Search results for: green hydrogen
2815 A Failure Investigations of High-Temperature Hydrogen Attack at Plat Forming Unit Furnace Elbow
Authors: Altoumi Alndalusi
Abstract:
High-temperature hydrogen attack (HTHA) failure is the common phenomena at elevated temperature in hydrogen environment in oil and gas field. The failure occurred once after four years at the internal surface of Platforming elbow. Both visual and microscopic examinations revealed that the failure was initiated due to blistering forming followed by large cracking at the inner surface. Crack morphology showed that the crack depth was about 50% of material wall thickness and its behavior generally was intergranular. This study concluded that the main reason led to failure due to incorrect material selection comparing to the platforming conditions.Keywords: decarburization, failure, heat affected zone, morphology, partial pressure, plate form
Procedia PDF Downloads 1552814 Optimization of Strategies and Models Review for Optimal Technologies-Based on Fuzzy Schemes for Green Architecture
Authors: Ghada Elshafei, A. Elazim Negm
Abstract:
Recently, Green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives are green buildings should be designed to minimize the overall impact of the built environment on ecosystems in general and particularly on human health and on the natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state of art review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.Keywords: green architecture/building, technologies, optimization, strategies, fuzzy techniques, models
Procedia PDF Downloads 4752813 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment
Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji
Abstract:
Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems
Procedia PDF Downloads 942812 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling
Authors: C. Trapp, A. Vijay, M. Khorasani
Abstract:
Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP
Procedia PDF Downloads 1832811 Activated Carbons Prepared from Date Pits for Hydrogen Storage
Authors: M. Belhachemi, M. Monteiro de Castro, M. Casco, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso
Abstract:
In this study, activated carbons were prepared from Algerian date pits using thermal activation with CO2 or steam. The prepared activated carbons were doped by vanadium oxide in order to increase the H2 adsorption capacity. The adsorbents were characterized by N2 and CO2 adsorption at 77 K and 273K, respectively. The hydrogen adsorption experiments were carried at 298K in the 0–100 bar pressure range using a volumetric equipment. The results show that the H2 adsorption capacity is influenced by the size and volume of micropores in the activated carbon adsorbent. Furthermore, vanadium doping of activated carbons has a slight positive effect on H2 storage.Keywords: hydrogen storage, activated carbon, vanadium doping, adsorption
Procedia PDF Downloads 5702810 Sustainable Human Resource Management in the Hotel Industry: Assessing the Mediating Effect of Physiological Climate on Employee Performance
Authors: Mohammad Salameh Almasarweh
Abstract:
The primary aim of this research is to explore the mediating role of physiological climate in the relationship between green HRM practices (specifically, GHRM practices, GHRM recruitment, GHRM training, GHRM performance appraisal, and GHRM empowerment) and employee performance within the hotel industry. The study revealed that green HRM practices, encompassing green recruiting, green training, green performance evaluation, and green empowerment, exerted a statistically significant influence on employee performance. A quantitative method was employed for this research, focusing on hotel managers in Jordan as the study's population. Data were collected through a questionnaire distributed to a convenience sample of 300 managers from various hotels in Jordan. The results of the study align with prior research, supporting the notion that green HRM practices positively impact both employee performance and physiological climate. Furthermore, the findings of this study indicate that physiological climate acts as a mediating factor in the relationship between green HRM practices and employee performance in Jordanian hotels.Keywords: GHRM practices, GHRM recruitment, GHRM training, GHRM performance appraisal, GHRM empowerment, employee’s performance, physiological climate
Procedia PDF Downloads 682809 Green Bonds as a Financing Mechanism for Energy Transition in Emerging Markets: The Case of Morocco
Authors: Abdelhamid Nechad, Ahmed Maghni, Khaoula Zahir
Abstract:
Energy transition is one of Morocco's key sustainable development issues and is at the heart of the 2030 National Sustainable Development Strategy. On the one hand, it reflects the Moroccan government's determination to reduce the negative impact of energy consumption on the environment, and on the other, its determination to rely essentially on renewable energies to meet its energy needs. With this in mind, several tools are being implemented, including green bonds designed to finance projects with a high environmental or climate impact. Thus, since 2015, several green bonds have been issued for a cumulative total of $0.4 Billion . This article aims to examine the impact of green bonds on Morocco's energy transition. Through the Granger causality and cointegration test, this article examines the existence of a short- and long-term causal relationship between green bond issuance and investment in renewable energy projects on the one hand, and between green bond issuance and CO₂ emission reductions on the other. The results suggest that there is no short-term causal relationship between green bond issuance and renewable energy investments on one hand and CO₂ emissions reduction on the other hand. However, in the long run, there is a relationship between green bond issuance and CO₂ emissions reduction in Morocco.Keywords: climate impact, CO₂ emissions, energy transition, green bonds, Morocco
Procedia PDF Downloads 212808 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods
Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad
Abstract:
we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical designKeywords: hydrogen gas, lightning energy, power plant, resistive element
Procedia PDF Downloads 1412807 Determinants of Green Strategy: Analysis Using Probit and Logit Models
Authors: Ayushi Modi, Eliot Bochet-Merand
Abstract:
This study investigates the structural determinants of green strategies among Small and Medium Enterprises (SMEs) in the European Union and select countries, utilizing data from the Flash Eurobarometer 498 - SMEs, Resource Efficiency, and Green Markets. By applying sequential logit analysis, we explore the drivers behind the adoption and scaling of green actions, such as resource efficiency, waste management, and product innovation, while also examining the provision of green products and services. A key contribution of this research is the novel distinction between the process stage (green actions) and the product stage (green outputs), allowing for a deeper analysis of how green initiatives translate into sustainable business outcomes. Our findings reveal that structural characteristics, such as firm size, sector, and turnover growth, significantly influence the likelihood of both providing green products and implementing comprehensive green actions. Smaller, younger firms in high-impact sectors like construction and industry are more likely to engage in sustainability efforts, particularly when they have a green strategy and a dedicated green workforce. Furthermore, companies serving B2B and B2C clients and experiencing turnover growth are more inclined to offer green products. The study underscores the economic implications of these insights, suggesting that financial flexibility, strategic commitment, and human capital investments are critical for scaling green initiatives. By refining variables and excluding heterogeneous countries, our data management ensures robust results. This research provides novel insights into the distinct roles of process and product stages in sustainability, offering valuable policy recommendations for promoting environmental performance in SMEs.Keywords: green strategy, resource efficiency, SMES, sustainability, product innovation, environmental performance
Procedia PDF Downloads 182806 Gentrification and Green Urbanism in Sub- Sahara Africa: The Case of Bamenda in Cameroon
Authors: Acha Mildred Endam
Abstract:
Gentrification brings changes in socio-economic and environmental aspects in cities. This is a concern for local governments and urban residents, as rapid urbanization poses a challenge to SDGs 11 and 13. This paper aims to: (1) examine the dominant gentrification actions that counteract the drive towards green urbanism; (2) evaluate policy actions and institutions created to promote green urbanism; (3) explore the constraints that hinder development proponents from achieving the goal of green urbanism. A mixed research design (survey and exploratory) was used, along with snowball sampling techniques, to administer the questionnaire. Structured interviews and focus group discussions were also conducted to assess the efforts and success rate of planning and development proponents in achieving green urbanism. Secondary data provided the basis for a literature review on activities that promote brown cities, which hinder green urbanism. The results of the study revealed that gentrification in Bamenda is mainly focused on upgrading infrastructure within the city centre. This transition is accompanied by unsustainable architectural developments, sprawl into peri-urban ecosystems, and climate-incompatible developments. Efforts to achieve green urbanization in Bamenda are insignificant. Socio-economic and policy actions of residents do not reflect a move towards sustainable cities, which is a common theme in most development agendas. This undermines the ecology, health, and general well-being of its inhabitants, increasing vulnerability. The study suggests that there is a need to learn from the few green cities in Africa and adopt a holistic approach towards green urbanization. This approach should include green transportation, preservation of green spaces, and retrofitting brown buildings to green buildings, through synergies, motivation and subsidization through green governance.Keywords: environmental sustainability, green urbanism, green governace, retrofitting
Procedia PDF Downloads 372805 Blue Hydrogen Production Via Catalytic Aquathermolysis Coupled with Direct Carbon Dioxide Capture Via Adsorption
Authors: Sherif Fakher
Abstract:
Hydrogen has been gaining a lot of global attention as an uprising contributor in the energy sector. Labeled as an energy carrier, hydrogen is used in many industries and can be used to generate electricity via fuel cells. Blue hydrogen involves the production of hydrogen from hydrocarbons using different processes that emit CO₂. However, the CO₂ is captured and stored. Hence, very little environmental damage occurs during the hydrogen production process. This research investigates the ability to use different catalysts for the production of hydrogen from different hydrocarbon sources, including coal, oil, and gas, using a two-step Aquathermolysis reaction. The research presents the results of experiments conducted to evaluate different catalysts and also highlights the main advantages of this process over other blue hydrogen production methods, including methane steam reforming, autothermal reforming, and oxidation. Two methods of hydrogen generation were investigated including partial oxidation and aquathermolysis. For those two reactions, the reaction kinetics, thermodynamics, and medium were all investigated. Following this, experiments were conducted to test the hydrogen generation potential from both methods. The porous media tested were sandstone, ash, and prozzolanic material. The spent oils used were spent motor oil and spent vegetable oil from cooking. Experiments were conducted at temperatures up to 250 C and pressures up to 3000 psi. Based on the experimental results, mathematical models were developed to predict the hydrogen generation potential at higher thermodynamic conditions. Since both partial oxidation and aquathermolysis require relatively high temperatures to undergo, it was important to devise a method by which these high temperatures can be generated at a low cost. This was done by investigating two factors, including the porous media used and the reliance on the spent oil. Of all the porous media used, the ash had the highest thermal conductivity. The second step was the partial combustion of part of the spent oil to generate the heat needed to reach the high temperatures. This reduced the cost of the heat generation significantly. For the partial oxidation reaction, the spent oil was burned in the presence of a limited oxygen concentration to generate carbon monoxide. The main drawback of this process was the need for burning. This resulted in the generation of other harmful and environmentally damaging gases. Aquathermolysis does not rely on burning, which makes it the cleaner alternative. However, it needs much higher temperatures to run the reaction. When comparing the hydrogen generation potential for both using gas chromatography, aquathermolysis generated 23% more hydrogen using the same volume of spent oil compared to partial oxidation. This research introduces the concept of using spent oil for hydrogen production. This can be a very promising method to produce a clean source of energy using a waste product. This can also help reduce the reliance on freshwater for hydrogen generation which can divert the usage of freshwater to other more important applications.Keywords: blue hydrogen production, catalytic aquathermolysis, direct carbon dioxide capture, CCUS
Procedia PDF Downloads 312804 Synthesis of Antifungal by the Use of Green Catalyst
Authors: Elmeliani M’Hammed
Abstract:
The work is carried out for the synthesis of antifungal effective against the fungus Fusarium oxysporum, Albedinis (Foa), the causative agent of bayoud, dates palm disease, through the use of raw clay as a green catalyst. The Aza-Michael reaction of amine addition to α, β-unsaturated alkene was carried out using the crude clay as a green catalyst to synthesize the antifungal agent bayoud. The reaction was carried out under favorable conditions, ambient temperature, without solvent, and a green catalyst "loves the environment" that the product that was synthesized gave us a high yield and excellent chemo selectivity.Keywords: raw clay, amines, alkenes, environment, antifungal, bayoud, date palms
Procedia PDF Downloads 982803 Formulating Model of Green Supply Chain Impact on Chain Operational Performance, Case Study: Rahbaran Foolad Aria, Steel Industry
Authors: Seyedeh Mersedeh Banijamali, Ali Rajabzadeh
Abstract:
Industrial development in recent centuries has been replaced by a sustainable development. The industry executives, particularly in the development countries are looking for procedures to protect the environment, improve their organization's performance. One of these approaches is the green supply chain management. Green supply chain management approach as a comprehensive approach to environmental management that contains all flows from suppliers to producers and ultimately to consumers, in many industries, particularly in the Steel industry, which has a strategic role in the country's industrial and economic development, has been receiving significant attention. The purpose of this study is examining the impact of green supply chain on chain operational performance in the Steel industry and formulating model for it. In this way, first the components of green supply chain (in 5 dimensions, planning, sourcing, making, delivery and return) have been prioritized through TOPSIS decision technique and then impact of these components on operational performance has been modeled with model dynamic systems and Vensim software. This research shows that green supply chain has a positive impact on operational performance and improve it.Keywords: green supply chain, the dimensions of the green supply chain, operational performance, steel industry, dynamical systems
Procedia PDF Downloads 5702802 Adsorption of Malachite Green Dye on Graphene Oxide Nanosheets from Aqueous Solution: Kinetics and Thermodynamics Studies
Authors: Abeer S. Elsherbiny, Ali H. Gemeay
Abstract:
In this study, graphene oxide (GO) nanosheets have been synthesized and characterized using different spectroscopic tools such as X-ray diffraction spectroscopy, infrared Fourier transform (FT-IR) spectroscopy, BET specific surface area and Transmission Electronic Microscope (TEM). The prepared GO was investigated for the removal of malachite green, a cationic dye from aqueous solution. The removal methods of malachite green has been proceeded via adsorption process. GO nanosheets can be predicted as a good adsorbent material for the adsorption of cationic species. The adsorption of the malachite green onto the GO nanosheets has been carried out at different experimental conditions such as adsorption kinetics, concentration of adsorbate, pH, and temperature. The kinetics of the adsorption data were analyzed using four kinetic models such as the pseudo first-order model, pseudo second-order model, intraparticle diffusion, and the Boyd model to understand the adsorption behavior of malachite green onto the GO nanosheets and the mechanism of adsorption. The adsorption isotherm of adsorption of the malachite green onto the GO nanosheets has been investigated at 25, 35 and 45 °C. The equilibrium data were fitted well to the Langmuir model. Various thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) change were also evaluated. The interaction of malachite green onto the GO nanosheets has been investigated by infrared Fourier transform (FT-IR) spectroscopy.Keywords: adsorption, graphene oxide, kinetics, malachite green
Procedia PDF Downloads 4112801 Transforming the Automotive Production: A Bibliometric Analysis on Lean-Green Management
Authors: Ayse Melissa Ergun
Abstract:
The lean management concept is a widely used and implemented production improvement solution especially in the automotive sector. However, in the recent years the need for an efficient production system became no longer sufficient for companies. The increasing importance of green production and environmental sustainability pushed companies to modify their manufacturing systems in a more environmentally conscious way. As a result, the recent improvements in the automotive sector has surpassed the lean management directives and currently are in need of a more sustainable and green transformation. At this point a comprehensive approach like Lean-Green (LG) Management, which combines lean management and green applications, gains popularity in the sector. This study conducts a bibliometric analysis between the years 2015-2023 for LG management. This study aims to identify the current standing of the literature. The most researched branches of the concept have been determined by the conducted analysis. Furthermore, this study sheds a light on the future research directions for scholars.Keywords: LG management, sustainability, lean, green, automotive, bibliometric analysis
Procedia PDF Downloads 112800 The Social Impact of Green Buildings
Authors: Elise Machline
Abstract:
Policy instruments have been developed worldwide to reduce the energy demand of buildings. Two types of such instruments have been green building rating systems and energy efficiency standards for buildings -such as Green Star (Australia), LEED (United States, Leadership in Energy and Environmental Design), Energy Star (United States), and BREEAM (United Kingdom, Building Research Establishment Environmental Assessment Method). The popularity of the idea of sustainable development has allowed the actors to consider the potential value generated by the environmental performance of buildings, labeled “green value” in the literature. Sustainable performances of buildings are expected to improve their attractiveness, increasing their value. A growing number of empirical studies demonstrate that green buildings yield rental/sale premia, as well as higher occupancy rates and thus higher asset values. The results suggest that green buildings are not affordable to all and that their construction tends to have a gentrifying effect. An increasing number of countries are institutionalizing green strategies for affordable housing. In that sense, making green buildings affordable to all will depend on government policies. That research aims to investigate whether green building fosters inequality in Israel, under the banner of sustainability. The method is comparison (of the market value). This method involves comparing the green buildings sale prices with non-certified buildings of the same type that have undergone recent transactions. The “market value” is deduced from those sources by analogy. The results show that, in Israel, green building projects are usually addressed to the middle to upper classes. The green apartment’s sale premium is about 19% (comparing to non-certified dwelling). There is a link between energy and/or environmental performance and the financial value of the dwellings. Moreover, price differential is much higher than the value of energy savings. This perpetuates socio-spatial and socio-economic inequality as well as ecological vulnerability for the poor and other socially marginal groups. Moreover, there are no green affordable housings and the authorities do not subsidy green building or retrofitting.Keywords: green building, gentrification, social housing, green value, green building certification
Procedia PDF Downloads 4192799 Different Tillage Possibilities for Second Crop in Green Bean Farming
Authors: Yilmaz Bayhan, Emin Güzel, Ömer Barış Özlüoymak, Ahmet İnce, Abdullah Sessiz
Abstract:
In this study, determining of reduced tillage techniques in green bean farming as a second crop after harvesting wheat was targeted. To this aim, four different soil tillage methods namely, heavy-duty disc harrow (HD), rotary tiller (ROT), heavy-duty disc harrow plus rotary tiller (HD+ROT) and no-tillage (NT) (seeding by direct drill) were examined. Experiments were arranged in a randomized block design with three replications. The highest green beans yields were obtained in HD+ROT and NT as 5,862.1 and 5,829.3 Mg/ha, respectively. The lowest green bean yield was found in HD as 3,076.7 Mg/ha. The highest fuel consumption was measured 30.60 L ha-1 for HD+ROT whereas the lowest value was found 7.50 L ha-1 for NT. No tillage method gave the best results for fuel consumption and effective power requirement. It is concluded that no-tillage method can be used in second crop green bean in the Thrace Region due to economic and erosion conditions.Keywords: green bean, soil tillage, yield, vegetative
Procedia PDF Downloads 3732798 HyDUS Project; Seeking a Wonder Material for Hydrogen Storage
Authors: Monica Jong, Antonios Banos, Tom Scott, Chris Webster, David Fletcher
Abstract:
Hydrogen, as a clean alternative to methane, is relatively easy to make, either from water using electrolysis or from methane using steam reformation. However, hydrogen is much trickier to store than methane, and without effective storage, it simply won’t pass muster as a suitable methane substitute. Physical storage of hydrogen is quite inefficient. Storing hydrogen as a compressed gas at pressures up to 900 times atmospheric is volumetrically inefficient and carries safety implications, whilst storing it as a liquid requires costly and constant cryogenic cooling to minus 253°C. This is where DU steps in as a possible solution. Across the periodic table, there are many different metallic elements that will react with hydrogen to form a chemical compound known as a hydride (or metal hydride). From a chemical perspective, the ‘king’ of the hydride forming metals is palladium because it offers the highest hydrogen storage volumetric capacity. However, this material is simply too expensive and scarce to be used in a scaled-up bulk hydrogen storage solution. Depleted Uranium is the second most volumetrically efficient hydride-forming metal after palladium. The UK has accrued a significant amount of DU because of manufacturing nuclear fuel for many decades, and that is currently without real commercial use. Uranium trihydride (UH3) contains three hydrogen atoms for every uranium atom and can chemically store hydrogen at ambient pressure and temperature at more than twice the density of pure liquid hydrogen for the same volume. To release the hydrogen from the hydride, all you do is heat it up. At temperatures above 250°C, the hydride starts to thermally decompose, releasing hydrogen as a gas and leaving the Uranium as a metal again. The reversible nature of this reaction allows the hydride to be formed and unformed again and again, enabling its use as a high-density hydrogen storage material which is already available in large quantities because of its stockpiling as a ‘waste’ by-product. Whilst the tritium storage credentials of Uranium have been rigorously proven at the laboratory scale and at the fusion demonstrator JET for over 30 years, there is a need to prove the concept for depleted uranium hydrogen storage (HyDUS) at scales towards that which is needed to flexibly supply our national power grid with energy. This is exactly the purpose of the HyDUS project, a collaborative venture involving EDF as the interested energy vendor, Urenco as the owner of the waste DU, and the University of Bristol with the UKAEA as the architects of the technology. The team will embark on building and proving the world’s first pilot scale demonstrator of bulk chemical hydrogen storage using depleted Uranium. Within 24 months, the team will attempt to prove both the technical and commercial viability of this technology as a longer duration energy storage solution for the UK. The HyDUS project seeks to enable a true by-product to wonder material story for depleted Uranium, demonstrating that we can think sustainably about unlocking the potential value trapped inside nuclear waste materials.Keywords: hydrogen, long duration storage, storage, depleted uranium, HyDUS
Procedia PDF Downloads 1562797 Impact of Marketing Orientation on Environment and Firm’s Performance
Authors: Sabita Mahapatra
Abstract:
‘Going green’ has been an emerging issue worldwide driving companies to continuously enhance their green capabilities and implement innovative green practices to protect the environment and improve business performance. Green has become a contemporary business environmental issue. The resource advantage theory is adopted in the present study to observe the impact of marketing orientation and green innovation practices on environmental and firm’s performance. The small and medium firms compared to large firms have different approach towards market orientation as a strategic tool. The present study proposes a conceptual framework regarding the impact of market orientation on environmental and firm’s performance through green innovation practices in the context of small and medium scale industries (SMEs). The propositions developed in the present paper would provide scope for future research study to validate the conceptual framework in the emerging economy like India.Keywords: market orientation, green innovation practices, environment performance, corporate performance, emerging market
Procedia PDF Downloads 3202796 The Feasibility of Using Green Architecture in the Desert Areas and Its Effectiveness
Authors: Abdulah Hamads Alatiah
Abstract:
The green architecture represents the essence of the sustainability process and the fundamental rule in the desert areas' reconstruction seeking to maintain the environmental balance. This study is based on the analytical descriptive approach, to extract the objectives of green architecture in the desert areas, and reveal the most important principles that contribute to highlight its economic, social, and environmental importance, in addition to standing on the most important technical standards that can be relied upon to deal with its environmental problems. The green architecture aims: making use of the alternative energy, reducing the conventional energy consumption, addressing its negative effects, adapting to the climate, innovation in design, providing the individuals' welfare and rationalizing the use of the available resources to maintain its environmental sustainability.Keywords: green architecture, the warm-dry climate, natural lighting, environmental quality, renewable energy, weather changes
Procedia PDF Downloads 3242795 Biohydrogen Production from Starch Residues
Authors: Francielo Vendruscolo
Abstract:
This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.Keywords: biofuel, dark fermentation, starch residues, food waste
Procedia PDF Downloads 3982794 A Computational Study of N–H…O Hydrogen Bonding to Investigate Cooperative Effects
Authors: Setareh Shekarsaraei, Marjan Moridi, Nasser L. Hadipour
Abstract:
In this study, nuclear magnetic resonance spectroscopy and nuclear quadrupole resonance spectroscopy parameters of 14N (Nitrogen in imidazole ring) in N–H…O hydrogen bonding for Histidine hydrochloride monohydrate were calculated via density functional theory. We considered a five-molecule model system of Histidine hydrochloride monohydrate. Also, we examined the trends of environmental effect on hydrogen bonds as well as cooperativity. The functional used in this research is M06-2X which is a good functional and the obtained results have shown good agreement with experimental data. This functional was applied to calculate the NMR and NQR parameters. Some correlations among NBO parameters, NMR, and NQR parameters have been studied which have shown the existence of strong correlations among them. Furthermore, the geometry optimization has been performed using M062X/6-31++G(d,p) method. In addition, in order to study cooperativity and changes in structural parameters, along with increase in cluster size, natural bond orbitals have been employed.Keywords: hydrogen bonding, density functional theory (DFT), natural bond orbitals (NBO), cooperativity effect
Procedia PDF Downloads 4562793 Factors Influencing the Use of Green Building Practices in the South African Residential Apartment Construction
Authors: Mongezi Nene, Emma Ayesu-Koranteng, Christopher Amoah, Ayo Adeniran
Abstract:
Although its use has been criticized over the years as being unencouraging, the green building concept is quickly overtaking other concepts, particularly in the construction of commercial properties. The goal of the study is to identify the variables influencing the use of green building practices when developing residential structures. A qualitative methodology, using interviews with semi-structured open-ended questions to 35 property practitioners operating residential apartments in Bloemfontein, South Africa, was used to collect primary data which was analysed using thematic content analysis. The findings show that while respondents have a good understanding of green building principles, they are not being used in the construction of residential buildings in South Africa due to issues with green building approval procedures, the potential for tenant rent increases, the cost of materials, technical issues, contractual issues, and a lack of awareness, among others. This paper recommends among others an urgent need to implement measures by stakeholders towards enhancing the adoption of green building concepts in the construction of residential buildings as well as incentivising its construction through lowered property rates.Keywords: green building, residential apartments, construction, South Africa
Procedia PDF Downloads 1032792 Using Medicinal Herbs in Designing Green Roofs
Authors: Mohamad Javad Shakouri, Behshad Riahipour
Abstract:
Today, the use of medicinal herbs in architecture and green space has a significant effect on the process of calming human and increases the reliability coefficient of design and design flexibility. The current research was conducted with the aim to design green roof and investigate the effect of medicinal herbs such as cress, leek, fenugreek, beet, sweet fennel, green basil, purple basil, and purslane on reducing the number of environmental pollutants (copper, zinc, and cadmium). Finally, the weight of the dry plant and the concentration of elements zinc, lead, and cadmium in the herbs was measured. According to the results, the maximum dry weight (88.10 and 73.79 g) was obtained in beet and purslane respectively and the minimum dry weight (24.12 and 25.21) was obtained in purple basil, and green basil respectively. The maximum amount of element zinc (235 and 213 mg/kg) and the maximum amount of lead (143 mg/kg) were seen in sweet fennel and purple basil. In addition, the maximum amount of cadmium (13 mg/kg) was seen in sweet fennel and purple basil and the minimum amount of lead and cadmium (78 and 7 mg/kg) was seen in green basil, and the minimum amount of zinc (110 mg/kg) was seen in leek. On the other hand, the absorption amount of element lead in the herbs beet and purslane was the same and both absorbed 123 mg/kg lead. Environmentally, if green roofs are implemented extensively and in wide dimensions in urban spaces, they will purify and reduce pollution significantly by absorbing carbon dioxide and producing oxygen.Keywords: medicinal herbs, green space, green roof, heavy metals, lead, green basil
Procedia PDF Downloads 1632791 Photocatalytic Hydrogen Production, Effect of Metal Particle Size and Their Electronic/Optical Properties on the Reaction
Authors: Hicham Idriss
Abstract:
Hydrogen production from water is one of the most promising methods to secure renewable sources or vectors of energy for societies in general and for chemical industries in particular. At present over 90% of the total amount of hydrogen produced in the world is made from non-renewable fossil fuels (via methane reforming). There are many methods for producing hydrogen from water and these include reducible oxide materials (solar thermal production), combined PV/electrolysis, artificial photosynthesis and photocatalysis. The most promising of these processes is the one relying on photocatalysis; yet serious challenges are hindering its success so far. In order to make this process viable considerable improvement of the photon conversion is needed. Among the key studies that our group has been conducting in the last few years are those focusing on synergism between the semiconductor phases, photonic band gap materials, pn junctions, plasmonic resonance responses, charge transfer to metal cations, in addition to metal dispersion and band gap engineering. In this work results related to phase transformation of the anatase to rutile in the case of TiO2 (synergism), of Au and Ag dispersion (electron trapping and hydrogen-hydrogen recombination centers) as well as their plasmon resonance response (visible light conversion) are presented and discussed. It is found for example that synergism between the two common phases of TiO2 (anatase and rutile) is sensitive to the initial particle size. It is also found, in agreement with previous results, that the rate is very sensitive to the amount of metals (with similar particle size) on the surface unlike the case of thermal heterogeneous catalysis.Keywords: photo-catalysis, hydrogen production, water splitting, plasmonic
Procedia PDF Downloads 2532790 Potential Effects of Green Infrastructures on the Land Surface Temperatures in Arid Areas
Authors: Adila Shafqat
Abstract:
Climate change and urbanization has changed the face of many cities in developing countries. Urbanization is linked with land use and land cover change, that is further intensify by the effects of changing climates. Green infrastructures provide numerous ecosystem services which effect the physical set up of the cities in the long run. Land surface temperatures is considered as defining parameter in the studies of the thermal impact on the land cover. Current study is conducted in the semi-arid urban areas of the Bahawalpur region. Accordingly, Land Surface Temperatures and land cover maps are derived from Landsat image through remote sensing techniques. The cooling impact of green infrastructure is determined by calculating land surface temperature of buffered zones around green infrastructures. A regression model is applied for results. It is seen that land surface temperature around green infrastructures in 1 to 3 degrees lower than the built up surroundings. The result indicates that the urban green infrastructures should be planned according to the local needs and characteristics of landuse so that they can effectively tackle land surface temperatures of urban areas.Keywords: climate change, surface temperatures, green spaces, urban planning
Procedia PDF Downloads 1202789 Green Chemical Processing in the Teaching Laboratory: A Convenient Solvent Free Microwave Extraction of Natural Products
Authors: Mohamed Amine Ferhat, Mohamed Nadjib Bouhatem, Farid Chemat
Abstract:
One of the principal aims of sustainable and green processing development remains the dissemination and teaching of green chemistry to both developed and developing nations. This paper describes one attempt to show that “north-south” collaborations yield innovative sustainable and green technologies which give major benefits for both nations. In this paper we present early results from a solvent free microwave extraction (SFME) of essential oils using fresh orange peel, a byproduct in the production of orange juice. SFME is performed at atmospheric pressure without added any solvent or water. SFME increases essential oil yield and eliminate wastewater treatment. The procedure is appropriate for the teaching laboratory, and allows the students to learn extraction, chromatographic and spectroscopic analysis skills, and are expose to dramatic visual example of rapid, sustainable and green extraction of essential oil, and are introduced to commercially successful sustainable and green chemical processing with microwave energy.Keywords: essential oil, extraction, green processing, microwave
Procedia PDF Downloads 5432788 Mentha piperita Formulations in Natural Deep Eutectic Solvents: Phenolic Profile and Biological Activity
Authors: Tatjana Jurić, Bojana Blagojević, Denis Uka, Ružica Ždero Pavlović, Boris M. Popović
Abstract:
Natural deep eutectic solvents (NADES) represent a class of modern systems that have been developed as a green alternative to toxic organic solvents, which are commonly used as extraction media. It has been considered that hydrogen bonding is the main interaction leading to the formation of NADES. The aim of this study was phytochemical characterization and determination of the antioxidant and antibacterial activity of Mentha piperita leaf extracts obtained by six choline chloride-based NADES. NADES were prepared by mixing choline chloride with different hydrogen bond donors in 1:1 molar ratio following the addition of 30% (w/w) water. The mixtures were then heated (60 °C) and stirred (650 rpm) until the clear homogenous liquids were obtained. The Mentha piperita extracts were prepared by mixing 75 mg of peppermint leaves with 1 mL of NADES following by the heating and stirring (60 °C, 650 rpm) within 30 min. The content of six phenolics in extracts was determined using HPLC-PDA. The dominant compounds presented in peppermint leaves - rosmarinic acid and luteolin 7-O-glucoside, were extracted by NADES at a similar level as 70% ethanol. The microdilution method was applied to test the antibacterial activity of extracts. Compared with 70% ethanol, all NADES systems showed higher antibacterial activity towards Pseudomonas aeruginosa (Gram -), Staphylococcus aureus (Gram +), Escherichia coli (Gram -), and Salmonella enterica (Gram -), especially NADES containing organic acids. The majority of NADES extracts showed a better ability to neutralize DPPH radical than conventional solvent and similar ability to reduce Fe3+ to Fe2+ ions in FRAP assay. The obtained results introduce NADES systems as the novel, sustainable, and low-cost solvents with a variety of applications.Keywords: antibacterial activity, antioxidant activity, green extraction, natural deep eutectic solvents, polyphenols
Procedia PDF Downloads 1842787 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane
Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu
Abstract:
A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced
Procedia PDF Downloads 2932786 Investigation of the Thermal Flow inside the Catalytic Combustor for Lean CH4-Air Mixture on a Platinum Catalyst with H2 Addition
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
In order to elaborate the main idea of investigating the flow physics inside the catalytic combustor, the characteristics of the catalytic surface reactions are analyzed by employing the CHEMKIN methodology with detailed gas and surface chemistries. The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promotes desired chemical reactions. A single channel from the honeycomb monolith catalytic combustor is preferred to analyze the gas and surface reactions in the catalyst bed considering the fact that every channel in the honeycomb monolith behaves in similar fashion. The simplified approach with single catalyst channel using plug flow reactor can be used to predict the flow behavior inside the catalytic combustor. The hydrogen addition to the combustion reactants offers a way to light-off catalytic combustion of methane on platinum catalyst and aids to reduce the surface ignition temperature. Indeed, the hydrogen adsorption is higher on the uncovered Pt(s) surface sites because the sticking coefficient of hydrogen is larger than that of methane. The location of flame position in the catalyst bed is validated by igniting the methane fuel with the presence of hydrogen for corresponding multistep surface reactions.Keywords: catalytic combustor, hydrogen adsorption, plug flow reactor, surface ignition temperature
Procedia PDF Downloads 348