shukla, Manaswini Behera
Abstract:
The textile industry consumes a substantial amount of water throughout the processing and production of textile fabrics. The water eventually turns into wastewater, where it acts as an immense damaging nuisance due to its dye content. Wastewater streams contain a percentage ranging from 2.0% to 50.0% of the total weight of dye used, depending on the dye class. The management of dye effluent in textile industries presents a formidable challenge to global sustainability. The current focus is on implementing wastewater treatment technology that enable the recycling of wastewater, reduce energy usage and offset carbon emissions. Microbial fuel cell (MFC) is a device that utilizes microorganisms as a bio-catalyst to effectively treat wastewater while also producing electricity. The MFC harnesses the chemical energy present in wastewater by oxidizing organic compounds in the anodic chamber and reducing an electron acceptor in the cathodic chamber, thereby generating electricity. This research investigates the potential of MFCs to tackle this challenge of azo dye removal with simultaneously generating electricity. Although MFCs are well-established for wastewater treatment, their application in dye decolorization with concurrent electricity generation remains relatively unexplored. This study aims to address this gap by assessing the effectiveness of MFCs as a sustainable solution for treating wastewater containing azo dyes. By harnessing microorganisms as biocatalysts, MFCs offer a promising avenue for environmentally friendly dye effluent management. The performance of MFCs in treating azo dyes and generating electricity was evaluated by optimizing the Chemical Oxygen Demand (COD) and Hydraulic Retention Time (HRT) of influent. COD and HRT values ranged from 1600 mg/L to 2400 mg/L and 5 to 9 days, respectively. Results showed that the maximum open circuit voltage (OCV) reached 648 mV at a COD of 2400 mg/L and HRT of 5 days. Additionally, maximum COD removal of 98% and maximum color removal of 98.91% were achieved at a COD of 1600 mg/L and HRT of 9 days. Furthermore, the study observed a maximum power density of 19.95 W/m3 at a COD of 2400 mg/L and HRT of 5 days. Electrochemical analysis, including linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were done to find out the response current and internal resistance of the system. To optimize pH and dye concentration, pH values were varied from 4 to 10, and dye concentrations ranged from 25 mg/L to 175 mg/L. The highest voltage output of 704 mV was recorded at pH 7, while a dye concentration of 100 mg/L yielded the maximum output of 672 mV. This study demonstrates that MFCs offer an efficient and sustainable solution for treating azo dyes in textile industry wastewater, while concurrently generating electricity. These findings suggest the potential of MFCs to contribute to environmental remediation and sustainable development efforts on a global scale.Keywords: textile wastewater treatment, microbial fuel cell, renewable energy, sustainable wastewater treatment
Procedia PDF Downloads 2320 Ant-Tracking Attribute: A Model for Understanding Production Response
Authors: Prince Suka Neekia Momta, Rita Iheoma Achonyeulo
Abstract:
Ant Tracking seismic attribute applied over 4-seconds seismic volume revealed structural features triggered by clay diapirism, growth fault development, rapid deltaic sedimentation and intense drilling. The attribute was extracted on vertical seismic sections and time slices. Mega tectonic structures such as growth faults and clay diapirs are visible on vertical sections with obscured minor lineaments or fractures. Fractures are distinctively visible on time slices yielding recognizable patterns corroborating established geologic models. This model seismic attribute enabled the understanding of fluid flow characteristics and production responses. Three structural patterns recognized in the field include: major growth faults, minor faults or lineaments and network of fractures. Three growth faults mapped on seismic section form major deformation bands delimiting the area into three blocks or depocenters. The growth faults trend E-W, dip down-to-south in the basin direction, and cut across the study area. The faults initiating from about 2000ms extended up to 500ms, and tend to progress parallel and opposite to the growth direction of an upsurging diapiric structure. The diapiric structures form the major deformational bands originating from great depths (below 2000ms) and rising to about 1200ms where series of sedimentary layers onlapped and pinchout stratigraphically against the diapir. Several other secondary faults or lineaments that form parallel streaks to one another also accompanied the growth faults. The fracture networks have no particular trend but form a network surrounding the well area. Faults identified in the study area have potentials for structural hydrocarbon traps whereas the presence of fractures created a fractured-reservoir condition that enhanced rapid fluid flow especially water. High aquifer flow potential aided by possible fracture permeability resulted in rapid decline in oil rate. Through the application of Ant Tracking attribute, it is possible to obtain detailed interpretation of structures that can have direct influence on oil and gas production.Keywords: seismic, attributes, production, structural
Procedia PDF Downloads 7419 Activated Carbon Content Influence in Mineral Barrier Performance
Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho
Abstract:
Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.Keywords: activated carbon, clayey soils, permeability, surface area
Procedia PDF Downloads 25718 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data
Authors: Andrea Ghermandi
Abstract:
Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds
Procedia PDF Downloads 18117 Delimitation of the Perimeters of PR Otection of the Wellfield in the City of Adrar, Sahara of Algeria through the Used Wyssling’s Method
Authors: Ferhati Ahmed, Fillali Ahmed, Oulhadj Younsi
Abstract:
delimitation of the perimeters of protection in the catchment area of the city of Adrar, which are established around the sites for the collection of water intended for human consumption of drinking water, with the objective of ensuring the preservation and reducing the risks of point and accidental pollution of the resource (Continental Intercalar groundwater of the Northern Sahara of Algeria). This wellfield is located in the northeast of the city of Adrar, it covers an area of 132.56 km2 with 21 Drinking Water Supply wells (DWS), pumping a total flow of approximately 13 Hm3/year. The choice of this wellfield is based on the favorable hydrodynamic characteristics and their location in relation to the agglomeration. The vulnerability to pollution of this slick is very high because the slick is free and suffers from the absence of a protective layer. In recent years, several factors have been introduced around the field that can affect the quality of this precious resource, including the presence of a strong centre for domestic waste and agricultural and industrial activities. Thus, its sustainability requires the implementation of protection perimeters. The objective of this study is to set up three protection perimeters: immediate, close and remote. The application of the Wyssling method makes it possible to calculate the transfer time (t) of a drop of groundwater located at any point in the aquifer up to the abstraction and thus to define isochrones which in turn delimit each type of perimeter, 40 days for the nearer and 100 days for the farther away. Special restrictions are imposed for all activities depending on the distance of the catchment. The application of this method to the Adrar city catchment field showed that the close and remote protection perimeters successively occupy areas of 51.14 km2 and 92.9 km2. Perimeters are delimited by geolocated markers, 40 and 46 markers successively. These results show that the areas defined as "near protection perimeter" are free from activities likely to present a risk to the quality of the water used. On the other hand, on the areas defined as "remote protection perimeter," there is some agricultural and industrial activities that may present an imminent risk. A rigorous control of these activities and the restriction of the type of products applied in industrial and agricultural is imperative.Keywords: continental intercalaire, drinking water supply, groundwater, perimeter of protection, wyssling method
Procedia PDF Downloads 9716 Satellite Interferometric Investigations of Subsidence Events Associated with Groundwater Extraction in Sao Paulo, Brazil
Authors: B. Mendonça, D. Sandwell
Abstract:
The Metropolitan Region of Sao Paulo (MRSP) has suffered from serious water scarcity. Consequently, the most convenient solution has been building wells to extract groundwater from local aquifers. However, it requires constant vigilance to prevent over extraction and future events that can pose serious threat to the population, such as subsidence. Radar imaging techniques (InSAR) have allowed continuous investigation of such phenomena. The analysis of data in the present study consists of 23 SAR images dated from October 2007 to March 2011, obtained by the ALOS-1 spacecraft. Data processing was made with the software GMTSAR, by using the InSAR technique to create pairs of interferograms with ground displacement during different time spans. First results show a correlation between the location of 102 wells registered in 2009 and signals of ground displacement equal or lower than -90 millimeters (mm) in the region. The longest time span interferogram obtained dates from October 2007 to March 2010. As a result, from that interferogram, it was possible to detect the average velocity of displacement in millimeters per year (mm/y), and which areas strong signals have persisted in the MRSP. Four specific areas with signals of subsidence of 28 mm/y to 40 mm/y were chosen to investigate the phenomenon: Guarulhos (Sao Paulo International Airport), the Greater Sao Paulo, Itaquera and Sao Caetano do Sul. The coverage area of the signals was between 0.6 km and 1.65 km of length. All areas are located above a sedimentary type of aquifer. Itaquera and Sao Caetano do Sul showed signals varying from 28 mm/y to 32 mm/y. On the other hand, the places most likely to be suffering from stronger subsidence are the ones in the Greater Sao Paulo and Guarulhos, right beside the International Airport of Sao Paulo. The rate of displacement observed in both regions goes from 35 mm/y to 40 mm/y. Previous investigations of the water use at the International Airport highlight the risks of excessive water extraction that was being done through 9 deep wells. Therefore, it is affirmed that subsidence events are likely to occur and to cause serious damage in the area. This study could show a situation that has not been explored with proper importance in the city, given its social and economic consequences. Since the data were only available until 2011, the question that remains is if the situation still persists. It could be reaffirmed, however, a scenario of risk at the International Airport of Sao Paulo that needs further investigation.Keywords: ground subsidence, Interferometric Satellite Aperture Radar (InSAR), metropolitan region of Sao Paulo, water extraction
Procedia PDF Downloads 35515 Identification of Suitable Sites for Rainwater Harvesting in Salt Water Intruded Area by Using Geospatial Techniques in Jafrabad, Amreli District, India
Authors: Pandurang Balwant, Ashutosh Mishra, Jyothi V., Abhay Soni, Padmakar C., Rafat Quamar, Ramesh J.
Abstract:
The sea water intrusion in the coastal aquifers has become one of the major environmental concerns. Although, it is a natural phenomenon but, it can be induced with anthropogenic activities like excessive exploitation of groundwater, seacoast mining, etc. The geological and hydrogeological conditions including groundwater heads and groundwater pumping pattern in the coastal areas also influence the magnitude of seawater intrusion. However, this problem can be remediated by taking some preventive measures like rainwater harvesting and artificial recharge. The present study is an attempt to identify suitable sites for rainwater harvesting in salt intrusion affected area near coastal aquifer of Jafrabad town, Amreli district, Gujrat, India. The physico-chemical water quality results show that out of 25 groundwater samples collected from the study area most of samples were found to contain high concentration of Total Dissolved Solids (TDS) with major fractions of Na and Cl ions. The Cl/HCO3 ratio was also found greater than 1 which indicates the salt water contamination in the study area. The geophysical survey was conducted at nine sites within the study area to explore the extent of contamination of sea water. From the inverted resistivity sections, low resistivity zone (<3 Ohm m) associated with seawater contamination were demarcated in North block pit and south block pit of NCJW mines, Mitiyala village Lotpur and Lunsapur village at the depth of 33 m, 12 m, 40 m, 37 m, 24 m respectively. Geospatial techniques in combination of Analytical Hierarchy Process (AHP) considering hydrogeological factors, geographical features, drainage pattern, water quality and geophysical results for the study area were exploited to identify potential zones for the Rainwater Harvesting. Rainwater harvesting suitability model was developed in ArcGIS 10.1 software and Rainwater harvesting suitability map for the study area was generated. AHP in combination of the weighted overlay analysis is an appropriate method to identify rainwater harvesting potential zones. The suitability map can be further utilized as a guidance map for the development of rainwater harvesting infrastructures in the study area for either artificial groundwater recharge facilities or for direct use of harvested rainwater.Keywords: analytical hierarchy process, groundwater quality, rainwater harvesting, seawater intrusion
Procedia PDF Downloads 17514 An Overview of PFAS Treatment Technologies with an In-Depth Analysis of Two Case Studies
Authors: Arul Ayyaswami, Vidhya Ramalingam
Abstract:
Per- and polyfluoroalkyl substances (PFAS) have emerged as a significant environmental concern due to their ubiquity and persistence in the environment. Their chemical characteristics and adverse effects on human health demands more effective and sustainable solutions in remediation of the PFAS. The work presented here encompasses an overview of treatment technologies with two case studies that utilize effective approaches in addressing PFAS contaminated media. Currently the options for treatment of PFAS compounds include Activated carbon adsorption, Ion Exchange, Membrane Filtration, Advanced oxidation processes, Electrochemical treatment, and Precipitation and Coagulation. In the first case study, a pilot study application of colloidal activated carbon (CAC) was completed to address PFAS from aqueous film-forming foam (AFFF) used to extinguish a large fire. The pilot study was used to demonstrate the effectiveness of a CAC in situ permeable reactive barrier (PRB) in effectively stopping the migration of PFOS and PFOA, moving from the source area at high concentrations. Before the CAC PRB installation, an injection test using - fluorescein dye was conducted to determine the primary fracture-induced groundwater flow pathways. A straddle packer injection delivery system was used to isolate discrete intervals and gain resolution over the 70 feet saturated zone targeted for treatment. Flow rates were adjusted, and aquifer responses were recorded for each interval. The results from the injection test were used to design the pilot test injection plan using CAC PRB. Following the CAC PRB application, the combined initial concentration 91,400 ng/L of PFOS and PFOA were reduced to approximately 70 ng/L (99.9% reduction), after only one month following the injection event. The results demonstrate the remedy's effectiveness to quickly and safely contain high concentrations of PFAS in fractured bedrock, reducing the risk to downgradient receptors. The second study involves developing a reductive defluorination treatment process using UV and electron acceptor. This experiment indicates a significant potential in treatment of PFAS contaminated waste media such as landfill leachates. The technology also shows a promising way of tacking these contaminants without the need for secondary waste disposal or any additional pre-treatments.Keywords: per- and polyfluoroalkyl substances (PFAS), colloidal activated carbon (CAC), destructive PFAS treatment technology, aqueous film-forming foam (AFFF)
Procedia PDF Downloads 6113 The Ideal for Building Reservior Under the Ground in Mekong Delta in Vietnam
Authors: Huu Hue Van
Abstract:
The Mekong Delta is the region in southwestern Vietnam where the Mekong River approaches and flow into the sea through a network of distributaries. The Climate Change Research Institute at University of Can Tho, in studying the possible consequences of climate change, has predicted that, many provinces in the Mekong Delta will be flooded by the year 2030. The Mekong Delta lacks fresh water in the dry season. Being served for daily life, industry and agriculture in the dry season, the water is mainly taken from layers of soil contained water under the ground (aquifers) depleted water; the water level in aquifers have decreased. Previously, the Mekong Delta can withstand two bad scenarios in the future: 1) The Mekong Delta will be submerged into the sea again: Due to subsidence of the ground (over-exploitation of groundwater), subsidence of constructions because of the low groundwater level (10 years ago, some of constructions were built on the foundation of Melaleuca poles planted in Mekong Delta, Melaleuca poles have to stay in saturated soil layer fully, if not, they decay easyly; due to the top of Melaleuca poles are higher than the groundwater level, the top of Melaleuca poles will decay and cause subsidence); erosion the river banks (because of the hydroelectric dams in the upstream of the Mekong River is blocking the flow, reducing the concentration of suspended substances in the flow caused erosion the river banks) and the delta will be flooded because of sea level rise (climate change). 2) The Mekong Delta will be deserted: People will migrate to other places to make a living because of no planting due to alum capillary (In Mekong Delta, there is a layer of alum soil under the ground, the elevation of groundwater level is lower than the the elevation of layer of alum soil, alum will be capillary to the arable soil layer); there is no fresh water for cultivation and daily life (because of saline intrusion and groundwater depletion in the aquifers below). Mekong Delta currently has about seven aquifers below with a total depth about 500 m. The water mainly has exploited in the middle - upper Pleistocene aquifer (qp2-3). The major cause of two bad scenarios in the future is over-exploitation of water in aquifers. Therefore, studying and building water reservoirs in seven aquifers will solve many pressing problems such as preventing subsidence, providing water for the whole delta, especially in coastal provinces, favorable to nature, saving land ( if we build the water lake on the surface of the delta, we will need a lot of land), pollution limitation (because when building some hydraulic structures for preventing the salt instrutions and for storing water in the lake on the surface, we cause polluted in the lake)..., It is necessary to build a reservoir under the ground in aquifers in the Mekong Delta. The super-sized reservoir will contribute to the existence and development of the Mekong Delta.Keywords: aquifers, aquifers storage, groundwater, land subsidence, underground reservoir
Procedia PDF Downloads 8612 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants
Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst
Abstract:
Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles
Procedia PDF Downloads 19011 Optimal Uses of Rainwater to Maintain Water Level in Gomti Nagar, Uttar Pradesh, India
Authors: Alok Saini, Rajkumar Ghosh
Abstract:
Water is nature's important resource for survival of all living things, but freshwater scarcity exists in some parts of world. This study has predicted that Gomti Nagar area (49.2 sq. km.) will harvest about 91110 ML of rainwater till 2051 (assuming constant and present annual rainfall). But 17.71 ML of rainwater was harvested from only 53 buildings in Gomti Nagar area in the year 2021. Water level will be increased (rise) by 13 cm in Gomti Nagar from such groundwater recharge. The total annual groundwater abstraction from Gomti Nagar area was 35332 ML (in 2021). Due to hydrogeological constraints and lower annual rainfall, groundwater recharge is less than groundwater abstraction. The recent scenario is only 0.07% of rainwater recharges by RTRWHs in Gomti Nagar. But if RTRWHs would be installed in all buildings then 12.39% of rainwater could recharge groundwater table in Gomti Nagar area. But if RTRWHs would be installed in all buildings then 12.39% of rainwater could recharge groundwater table in Gomti Nagar area. Gomti Nagar is situated in 'Zone–A' (water distribution area) and groundwater is the primary source of freshwater supply. Current scenario indicates only 0.07% of rainwater recharges by RTRWHs in Gomti Nagar. In Gomti Nagar, the difference between groundwater abstraction and recharge will be 735570 ML in 30 yrs. Statistically, all buildings at Gomti Nagar (new and renovated) could harvest 3037 ML of rainwater through RTRWHs annually. The most recent monsoonal recharge in Gomti Nagar was 10813 ML/yr. Harvested rainwater collected from RTRWHs can be used for rooftop irrigation, and residential kitchen and gardens (home grown fruit and vegetables). According to bylaws, RTRWH installations are required in both newly constructed and existing buildings plot areas of 300 sq. m or above. Harvested rainwater is of higher quality than contaminated groundwater. Harvested rainwater from RTRWHs can be considered water self-sufficient. Rooftop Rainwater Harvesting Systems (RTRWHs) are least expensive, eco-friendly, most sustainable, and alternative water resource for artificial recharge. This study also predicts about 3.9 m of water level rise in Gomti Nagar area till 2051, only when all buildings will install RTRWHs and harvest for groundwater recharging. As a result, this current study responds to an impact assessment study of RTRWHs implementation for the water scarcity problem in the Gomti Nagar area (1.36 sq.km.). This study suggests that common storage tanks (recharge wells) should be built for a group of at least ten (10) households and optimal amount of harvested rainwater will be stored annually. Artificial recharge from alternative water sources will be required to improve the declining water level trend and balance the groundwater table in this area. This over-exploitation of groundwater may lead to land subsidence, and development of vertical cracks.Keywords: aquifer, aquitard, artificial recharge, bylaws, groundwater, monsoon, rainfall, rooftop rainwater harvesting system, RTRWHs water table, water level
Procedia PDF Downloads 10010 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging
Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui
Abstract:
Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture
Procedia PDF Downloads 3299 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms
Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli
Abstract:
Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning
Procedia PDF Downloads 748 Modelling of Groundwater Resources for Al-Najaf City, Iraq
Authors: Hayder H. Kareem, Shunqi Pan
Abstract:
Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City.Keywords: Al-Najaf city, conceptual modelling, groundwater, unconfined aquifer, visual MODFLOW
Procedia PDF Downloads 2137 Comparative Assessment of Rainwater Management Alternatives for Dhaka City: Case Study of North South University
Authors: S. M. Islam, Wasi Uddin, Nazmun Nahar
Abstract:
Dhaka, the capital of Bangladesh, faces two contrasting problems; excess of water during monsoon season and scarcity of water during dry season. The first problem occurs due to rapid urbanization and mismanagement of rainwater whereas the second problem is related to climate change and increasing urban population. Inadequate drainage system also worsens the overall water management scenario in Dhaka city. Dhaka has a population density of 115,000 people per square miles. This results in a 2.5 billion liter water demand every day, 87% of which is fulfilled by groundwater. Over dependency on groundwater has resulted in more than 200 feet drop in the last 50 years and continues to decline at a rate of 9 feet per year. Considering the gravity of the problem, it is high time that practitioners, academicians and policymakers consider different water management practices and look into their cumulative impacts at different scales. The present study assesses different rainwater management options for North South University of Bangladesh and recommends the most feasible and sustainable rainwater management measure. North South University currently accommodates over 20,000 students, faculty members, and administrative staffs. To fulfill the water demand, there are two deep tube wells, which bring up approximately 150,000 liter of water every hour. The annual water demand is approximately 103 million liters. Dhaka receives approximately 1800 mm of rainfall every year. For the current study, two academic buildings and one administrative building consist of 4924 square meters of rooftop area was selected as catchment area. Both rainwater harvesting and groundwater recharge options were analyzed separately. It was estimated that by rainwater harvesting, annually a total of 7.2 million liters of water can be reused which is approximately 7% of the total annual water usage. In the monsoon, rainwater harvesting fulfills 12.2% of the monthly water demand. The approximate cost of the rainwater harvesting system is estimated to be 940975 bdt (USD 11500). For direct groundwater recharge, a system comprises of one de-siltation tank, two recharge tanks and one siltation tank were designed that requires approximately 532788 bdt (USD 6500). The payback period is approximately 7 years and 4 months for the groundwater recharge system whereas the payback period for rainwater harvesting option is approximately 12 years and 4 months. Based on the cost-benefit analysis, the present study finds the groundwater recharge system to be most suitable for North South University. The present study also demonstrates that if only one institution like North South University can add up a substantial amount of water to the aquifer, bringing other institutions in the network has the potential to create significant cumulative impact on replenishing the declining groundwater level of Dhaka city. As an additional benefit, it also prevents large amount of water being discharged into the storm sewers which results in severe flooding in Dhaka city during monsoon.Keywords: Dhaka, groundwater, harvesting, rainwater, recharge
Procedia PDF Downloads 1256 Contribution to the Understanding of the Hydrodynamic Behaviour of Aquifers of the Taoudéni Sedimentary Basin (South-eastern Part, Burkina Faso)
Authors: Kutangila Malundama Succes, Koita Mahamadou
Abstract:
In the context of climate change and demographic pressure, groundwater has emerged as an essential and strategic resource whose sustainability relies on good management. The accuracy and relevance of decisions made in managing these resources depend on the availability and quality of scientific information they must rely on. It is, therefore, more urgent to improve the state of knowledge on groundwater to ensure sustainable management. This study is conducted for the particular case of the aquifers of the transboundary sedimentary basin of Taoudéni in its Burkinabe part. Indeed, Burkina Faso (and the Sahel region in general), marked by low rainfall, has experienced episodes of severe drought, which have justified the use of groundwater as the primary source of water supply. This study aims to improve knowledge of the hydrogeology of this area to achieve sustainable management of transboundary groundwater resources. The methodological approach first described lithological units regarding the extension and succession of different layers. Secondly, the hydrodynamic behavior of these units was studied through the analysis of spatio-temporal variations of piezometric. The data consists of 692 static level measurement points and 8 observation wells located in the usual manner in the area and capturing five of the identified geological formations. Monthly piezometric level chronicles are available for each observation and cover the period from 1989 to 2020. The temporal analysis of piezometric, carried out in comparison with rainfall chronicles, revealed a general upward trend in piezometric levels throughout the basin. The reaction of the groundwater generally occurs with a delay of 1 to 2 months relative to the flow of the rainy season. Indeed, the peaks of the piezometric level generally occur between September and October in reaction to the rainfall peaks between July and August. Low groundwater levels are observed between May and July. This relatively slow reaction of the aquifer is observed in all wells. The influence of the geological nature through the structure and hydrodynamic properties of the layers was deduced. The spatial analysis reveals that piezometric contours vary between 166 and 633 m with a trend indicating flow that generally goes from southwest to northeast, with the feeding areas located towards the southwest and northwest. There is a quasi-concordance between the hydrogeological basins and the overlying hydrological basins, as well as a bimodal flow with a component following the topography and another significant component deeper, controlled by the regional gradient SW-NE. This latter component may present flows directed from the high reliefs towards the sources of Nasso. In the source area (Kou basin), the maximum average stock variation, calculated by the Water Table Fluctuation (WTF) method, varies between 35 and 48.70 mm per year for 2012-2014.Keywords: hydrodynamic behaviour, taoudeni basin, piezometry, water table fluctuation
Procedia PDF Downloads 655 Groundwater Contamination and Fluorosis: A Comprehensive Analysis
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay
Abstract:
Groundwater contamination with fluoride has emerged as a global concern affecting millions of people, leading to the widespread occurrence of fluorosis. It affects bones and teeth, leading to dental and skeletal fluorosis. This study presents a comprehensive analysis of the relationship between groundwater contamination and fluorosis. It delves into the causes of fluoride contamination in groundwater, its spatial distribution, and adverse health impacts of fluorosis on affected communities. Fluoride contamination in groundwater can be attributed to both natural and anthropogenic sources. Geogenic sources involve the dissolution of fluoride-rich minerals present in the aquifer materials. On the other hand, anthropogenic activities such as industrial discharges, agricultural practices, and improper disposal of fluoride-containing waste contribute to the contamination of groundwater. The spatial distribution of fluoride contamination varies widely across different regions and geological formations. High fluoride levels are commonly observed in areas with fluorine-rich geological deposits. Additionally, agricultural and industrial centres often exhibit elevated fluoride concentrations due to anthropogenic contributions. Excessive fluoride ingestion during tooth development leads to dental fluorosis, characterized by enamel defects, discoloration, and dental caries. The severity of dental fluorosis varies based on fluoride exposure levels during tooth development. Long-term consumption of fluoride-contaminated water causes skeletal fluorosis, resulting in bone and joint pain, decreased joint mobility, and skeletal deformities. In severe cases, skeletal fluorosis can lead to disability and reduced quality of life. Various defluoridation techniques such as activated alumina, bone char, and reverse osmosis have been employed to reduce fluoride concentrations in drinking water. These methods effectively remove fluoride, but their implementation requires careful consideration of cost, maintenance, and sustainability. Diversifying water sources, such as rainwater harvesting and surface water supply, can reduce the reliance on fluoride-contaminated groundwater, especially in regions with high fluoride concentrations. Groundwater contamination with fluoride remains a significant public health challenge, leading to the widespread occurrence of fluorosis globally. This scientific report emphasizes the importance of understanding the relationship between groundwater contamination and fluorosis. Implementing effective mitigation strategies and preventive measures is crucial to combat fluorosis and ensure sustainable access to safe drinking water for communities worldwide. Collaborative efforts between government agencies, local communities, and scientific researchers are essential to address this issue and safeguard the health of vulnerable populations. Additionally, the report explores various mitigation strategies and preventive measures to address the issue and offers recommendations for sustainable management of groundwater resources to combat fluorosis effectively.Keywords: fluorosis, fluoride contamination, groundwater contamination, groundwater resources
Procedia PDF Downloads 974 Extracellular Polymeric Substances Study in an MBR System for Fouling Control
Authors: Dimitra C. Banti, Gesthimani Liona, Petros Samaras, Manasis Mitrakas
Abstract:
Municipal and industrial wastewaters are often treated biologically, by the activated sludge process (ASP). The ASP not only requires large aeration and sedimentation tanks, but also generates large quantities of excess sludge. An alternative technology is the membrane bioreactor (MBR), which replaces two stages of the conventional ASP—clarification and settlement—with a single, integrated biotreatment and clarification step. The advantages offered by the MBR over conventional treatment include reduced footprint and sludge production through maintaining a high biomass concentration in the bioreactor. Notwithstanding these advantages, the widespread application of the MBR process is constrained by membrane fouling. Fouling leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary and resulting to increased operating costs. In general, membrane fouling results from the interaction between the membrane material and the components in the activated sludge liquor. The latter includes substrate components, cells, cell debris and microbial metabolites, such as Extracellular Polymeric Substances (EPS) and Sludge Microbial Products (SMPs). The challenge for effective MBR operation is to minimize the rate of Transmembrane Pressure (TMP) increase. This can be achieved by several ways, one of which is the addition of specific additives, that enhance the coagulation and flocculation of compounds, which are responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate. In this project the effectiveness of a non-commercial composite coagulant was studied as an agent for fouling control in a lab scale MBR system consisting in two aerated tanks. A flat sheet membrane module with 0.40 um pore size was submerged into the second tank. The system was fed by50 L/d of municipal wastewater collected from the effluent of the primary sedimentation basin. The TMP increase rate, which is directly related to fouling growth, was monitored by a PLC system. EPS, MLSS and MLVSS measurements were performed in samples of mixed liquor; in addition, influent and effluent samples were collected for the determination of physicochemical characteristics (COD, BOD5, NO3-N, NH4-N, Total N and PO4-P). The coagulant was added in concentrations 2, 5 and 10mg/L during a period of 2 weeks and the results were compared with the control system (without coagulant addition). EPS fractions were extracted by a three stages physical-thermal treatment allowing the identification of Soluble EPS (SEPS) or SMP, Loosely Bound EPS (LBEPS) and Tightly Bound EPS (TBEPS). Proteins and carbohydrates concentrations were measured in EPS fractions by the modified Lowry method and Dubois method, respectively. Addition of 2 mg/L coagulant concentration did not affect SEPS proteins in comparison with control process and their values varied between 32 to 38mg/g VSS. However a coagulant dosage of 5mg/L resulted in a slight increase of SEPS proteins at 35-40 mg/g VSS while 10mg/L coagulant further increased SEPS to 44-48mg/g VSS. Similar results were obtained for SEPS carbohydrates. Carbohydrates values without coagulant addition were similar to the corresponding values measured for 2mg/L coagulant; the addition of mg/L coagulant resulted to a slight increase of carbohydrates SEPS to 6-7mg/g VSS while a dose of 10 mg/L further increased carbohydrates content to 9-10mg/g VSS. Total LBEPS and TBEPS, consisted of proteins and carbohydrates of LBEPS and TBEPS respectively, presented similar variations by the addition of the coagulant. Total LBEPS at 2mg/L dose were almost equal to 17mg/g VSS, and their values increased to 22 and 29 mg/g VSS during the addition of 5 mg/L and 10 mg/L of coagulant respectively. Total TBEPS were almost 37 mg/g VSS at a coagulant dose of 2 mg/L and increased to 42 and 51 mg/g VSS at 5 mg/L and 10 mg/L doses, respectively. Therefore, it can be concluded that coagulant addition could potentially affect microorganisms activities, excreting EPS in greater amounts. Nevertheless, EPS increase, mainly SEPS increase, resulted to a higher membrane fouling rate, as justified by the corresponding TMP increase rate. However, the addition of the coagulant, although affected the EPS content in the reactor mixed liquor, did not change the filtration process: an effluent of high quality was produced, with COD values as low as 20-30 mg/L.Keywords: extracellular polymeric substances, MBR, membrane fouling, EPS
Procedia PDF Downloads 2683 Geochemistry and Tectonic Framework of Malani Igneous Suite and Their Effect on Groundwater Quality of Tosham, India
Authors: Naresh Kumar, Savita Kumari, Naresh Kochhar
Abstract:
The objective of the study was to assess the role of mineralogy and subsurface structure on water quality of Tosham, Malani Igneous Suite (MIS), Western Rajasthan, India. MIS is the largest (55,000 km2) A-type, anorogenic and high heat producing acid magmatism in the peninsular India and owes its origin to hot spot tectonics. Apart from agricultural and industrial wastes, geogenic activities cause fluctuations in quality parameters of water resources. Twenty water samples (20) selected from Tosham and surrounding areas were analyzed for As, Pb, B, Al, Zn, Fe, Ni using Inductive coupled plasma emission and F by Ion Chromatography. The concentration of As, Pb, B, Ni and F was above the stipulated level specified by BIS (Bureau of Indian Standards IS-10500, 2012). The concentration of As and Pb in surrounding areas of Tosham ranged from 1.2 to 4.1 mg/l and from 0.59 to 0.9 mg/l respectively which is higher than limits of 0.05mg/l (As) and 0.01 mg/l (Pb). Excess trace metal accumulation in water is toxic to humans and adversely affects the central nervous system, kidneys, gastrointestinal tract, skin and cause mental confusion. Groundwater quality is defined by nature of rock formation, mineral water reaction, physiography, soils, environment, recharge and discharge conditions of the area. Fluoride content in groundwater is due to the solubility of fluoride-bearing minerals like fluorite, cryolite, topaz, and mica, etc. Tosham is comprised of quartz mica schist, quartzite, schorl, tuff, quartz porphyry and associated granites, thus, fluoride is leached out and dissolved in groundwater. In the study area, Ni concentration ranged from 0.07 to 0.5 mg/l (permissible limit 0.02 mg/l). The primary source of nickel in drinking water is leached out nickel from ore-bearing rocks. Higher concentration of As is found in some igneous rocks specifically containing minerals as arsenopyrite (AsFeS), realgar (AsS) and orpiment (As2S3). MIS consists of granite (hypersolvus and subsolvus), rhyolite, dacite, trachyte, andesite, pyroclasts, basalt, gabbro and dolerite which increased the trace elements concentration in groundwater. Nakora, a part of MIS rocks has high concentration of trace and rare earth elements (Ni, Rb, Pb, Sr, Y, Zr, Th, U, La, Ce, Nd, Eu and Yb) which percolates the Ni and Pb to groundwater by weathering, contacts and joints/fractures in rocks. Additionally, geological setting of MIS also causes dissolution of trace elements in water resources beneath the surface. NE–SW tectonic lineament, radial pattern of dykes and volcanic vent at Nakora created a way for leaching of these elements to groundwater. Rain water quality might be altered by major minerals constituents of host Tosham rocks during its percolation through the rock fracture, joints before becoming the integral part of groundwater aquifer. The weathering process like hydration, hydrolysis and solution might be the cause of change in water chemistry of particular area. These studies suggest that geological relation of soil-water horizon with MIS rocks via mineralogical variations, structures and tectonic setting affects the water quality of the studied area.Keywords: geochemistry, groundwater, malani igneous suite, tosham
Procedia PDF Downloads 219