Search results for: centrifugal compressor stage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3501

Search results for: centrifugal compressor stage

3291 Development of a Systematic Approach to Assess the Applicability of Silver Coated Conductive Yarn

Authors: Y. T. Chui, W. M. Au, L. Li

Abstract:

Recently, wearable electronic textiles have been emerging in today’s market and were developed rapidly since, beside the needs for the clothing uses for leisure, fashion wear and personal protection, there also exist a high demand for the clothing to be capable for function in this electronic age, such as interactive interfaces, sensual being and tangible touch, social fabric, material witness and so on. With the requirements of wearable electronic textiles to be more comfortable, adorable, and easy caring, conductive yarn becomes one of the most important fundamental elements within the wearable electronic textile for interconnection between different functional units or creating a functional unit. The properties of conductive yarns from different companies can vary to a large extent. There are vitally important criteria for selecting the conductive yarns, which may directly affect its optimization, prospect, applicability and performance of the final garment. However, according to the literature review, few researches on conductive yarns on shelf focus on the assessment methods of conductive yarns for the scientific selection of material by a systematic way under different conditions. Therefore, in this study, direction of selecting high-quality conductive yarns is given. It is to test the stability and reliability of the conductive yarns according the problems industrialists would experience with the yarns during the every manufacturing process, in which, this assessment system can be classified into four stage. That is 1) Yarn stage, 2) Fabric stage, 3) Apparel stage and 4) End user stage. Several tests with clear experiment procedures and parameters are suggested to be carried out in each stage. This assessment method suggested that the optimal conducting yarns should be stable in property and resistant to various corrosions at every production stage or during using them. It is expected that this demonstration of assessment method can serve as a pilot study that assesses the stability of Ag/nylon yarns systematically at various conditions, i.e. during mass production with textile industry procedures, and from the consumer perspective. It aims to assist industrialists to understand the qualities and properties of conductive yarns and suggesting a few important parameters that they should be reminded of for the case of higher level of suitability, precision and controllability.

Keywords: applicability, assessment method, conductive yarn, wearable electronics

Procedia PDF Downloads 518
3290 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 133
3289 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 64
3288 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 61
3287 Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste

Authors: Rocio López, Miriam Tena, Montserrat Pérez, Rosario Solera

Abstract:

Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD.

Keywords: anaerobic co-digestion, TPAD, two-phase, BHP, BMP, sewage sludge, fish waste

Procedia PDF Downloads 132
3286 Feasibility Study on Hybrid Multi-Stage Direct-Drive Generator for Large-Scale Wind Turbine

Authors: Jin Uk Han, Hye Won Han, Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

Direct-drive generators for large-scale wind turbine, which are divided into AFPM(Axial Flux Permanent Magnet) and RFPM(Radial Flux Permanent Magnet) type machine, have attracted interest because of a higher energy density in comparison with gear train type generators. Each type of the machines provides distinguishable geometrical features such as narrow width with a large diameter for the AFPM-type machine and wide width with a certain diameter for the RFPM-type machine. When the AFPM-type machine is applied, an increase of electric power production through a multi-stage arrangement in axial direction is easily achieved. On the other hand, the RFPM-type machine can be applied by using its geometric feature of wide width. In this study, a hybrid two-stage direct-drive generator for 6.2MW class wind turbine was proposed, in which the two-stage AFPM-type machine for 5 MW was composed of two models arranged in axial direction with a hollow shape topology of the rotor with annular disc, the stator and the main shaft mounted on coupled slew bearings. In addition, the RFPM-type machine for 1.2MW was installed at the empty space of the rotor. Analytic results obtained from an electro-magnetic and structural interaction analysis showed that the structural weight of the proposed hybrid two-stage direct-drive generator can be achieved as 155tonf in a condition satisfying the requirements of structural behaviors such as allowable air-gap clearance and strength. Therefore, it was sure that the 6.2MW hybrid two-stage direct-drive generator is competitive than conventional generators. (NRF grant funded by the Korea government MEST, No. 2017R1A2B4005405).

Keywords: AFPM-type machine, direct-drive generator, electro-magnetic analysis, large-scale wind turbine, RFPM-type machine

Procedia PDF Downloads 149
3285 Effect of Deficit Irrigation on Photosynthesis Pigments, Proline Accumulation and Oil Quantity of Sweet Basil (Ocimum basilicum L.) in Flowering and Seed Formation Stages

Authors: Batoul Mohamed Abdullatif, Nouf Ali Asiri

Abstract:

O. basilicum plant was subjected to deficit irrigation using four treatments viz. control, irrigated with 70% of soil water capacity (SWC), Treatment 1, irrigated with 50% SWC, Treatment 2, irrigated with 30% SWC and Treatment 3, irrigated with 10 % SWC. Photosynthesis pigments viz. chlorophyll a, b, and the carotenoids, proline accumulation, and oil quantity were investigated under these irrigation treatments. The results indicate that photosynthesis pigments and oil content of deficit irrigation treatments did not significantly reduced than that of the full irrigation control. Photosynthesis pigments were affected by the stage of growth and not by irrigation treatments. They were high during flowering stage and low during seed formation stage for all treatments. The lowest irrigation plants (10 % SWC) achieved, during flowering stage, 0.72 mg\g\fresh weight of chlorophyll a, compared to 0.43 mg\g\fresh weight in control plant, 0.40 mg\g\fresh weight of chlorophyll b, compared to 0.19 mg\g\fresh weight in control plants and 0.29 mg\g\fresh weight of carotenoids, compared to 0.21 mg\g\fresh weight in control plants. It has been shown that reduced irrigation rates tend to enhance O. basilicum to have high oil quantity reaching a value of 63.37 % in a very low irrigation rate (10 % SWC) compared to 45.38 of control in seeds. Proline was shown to be accumulated in roots to almost double the amount in shoot during flowering stage in treatment 3. This accumulation seems to have a pronounce effect on O. basilicum acclimation to deficit irrigation.

Keywords: deficit irrigation, photosynthesis pigments, proline accumulation, oil quantity, sweet basil flowering formation, seed formation

Procedia PDF Downloads 397
3284 Industrial Wastewater Treatment Improvements Using Activated Carbon

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran

Abstract:

The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.

Keywords: adsorption, COD removal, filtration, TDS removal

Procedia PDF Downloads 473
3283 The Use of Palm Kernel Cake in Ration and Its Influence on VFA, NH3 and pH Rumen Fluid of Goat

Authors: Arief, Noovirman Jamarun, Benni Satria

Abstract:

Background: The main problem in the development of livestock in Indonesia is feed both in terms of quality and quantity. On the other hand, conventional feed ingredients are expensive and difficult to obtain. Therefore, it is necessary to find alternative feed ingredients that have good quality, potential, and low cost. Feed ingredients that meet the above requirements are by-products of the palm oil industry, namely palm kernel cake (PKC). This study aims to obtain the best PKC composition for Etawa goat concentrate ration. Material and Methode : This research consists of 2 stages. Stage I is invitro study using Tilley and Terry method. The study used a Completely Randomized Design (CRD) with 4 treatments of rations and 4 replications. The treatment is the composition of the use of palm kernel cake (PKC) in the ration, namely, A). 10%, B). 20%, C). 30%, D). 40%. Other feed ingredients are corn, rice bran, tofu waste and minerals. The measured variables are the characteristics of the rumen fluid (pH, VFA and NH3). Stage II was done using the best ration of stage I (Ration C), followed by testing the use of Tithonia (Thitonia difersifolia) and agricultural waste of sweet potato leaves as a source of forage for livestock by in-vitro. The study used a Completely Randomized Design (CRD) with 3 treatments and 5 replications. The treatments were: Treatment A) Best Concentrate Ration Stage I + Titonia (Thitonia difersifolia), Treatment B) Best Concentrate Ration Stage I + Tithonia (Thitonia difersifolia) and Sweet potato Leaves, Treatment C) Best Concentrate Ration Stage I + Sweet potato leaves. The data obtained were analyzed using variance analysis while the differences between treatments were tested using the Duncant Multiple Range Test (DMRT) according to Steel and Torrie. Results of Stage II showed that the use of PKC in rations as concentrate feed combined with forage originating from Tithonia (Thitonia difersifolia) and sweet potato leaves produced pH, VFA and NH3-N which were still in normal conditions. The best treatment was obtained from diet B (P <0.05) with 6.9 pH, 116.29 mM VFA and 15mM NH3-N. Conclussion From the results of the study it can be concluded that PKC can be used as feed ingredients for dairy goat concentrate with a combination of forage from Tithonia (Tithonia difersifolia) and sweet potato leaves.

Keywords: palm oil by-product, palm kernel cake, concentrate, rumen fluid, Etawa goat

Procedia PDF Downloads 155
3282 The Development Stages of Transformation of Water Policy Management in Victoria

Authors: Ratri Werdiningtyas, Yongping Wei, Andrew Western

Abstract:

The status quo of social-ecological systems is the results of not only natural processes but also the accumulated consequence of policies applied in the past. Often water management objectives are challenging and are only achieved to a limited degree on the ground. In choosing water management approaches, it is important to account for current conditions and important differences due to varied histories. Since the mid-nineteenth century, Victorian water management has evolved through a series of policy regime shifts. The main goal of this research to explore and identify the stages of the evolution of the water policy instruments as practiced in Victoria from 1890-2016. This comparative historical analysis has identified four stages in Victorian policy instrument development. In the first stage, the creation of policy instruments aimed to match the demand and supply of the resource (reserve condition). The second stage begins after natural system alone failed to balance supply and demand. The focus of the policy instrument shifted to an authority perspective in this stage. Later, the increasing number of actors interested in water led to another change in policy instrument. The third stage focused on the significant role of information from different relevant actors. The fourth and current stage is the most advanced, in that it involved the creation of a policy instrument for synergizing the previous three focal factors: reserve, authority, and information. When considering policy in other jurisdiction, these findings suggest that a key priority should be to reflect on the jurisdictions current position among these four evolutionary stages and try to make improve progressively rather than directly adopting approaches from elsewhere without understanding the current position.

Keywords: policy instrument, policy transformation, socio-ecolgical system, water management

Procedia PDF Downloads 124
3281 Impact of Brassinosteroid with GA3, CPPU on Yield and Quality of Newly Introduced Grape cv. Italia

Authors: Senthilkumar S, Vijayakumar R M , Soorianathasundaram K, Durga Devi D

Abstract:

A study was conducted to assess the influence of brassinosteroid and other bioregulators as pre-harvest sprays on yield and quality of newly introduced Californian grape cv. Italia. The vines were exposed to standardized pruning level of pruning 50% of the canes to 5-6 bud level for fruiting and 50% of the canes to two bud level for vegetative growth. The influence of brassinosteroid was assessed using BR (1 ppm) alone and in combination with GA3 and CPPU, sprayed at three different stages over the control (water spray) were given as treatments. The results revealed that the bunches treated with Brassinosteroid (1 ppm) + GA3 (10 ppm) at pea stage i.e., 7-8 mm berry size, recorded the maximum values on yield characters like bunch weight (719.94 g), yield per vine (12.70 kg/vine) and yield per hectare (15.88 t). The berry characters and quality traits were also significantly influenced by the application of bioregulators. The maximum value for all those characters was registered under bunch sprays of Brassinosteroid (1 ppm) + GA3 (10 ppm) at pea stage. The economic feasibility indicated that the treatment combination Brassinosteroid (1 ppm) + GA3 (10 ppm) at pea stage (7-8 mm berry size) had registered the maximum benefit cost ratio of 3.13, as compared to 1.89 in control (water spray). Overall, it was observed that a combined bunch spray of Brassinosteroid (1 ppm) + GA3 (10 ppm) at pea stage (7-8 mm berry size) was adjudged as the best treatment for promoting the crop for better the bunch quality and yield.

Keywords: bioregulators, brassinosteroid, CPPU, GA3, Italia grape cultivar

Procedia PDF Downloads 221
3280 To Assess Variables Related to Self-Efficacy for Increasing Physical Activity in Advanced-Stage Cancer Patients

Authors: S. Nikpour, S. Vahidi, H. Haghani

Abstract:

Introduction: Exercise has mental and physical health benefits for patients with advanced stage cancer who actively receive chemotherapy, yet little is known about patients’ levels of interest in becoming more active or their confidence in increasing their activity level. Methods and materials: A convenience sample of 200 patients with advanced-stage cancer who were receiving chemotherapy completed self-report measures assessing physical activity level, mood, and quality-of-life variables. Qualitative data on patient-perceived benefits of, and barriers to, physical activity also were collected, coded by independent raters, and organized by predominant themes. Results: Current physical activity level, physical activity outcome expectations, and positive mood were significantly associated with self-efficacy. Fatigue was the most frequently listed barrier to physical activity; improved physical strength and health were the most commonly listed benefits. Participants identified benefits related to both general health and cancer-symptom management that were related to exercise. 59.5% of participants reported that they were seriously planning to increase or maintain their physical activity level, and over 40% reported having interest in receiving an intervention to become more active. Conclusion: These results suggested that many advanced-stage cancer patients who receive chemotherapy are interested in maintaining or increasing their physical activity level and in receiving professional support for exercise. In addition, these individuals identified general health and cancer-specific benefits of, and barriers to, physical activity. Future research will investigate how these findings may be incorporated into physical activity interventions for advanced-stage oncology patients receiving medical treatment.

Keywords: physical activity, cancer, self-efficacy

Procedia PDF Downloads 511
3279 Optimization of Titanium Leaching Process Using Experimental Design

Authors: Arash Rafiei, Carroll Moore

Abstract:

Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects.

Keywords: titanium leaching, optimization, experimental design, performance analysis

Procedia PDF Downloads 350
3278 Development of A MG-Gd-Er-Zn-Zr Alloy with Ultrahigh Strength and Ductility via Extrusion, Pre-Deformation, and Two-Stage Aging

Authors: Linyue Jia, Wenbo Du, Zhaohui Wang, Ke Liu, Shubo Li

Abstract:

Due to the great potential for weight reduction in aerospace and automotive industries, magnesium-rare earth (Mg-RE) based alloys with outstanding mechanical performance have been widely investigated for decades. However, magnesium alloys are still restricted in engineering applications because of their lower strength and ductility. Hence, there are large spaces and challenges in achieving high-performance Mg alloys. This work reports an Mg-Gd-Er-Zn-Zr alloy with ultrahigh strength and good ductility developed via hot extrusion, pre-deformation, and two-stage aging. The extruded alloy comprises fine dynamically recrystallized (DRXed) grains and coarse worked grains with a large aspect ratio. Pre-deformation has little effect on the microstructure and macro-texture and serves primarily to introduce a large number of dislocations, resulting in strain hardening and higher precipitation strengthening during subsequent aging due to more nucleation sites. As a result, the alloy exhibits a yield strength (YS) of 506 MPa, an ultimate tensile strength (UTS) of 549 MPa, and elongation (EL) of 8.2% at room temperature, showing superior strength-ductility balance than the other wrought Mg-RE alloys previously reported. The current study proposes a combination of pre-deformation and two-stage aging to further improve the mechanical properties of wrought Mg alloys for engineering applications.

Keywords: magnesium alloys, mechanical properties, microstructure, pre-deformation, two-stage aging

Procedia PDF Downloads 143
3277 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier

Authors: Hassan Jassim Motlak

Abstract:

A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption whivh has a very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to symmetrical input stage. P-Spice simulation results using 0.18µm MIETEC CMOS process parameters using supply voltage of ±1.2V and 50μA biasing current. The P-Spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, open-loop gain-bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/µS, THD of -63dB and DC consumption power (PC) of 2mW.

Keywords: pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA

Procedia PDF Downloads 293
3276 Equilibrium Modeling of a Two Stage Downdraft Gasifier Using Different Gasification Fluids

Authors: F. R. M. Nascimento, E. E. S. Lora, J. C. E. Palácio

Abstract:

A mathematical model to investigate the performance of a two stage fixed bed downdraft gasifier operating with air, steam and oxygen mixtures as the gasifying fluid has been developed. The various conditions of mixtures for a double stage fluid entry, have been performed. The model has been validated through a series of experimental tests performed by NEST – The Excellence Group in Thermal and Distributed Generation of the Federal University of Itajubá. Influence of mixtures are analyzed through the Steam to Biomass (SB), Equivalence Ratio (ER) and the Oxygen Concentration (OP) parameters in order to predict the best operating conditions to obtain adequate output gas quality, once is a key parameter for subsequent gas processing in the synthesis of biofuels, heat and electricity generation. Results show that there is an optimal combination in the steam and oxygen content of the gasifying fluid which allows the user find the best conditions to design and operate the equipment according to the desired application.

Keywords: air, equilibrium, downdraft, fixed bed gasification, mathematical modeling, mixtures, oxygen steam

Procedia PDF Downloads 463
3275 Flexural Behavior for Prefabricated Angle Truss Composite Beams Using Precast Concrete

Authors: Jo Kwang-Won, Lee Ho-Jun, Choi In-Rak, Park Hong-Gun

Abstract:

Prefabricated angle truss composited beam is a kind of concrete encased composite beam. It is prefabricated at factory as Pratt truss with steel members. Double angle is used for top, bottom chords and vertical web member. Moreover, diagonal web member is steel plate. Its sectional shape looks like I-shape. This beam system has two stages. The first is construction stage in which the beam is directly connected to the column for resist construction load. This stage beam consists of Pratt truss and precast concrete. The stability of the beam is verified. The second is service stage. After the connection, cast-in-place concrete is used for composite action. Ultimate flexural capacity is verified and show advantage than RC and steel. In this paper, the beam flexural capacity is verified in both stages. And examined the flexural behavior of the beam.

Keywords: composite beam, prefabrication, angle, precast concrete, pratt truss

Procedia PDF Downloads 279
3274 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 42
3273 Single Stage Holistic Interventions: The Impact on Well-Being

Authors: L. Matthewman, J. Nowlan

Abstract:

Background: Holistic or Integrative Psychology emphasizes the interdependence of physiological, spiritual and psychological dynamics. Studying “wholeness and well-being” from a systems perspective combines innovative psychological science interventions with Eastern orientated healing wisdoms and therapies. The literature surrounding holistic/integrative psychology focuses on multi-stage interventions in attempts to enhance the mind-body experiences of well-being for participants. This study proposes a new single stage model as an intervention for UG/PG students, time-constrained workplace employees and managers/leaders for improved well-being and life enhancement. The main research objective was to investigate participants’ experiences of holistic and mindfulness interventions for impact on emotional well-being. The main research question asked was if single stage holistic interventions could impact on psychological well-being. This is of consequence because many people report that a reason for not taking part in mind-body or wellness programmes is that they believe that they do not have sufficient time to engage in such pursuits. Experimental Approach: The study employed a mixed methods pre-test/post-test research design. Data was analyzed using descriptive statistics and interpretative phenomenological analysis. Purposive sampling methods were employed. An adapted mindfulness measurement questionnaire (MAAS) was administered to 20 volunteer final year UG student participants prior to the single stage intervention and following the intervention. A further post-test longitudinal follow-up took place one week later. Intervention: The single stage model intervention consisted of a half hour session of mindfulness, yoga stretches and head and neck massage in the following sequence: Mindful awareness of the breath, yoga stretches 1, mindfulness of the body, head and neck massage, mindfulness of sounds, yoga stretches 2 and finished with pure awareness mindfulness. Results: The findings on the pre-test indicated key themes concerning: “being largely unaware of feelings”, “overwhelmed with final year exams”, “juggling other priorities” , “not feeling in control”, “stress” and “negative emotional display episodes”. Themes indicated on the post-test included: ‘more aware of self’, ‘in more control’, ‘immediately more alive’ and ‘just happier’ compared to the pre-test. Themes from post-test 2 indicated similar findings to post-test 1 in terms of themes. but on a lesser scale when scored for intensity. Interestingly, the majority of participants reported that they would now seek other similar interventions in the future and would be likely to engage with a multi-stage intervention type on a longer-term basis. Overall, participants reported increased psychological well-being after the single stage intervention. Conclusion: A single stage one-off intervention model can be effective to help towards the wellbeing of final year UG students. There is little indication to suggest that this would not be generalizable to others in different areas of life and business. However this study must be taken with caution due to low participant numbers. Implications: Single stage one-off interventions can be used to enhance peoples’ lives who might not otherwise sign up for a longer multi-stage intervention. In addition, single stage interventions can be utilized to help participants progress onto longer multiple stage interventions. Finally, further research into one stage well-being interventions is encouraged.

Keywords: holistic/integrative psychology, mindfulness, well-being, yoga

Procedia PDF Downloads 333
3272 The Effect of Air Filter Performance on Gas Turbine Operation

Authors: Iyad Al-Attar

Abstract:

Air filters are widely used in gas turbines applications to ensure that the large mass (500kg/s) of clean air reach the compressor. The continuous demand of high availability and reliability has highlighted the critical role of air filter performance in providing enhanced air quality. In addition to being challenged with different environments [tropical, coastal, hot], gas turbines confront wide array of atmospheric contaminants with various concentrations and particle size distributions that would lead to performance degradation and components deterioration. Therefore, the role of air filters is of a paramount importance since fouled compressor can reduce power output and availability of the gas turbine to over 70 % throughout operation. Consequently, accurate filter performance prediction is critical tool in their selection considering their role in minimizing the economic impact of outages. In fact, actual performance of Efficient Particulate Air [EPA] filters used in gas turbine tend to deviate from the performance predicted by laboratory results. This experimental work investigates the initial pressure drop and fractional efficiency curves of full-scale pleated V-shaped EPA filters used globally in gas turbine. The investigation involved examining the effect of different operational conditions such as flow rates [500 to 5000 m3/h] and design parameters such as pleat count [28, 30, 32 and 34 pleats per 100mm]. This experimental work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase of flow rates and pleat density. The reasons, which led to surface area losses of filtration media, are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. This paper also demonstrates that the effect of increasing the flow rate has more pronounced effect on filter performance compared to pleating density. This experimental work suggests that a valid comparison of the pleat densities should be based on the effective surface area, namely, the area that participates in the filtration process, and not the total surface area the pleat density provides. Throughout this study, optimal pleat count that satisfies both initial pressure drop and efficiency requirements may not have necessarily existed.

Keywords: filter efficiency, EPA Filters, pressure drop, permeability

Procedia PDF Downloads 221
3271 Two Stage Assembly Flowshop Scheduling Problem Minimizing Total Tardiness

Authors: Ali Allahverdi, Harun Aydilek, Asiye Aydilek

Abstract:

The two stage assembly flowshop scheduling problem has lots of application in real life. To the best of our knowledge, the two stage assembly flowshop scheduling problem with total tardiness performance measure and separate setup times has not been addressed so far, and hence, it is addressed in this paper. Different dominance relations are developed and several algorithms are proposed. Extensive computational experiments are conducted to evaluate the proposed algorithms. The computational experiments have shown that one of the algorithms performs much better than the others. Moreover, the experiments have shown that the best performing algorithm performs much better than the best existing algorithm for the case of zero setup times in the literature. Therefore, the proposed best performing algorithm not only can be used for problems with separate setup times but also for the case of zero setup times.

Keywords: scheduling, assembly flowshop, total tardiness, algorithm

Procedia PDF Downloads 326
3270 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)

Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj

Abstract:

Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.

Keywords: ROP, ridge, multilevel vessel enhancement, biomedical

Procedia PDF Downloads 386
3269 Typhoon Disaster Risk Assessment of Mountain Village: A Case Study of Shanlin District in Kaohsiung

Authors: T. C. Hsu, H. L. Lin

Abstract:

Taiwan is mountainous country, 70% of land is covered with mountains. Because of extreme climate, the mountain villages with sensitive and fragile environment often get easily affected by inundation and debris flow from typhoon which brings huge rainfall. Due to inappropriate development, overuse and fewer access roads, occurrence of disaster becomes more frequent through downpour and rescue actions are postponed. However, risk map is generally established through administrative boundaries, the difference of urban and rural area is ignored. The neglect of mountain village characteristics eventually underestimates the importance of factors related to vulnerability and reduces the effectiveness. In disaster management, there are different strategies and actions at each stage. According to different tasks, there will be different risk indices and weights to analyze disaster risk for each stage and then it will contribute to confront threat and reduce impact appropriately on right time. Risk map is important in mitigation, but also in response stage because some factors such as road network will be changed by disaster. This study will use risk assessment to establish risk map of Shanlin District which is mountain village in Kaohsiung as a case study in mitigation and response stage through Analytic Hierarchy Process (AHP). AHP helps to recognize the composition and weights of risk factors in mountain village by experts’ opinions through survey design and is combined with present potential hazard map to produce risk map.

Keywords: risk assessment, mountain village, risk map, analytic hierarchy process

Procedia PDF Downloads 375
3268 Analysis and Optimized Design of a Packaged Liquid Chiller

Authors: Saeed Farivar, Mohsen Kahrom

Abstract:

The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.

Keywords: optimization, packaged liquid chiller, performance, simulation

Procedia PDF Downloads 256
3267 Development of Anti-Fouling Surface Features Bioinspired by the Patterned Micro-Textures of the Scophthalmus rhombus (Brill)

Authors: Ivan Maguire, Alan Barrett, Alex Forte, Sandra Kwiatkowska, Rohit Mishra, Jens Ducrèe, Fiona Regan

Abstract:

Biofouling is defined as the gradual accumulation of Biomimetics refers to the use and imitation of principles copied from nature. Biomimetics has found interest across many commercial disciplines. Among many biological objects and their functions, aquatic animals deserve a special attention due to their antimicrobial capabilities resulting from chemical composition, surface topography or other behavioural defences, which can be used as an inspiration for antifouling technology. Marine biofouling has detrimental effects on seagoing vessels, both commercial and leisure, as well as on oceanographic sensors, offshore drilling rigs, and aquaculture installations. Sensor optics, membranes, housings and platforms can become fouled leading to problems with sensor performance and data integrity. While many anti-fouling solutions are currently being investigated as a cost-cutting measure, biofouling settlement may also be prevented by creating a surface that does not satisfy the settlement conditions. Brill (Scophthalmus rhombus) is a small flatfish occurring in marine waters of Mediterranean as well as Norway and Iceland. It inhabits sandy and muddy coastal waters from 5 to 80 meters. Its skin colour changes depending on environment, but generally is brownish with light and dark freckles, with creamy underside. Brill is oval in shape and its flesh is white. The aim of this study is to translate the unique micro-topography of the brill scale, to design marine inspired biomimetic surface coating and test it against a typical fouling organism. Following extensive study of scale topography of the brill fish (Scophthalmus rhombus) and the settlement behaviour of the diatom species Psammodictyon sp. via SEM, two state-of-the-art antifouling surface solutions were designed and investigated; A brill fish scale bioinspired surface pattern platform (BFD), and generic and uniformly-arrayed, circular micropillar platform (MPD), with offsets based on diatom species settlement behaviour. The BFD approach consists of different ~5 μm by ~90 μm Brill-replica patterns, grown to a 5 μm height, in a linear array pattern. The MPD approach utilises hexagonal-packed cylindrical pillars 10.6 μm in diameter, grown to a height of 5 μm, with vertical offset of 15 μm and horizontal offset of 26.6 μm. Photolithography was employed for microstructure growth, with a polydimethylsiloxane (PDMS) chip-based used as a testbed for diatom adhesion on both platforms. Settlement and adhesion tests were performed using this PDMS microfluidic chip through subjugation to centrifugal force via an in-house developed ‘spin-stand’ which features a motor, in combination with a high-resolution camera, for real-time observing diatom release from PDMS material. Diatom adhesion strength can therefore be determined based on the centrifugal force generated at varying rotational speeds. It is hoped that both the replica and bio-inspired solutions will give comparable anti-fouling results to these synthetic surfaces, whilst also assisting in determining whether anti-fouling solutions should predominantly be investigating either fully bioreplica-based, or a bioinspired, synthetically-based design.

Keywords: anti-fouling applications, bio-inspired microstructures, centrifugal microfluidics, surface modification

Procedia PDF Downloads 296
3266 Stage-Gate Framework Application for Innovation Assessment among Small and Medium-Sized Enterprises

Authors: Indre Brazauskaite, Vilte Auruskeviciene

Abstract:

The paper explores the Stage-Gate framework application for innovation maturity among small and medium-sized enterprises (SMEs). Innovation management becomes an essential business survival process for all sizes of organizations that can be evaluated and audited systemically. This research systemically defines and assesses the innovation process from the perspective of the company’s top management. Empirical research explores attitudes and existing practices of innovation management in SMEs in Baltic countries. It structurally investigates the current innovation management practices, level of standardization, and potential challenges in the area. Findings allow to structure of existing practices based on an institutionalized model and contribute to a more advanced understanding of the innovation process among SMEs. Practically, findings contribute to advanced decision-making and business planning in the process.

Keywords: innovation measure, innovation process, SMEs, stage-gate framework

Procedia PDF Downloads 78
3265 Efficacy and User Satisfaction on the Rama-Chest Cryo Arm Innovation for Bronchoscopic Cryotherapy

Authors: Chariya Laohavich

Abstract:

At the current, the trends in the lung disease at a university hospital are the treat and diagnosis by bronchoscopy. Bronchoscopic cryotherapy is a long time procedure 1-4 hours. The cryo probe is sensitive and easy to be damaged and expensive. We have this study management for protection the cryo probe, user satisfaction and qualities work. This study conducted in 4 stages: stage 1 for a survey of problems and assessment of user’s needs; stage 2 for designing and developing the Rama-chest cryo arm for a bronchoscopy process; stage 3 for test-implementing the Rama-chest cryo arm in real situations, studying its problems and obstacles, and evaluating the user satisfaction; and stage 4 for an overall assessment and improvement. The sample used in this study consisted of a total of 15 Ramathipbodi Hospital’s Bronchoscopist and bronchoscopist’s nurse who had used the Rama-chest cryo arm for bronchoscopic cryotherapy from January to June 2016. Objective: To study efficacy and user satisfaction on the Rama-chest cryo arm innovation for bronchoscopic cryotherapy. Data were collected using a Rama-chest cryo arm satisfaction assessment form and analysed based on mean and standard deviation. Result is the Rama-chest cryo arm was an innovation that accommodated during bronchoscopic cryotherapy. The subjects rated this the cryo arm as being most satisfactory (M = 4.86 ± , SD 0.48. Therefore we have developed a cryo arm that uses local material, practical and economic. Our innovation is not only flexible and sustainable development but also lean and seamless. This produced device can be used as effectively as the imported one, and thus can be eventually substituted.

Keywords: efficacy, satisfaction, Rama-chest cryo arm, innovation, bronchoscopic cryotherapy

Procedia PDF Downloads 225
3264 The Use of Alternative Material to Fabric in Stage Costume

Authors: Melahat Çevik

Abstract:

The discovery of fabric has a quite old historical perspective because of veiling, heating and shelter needs of human. Since the days which fashion has a say, this situation has pasted beyond needs and has become status symbols. For the theater art drama which tell people by people, in the concern of reflecting daily life there will be such regards also we may see alternative products to artistically reshaped fabric. The stage is determined in the consensus of costume designer and director. Costume Designer does the research, taking into account the alternative products. Approaching nature as inventor, discovering products, shapes the work because in this work, cost is considerable. All types of fabric will be used but also new materials which are not presented to clothing industry yet are of great importance. In the discovery of new materials there priorities of the costume designer. In the scene everything should be determined in the axis of actor. The material discussed should have positive qualities which allow the performer to move and invigorate him or her in terms of physical and also should be positive in terms of health. This point must be approached in a more precise in high action plays and the obtained material should be tested before the presentation process.

Keywords: fabric, stage design, alternative materials, clothing industry

Procedia PDF Downloads 553
3263 Design of Low Power FSK Receiver

Authors: M. Aeysha Parvin, J. Asha, J. Jenifer

Abstract:

This letter presents a novel frequency-shift keying(FSK) receiver using PLL-based FSK demodulator, thereby achieving high sensitivity and low power consumption. The proposed receiver comprises a power amplifier, mixer, 3-stage ring oscillator, PLL based demodulator. Moreover, the proposed receiver is fabricated using 0.12µm CMOS process and consumes 0.7Mw. Measurement results demonstrate that the proposed receiver has a sensitivity of -93dbm with 1Mbps data rate in receiving a 2.4 GHz FSK signal.

Keywords: CMOS FSK receiver, phase locked loop (PLL), 3-stage ring oscillator, FSK signal

Procedia PDF Downloads 476
3262 Analysis of a CO₂ Two-Phase Ejector Performances with Taguchi and Anova Optimization

Authors: Karima Megdouli

Abstract:

The ejector, a central element within the CO₂ transcritical ejection refrigeration system, holds significant importance in enhancing refrigeration capacity and minimizing compressor power usage. This study's objective is to introduce a technique for enhancing the effectiveness of the CO₂ transcritical two-phase ejector, utilizing Taguchi and ANOVA analysis. The investigation delves into the impact of geometric parameters, secondary flow temperature, and primary flow pressure on the efficiency of the ejector. Results indicate that employing a combination of Taguchi and ANOVA offers increased reliability and superior performance when optimizing the design of the CO₂ two-phase ejector.

Keywords: ejector, supersonic, Taguchi, ANOVA, optimization

Procedia PDF Downloads 54