Search results for: antagonistic microorganisms
498 Estimation of Endogenous Brain Noise from Brain Response to Flickering Visual Stimulation Magnetoencephalography Visual Perception Speed
Authors: Alexander N. Pisarchik, Parth Chholak
Abstract:
Intrinsic brain noise was estimated via magneto-encephalograms (MEG) recorded during perception of flickering visual stimuli with frequencies of 6.67 and 8.57 Hz. First, we measured the mean phase difference between the flicker signal and steady-state event-related field (SSERF) in the occipital area where the brain response at the flicker frequencies and their harmonics appeared in the power spectrum. Then, we calculated the probability distribution of the phase fluctuations in the regions of frequency locking and computed its kurtosis. Since kurtosis is a measure of the distribution’s sharpness, we suppose that inverse kurtosis is related to intrinsic brain noise. In our experiments, the kurtosis value varied among subjects from K = 3 to K = 5 for 6.67 Hz and from 2.6 to 4 for 8.57 Hz. The majority of subjects demonstrated leptokurtic kurtosis (K < 3), i.e., the distribution tails approached zero more slowly than Gaussian. In addition, we found a strong correlation between kurtosis and brain complexity measured as the correlation dimension, so that the MEGs of subjects with higher kurtosis exhibited lower complexity. The obtained results are discussed in the framework of nonlinear dynamics and complex network theories. Specifically, in a network of coupled oscillators, phase synchronization is mainly determined by two antagonistic factors, noise, and the coupling strength. While noise worsens phase synchronization, the coupling improves it. If we assume that each neuron and each synapse contribute to brain noise, the larger neuronal network should have stronger noise, and therefore phase synchronization should be worse, that results in smaller kurtosis. The described method for brain noise estimation can be useful for diagnostics of some brain pathologies associated with abnormal brain noise.Keywords: brain, flickering, magnetoencephalography, MEG, visual perception, perception time
Procedia PDF Downloads 148497 Role of Microbial Pesticides in Pest Control and Their Advantages and Disadvantages in Nature
Authors: Fatimah M. Alshehrei
Abstract:
For many years, synthetic pesticides have been used to kill pests; due to their toxicity and pollution, they are now a risk to human and environmental health. Lately, biopesticides have emerged as possible substitutes for petrochemical pesticides. The sources of biopesticides are widely accessible, easily biodegradable, have a variety of modes of action, are less expensive, and have little toxicity toward humans and other creatures that aren't the intended targets. Plants, bacteria, and insects are used to create biopesticides, they used in controlling diseases in crops. Microbial pesticides are produced from different microorganisms such as Trichoderma, Bacillus, Pseudomonas, and Beauveria. Also, botanical pesticides have already been commercialized; they are extracted from neem, pyrethrum, azadirachtin, etc. This paper describes biopesticide categories, their sources, mode of action, advantages and disadvantages, and their role in sustainable agriculture.Keywords: biopesticides categories, formulation, mode of action, pest control
Procedia PDF Downloads 66496 Evaluation of Antagonistic and Aggregation Property of Probiotic Lactic Acid Bacteria Isolated from Bovine Milk
Authors: Alazar Nebyou, Sujata Pandit
Abstract:
Lactic acid bacteria (LAB) are essential ingredients in probiotic foods, intestinal microflora, and dairy products that are capable of coping up with harsh gastrointestinal tract conditions and are available in a variety of environments. The objective of this study is to evaluate the probiotic property of LAB isolated from bovine milk. Milk samples were collected from local dairy farms. Samples were obtained using sterile test tubes and transported to a laboratory in the icebox for further biochemical characterization. Preliminary physiological and biochemical identification of LAB isolates was conducted by growing on MRS agar after ten-fold serial dilution. Seven of the best isolates were selected for the evaluation of the probiotic property. The LAB isolates were checked for resistance to antibiotics and their antimicrobial activity by disc diffusion assay and agar well diffusion assay respectively. Bile salt hydrolase activity of isolates was studied by growing isolates in a BSH medium with bile salt. Cell surface property of isolates was assayed by studying their autoaggregation and coaggregation percentage with S. aerues. All isolates were found BSH positive. In addition, BCM2 and BGM1 were susceptible to all antibiotic disks except BBM1 which was resistant to all antibiotic disks. BCM1 and BGM1 had the highest autoaggregation and coaggregation potential respectively. Since all LAB isolates showed gastrointestinal tolerance and good cell surface property they could be considered as good potential probiotic candidates for treatment and probiotic starter culture preparation.Keywords: probiotic, aggregation, lactic acid bacteria, antimicrobial activity
Procedia PDF Downloads 215495 Primary and Secondary Psychopathic Traits: Assessing Differences in Interpersonal Relationships through Friendship, Emotional Contagion, and Social Rewards
Authors: Silene Ten Seldam, Kiara Margarita Lu, Melina Nicole Kyranides
Abstract:
Psychopathic traits are marked by a lack of empathy and an inability to maintain meaningful relationships. Yet little research has investigated differences in interpersonal relationships between primary and secondary psychopathic traits. Emotional contagion, the tendency to automatically mimic others’ facial expressions and movements, is a type of empathy contributing to relationship quality. Additionally, the motivating and pleasurable aspects of social interaction, social reward is integral to understanding relationships. Therefore, the current research investigated interpersonal relationships through relationship status, the quality of friendships, the susceptibility to positive (happiness, love) and negative (sadness, fear, anger) emotional contagion, and social reward. Recruited online, 389 participants between 18 and 76 years old (M = 33.61; of which 241 were female) completed self-report questionnaires assessing primary and secondary psychopathic traits, friendship, emotional contagion, and social rewards. Hierarchical multiple regression showed relationship status as a protective factor and that individuals with secondary psychopathic traits are less likely to be in a relationship. This study is the first to investigate emotional contagion with primary and secondary psychopathic traits. Emotional contagion for sadness predicted secondary psychopathic traits. Negative social potency (enjoying being cruel and antagonistic to others) predicted both primary and secondary traits. However, admiration and prosocial interactions only predicted primary psychopathic traits. Findings infer differences in maintaining relationships, regulating emotions, empathising with others through emotional contagion, and motivation to socially engage, perhaps due to each dimensions’distinct origins and manifestations.Keywords: primary psychopathic traits, secondary psychopathic traits, interpersonal relationships, friendship, emotional contagion, social reward
Procedia PDF Downloads 122494 Production of High-Content Fructo-Oligosaccharides
Authors: C. Nobre, C. C. Castro, A.-L. Hantson, J. A. Teixeira, L. R. Rodrigues, G. De Weireld
Abstract:
Fructo-oligosaccharides (FOS) are produced from sucrose by Aureobasidium pullulans in yields between 40-60% (w/w). To increase the amount of FOS it is necessary to remove the small, non-prebiotic sugars, present. Two methods for producing high-purity FOS have been developed: the use of microorganisms able to consume small saccharides; and the use of continuous chromatography to separate sugars: simulated moving bed (SMB). It is herein proposed the combination of both methods. The aim of this study is to optimize the composition of the fermentative broth (in terms of salts and sugars) that will be further purified by SMB. A yield of 0.63 gFOS.g Sucrose-1 was obtained with A. pullulans using low amounts of salts in the initial fermentative broth. By removing the small sugars, Saccharomyces cerevisiae and Zymomonas mobilis increased the percentage of FOS from around 56.0% to 83% (w/w) in average, losing only 10% (w/w) of FOS during the recovery process.Keywords: fructo-oligosaccharides, microbial treatment, Saccharomyces cerevisiae, Zymomonas mobilis
Procedia PDF Downloads 308493 New Bio-Strategies for Ochratoxin a Detoxification Using Lactic Acid Bacteria
Authors: José Maria, Vânia Laranjo, Luís Abrunhosa, António Inês
Abstract:
The occurrence of mycotoxigenic moulds such as Aspergillus, Penicillium and Fusarium in food and feed has an important impact on public health, by the appearance of acute and chronic mycotoxicoses in humans and animals, which is more severe in the developing countries due to lack of food security, poverty and malnutrition. This mould contamination also constitutes a major economic problem due the lost of crop production. A great variety of filamentous fungi is able to produce highly toxic secondary metabolites known as mycotoxins. Most of the mycotoxins are carcinogenic, mutagenic, neurotoxic and immunosuppressive, being ochratoxin A (OTA) one of the most important. OTA is toxic to animals and humans, mainly due to its nephrotoxic properties. Several approaches have been developed for decontamination of mycotoxins in foods, such as, prevention of contamination, biodegradation of mycotoxins-containing food and feed with microorganisms or enzymes and inhibition or absorption of mycotoxin content of consumed food into the digestive tract. Some group of Gram-positive bacteria named lactic acid bacteria (LAB) are able to release some molecules that can influence the mould growth, improving the shelf life of many fermented products and reducing health risks due to exposure to mycotoxins. Some LAB are capable of mycotoxin detoxification. Recently our group was the first to describe the ability of LAB strains to biodegrade OTA, more specifically, Pediococcus parvulus strains isolated from Douro wines. The pathway of this biodegradation was identified previously in other microorganisms. OTA can be degraded through the hydrolysis of the amide bond that links the L-β-phenylalanine molecule to the ochratoxin alpha (OTα) a non toxic compound. It is known that some peptidases from different origins can mediate the hydrolysis reaction like, carboxypeptidase A an enzyme from the bovine pancreas, a commercial lipase and several commercial proteases. So, we wanted to have a better understanding of this OTA degradation process when LAB are involved and identify which molecules where present in this process. For achieving our aim we used some bioinformatics tools (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV). We also designed specific primers and realized gene specific PCR. The template DNA used came from LAB strains samples of our previous work, and other DNA LAB strains isolated from elderberry fruit, silage, milk and sausages. Through the employment of bioinformatics tools it was possible to identify several proteins belonging to the carboxypeptidase family that participate in the process of OTA degradation, such as serine type D-Ala-D-Ala carboxypeptidase and membrane carboxypeptidase. In conclusions, this work has identified carboxypeptidase proteins being one of the molecules present in the OTA degradation process when LAB are involved.Keywords: carboxypeptidase, lactic acid bacteria, mycotoxins, ochratoxin a.
Procedia PDF Downloads 462492 Improving the Residence Time of a Rectangular Contact Tank by Varying the Geometry Using Numerical Modeling
Authors: Yamileth P. Herrera, Ronald R. Gutierrez, Carlos, Pacheco-Bustos
Abstract:
This research aims at the numerical modeling of a rectangular contact tank in order to improve the hydrodynamic behavior and the retention time of the water to be treated with the disinfecting agent. The methodology to be followed includes a hydraulic analysis of the tank to observe the fluid velocities, which will allow evidence of low-speed areas that may generate pathogenic agent incubation or high-velocity areas, which may decrease the optimal contact time between the disinfecting agent and the microorganisms to be eliminated. Based on the results of the numerical model, the efficiency of the tank under the geometric and hydraulic conditions considered will be analyzed. This would allow the performance of the tank to be improved before starting a construction process, thus avoiding unnecessary costs.Keywords: contact tank, numerical models, hydrodynamic modeling, residence time
Procedia PDF Downloads 168491 Impacts of Hydrologic and Topographic Changes on Water Regime Evolution of Poyang Lake, China
Authors: Feng Huang, Carlos G. Ochoa, Haitao Zhao
Abstract:
Poyang Lake, the largest freshwater lake in China, is located at the middle-lower reaches of the Yangtze River basin. It has great value in socioeconomic development and is internationally recognized as an important lacustrine and wetland ecosystem with abundant biodiversity. Impacted by ongoing climate change and anthropogenic activities, especially the regulation of the Three Gorges Reservoir since 2003, Poyang Lake has experienced significant water regime evolution, resulting in challenges for the management of water resources and the environment. Quantifying the contribution of hydrologic and topographic changes to water regime alteration is necessary for policymakers to design effective adaption strategies. Long term hydrologic data were collected and the back-propagation neural networks were constructed to simulate the lake water level. The impacts of hydrologic and topographic changes were differentiated through scenario analysis that considered pre-impact and post-impact hydrologic and topographic scenarios. The lake water regime was characterized by hydrologic indicators that describe monthly water level fluctuations, hydrologic features during flood and drought seasons, and frequency and rate of hydrologic variations. The results revealed different contributions of hydrologic and topographic changes to different features of the lake water regime.Noticeable changes were that the water level declined dramatically during the period of reservoir impoundment, and the drought was enhanced during the dry season. The hydrologic and topographic changes exerted a synergistic effect or antagonistic effect on different lake water regime features. The findings provide scientific reference for lacustrine and wetland ecological protection associated with water regime alterations.Keywords: back-propagation neural network, scenario analysis, water regime, Poyang Lake
Procedia PDF Downloads 139490 Toxicological Interactions of Silver Nanoparticles and Non-Essential Metals in Human Hepatocarcinoma Cell Line
Authors: Renata Rank Miranda, Arandi Ginane Bezerra, Ciro Alberto Oliveira Ribeiro, Marco AntôNio Ferreira Randi, Carmen Lúcia Voigt, Lilian Skytte, Kaare Lund Rasmussen, Francisco Filipak Neto, Frank Kjeldsen
Abstract:
Synergetic and antagonistic effects of drugs are well-known concerns in pharmacological assessments of dose and toxicity. Similar approach should be used in assessing cellular uptake and cytotoxicity of nanoparticles. Since nanoparticles are released into the aquatic environment they may interact with existing xenobiotics. Here we used biochemical assays and quantitative proteomics to assess the cytotoxicity of silver nanoparticles (AgNP) when human hepatoma HepG2 cells were co-exposed to 2 nm AgNP together with either Cd2+ or Hg2+ ions. Time-course experiments (2h, 4h, and 24h) were conducted to assess the first response to the exposure studies. The general trend was that a synergetic toxicological response was observed in cells exposed to both AgNP and Cd2+ or Hg2+, with AgNP and Cd2+ being more toxic. This was observed by a significant increase in the ROS and superoxide level of >35% in the case of AgNP+Cd2+ compared to the sum of responses of AgNP and Cd2+, individually. Metabolic activity and viability also dropped more for AgNP+Cd2+ (>10%) than for AgNP and Cd2+ combined. We used inductively coupled plasma mass spectrometry to investigate if AgNP facilitates larger influx of toxic metal ions into HepG2 cells. Only Hg2+ ions was found to be more efficiently engulfed as the concentration of Hg2+ was found 2.8 times larger compared to exposure experiments with only Hg2+. This effect was not observed for Cd2+. We now continue with deep proteomics studies to obtain wider details on the mechanism of the toxicity related to AgNP, Cd2+, and AgNP+Cd2+, respectively.Keywords: nanotoxicology, silver nanoparticles, proteomics, human cell line
Procedia PDF Downloads 348489 Bifidobacterial Postbiotics as Health-Promoting Agents in Dairy Products
Authors: Saba Kamalledin Moghadam, Amir M. Mortazavian, Aziz Homayouni-Rad
Abstract:
In the recent decade, bioactive-enriched foods, as well as natural health products, have caught the intention of the general and health-conscious population. In this regard, naturally occurring beneficial microorganisms have been successfully added to various dairy products during fermentation. Bifidobacteria, known as probiotics with a broad range of bioactivities, are commonly used in the dairy industry to naturally enrich dairy products. These bioactive metabolites are industrially and commercially important due to health-promoting activities on the consumers (e.g., anti-hypertensive, anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation, etcetera). This review aims to discuss the potential of bifidobacteria for the elaboration of dairy foods with functional properties and added value.Keywords: dairy, probiotic, postbiotic, bifidobacteria, bifidobacterial postbiotic
Procedia PDF Downloads 171488 Overweight and Neurocognitive Functioning: Unraveling the Antagonistic Relationship in Adolescents
Authors: Swati Bajpai, S. P. K Jena
Abstract:
Background: There is dramatic increase in the prevalence and severity of overweight in adolescents, raising concerns about their psychosocial and cognitive consequences, thereby indicating the immediate need to understand the effects of increased weight on scholastic performance. Although the body of research is currently limited, available results have identified an inverse relationship between obesity and cognition in adolescents. Aim: to examine the association between increased Body Mass Index in adolescents and their neurocognitive functioning. Methods: A case –control study of 28 subjects in the age group of 11-17 years (14 Males and 14 females) was taken on the basis of main inclusion criteria (Body Mass Index). All of them were randomized to (experimental group: overweight) and (control group: normal weighted). A complete neurocognitive assessment was carried out using validated psychological scales namely, Color Progressive Matrices (to assess intelligence); Bender Visual Motor Gestalt Test (Perceptual motor functioning); PGI-Memory Scale for Children (memory functioning) and Malin’s Intelligence Scale Indian Children (verbal and performance ability). Results: statistical analysis of the results depicted that 57% of the experimental group lack in cognitive abilities, especially in general knowledge (99.1±12.0 vs. 102.8±6.7), working memory (91.5±8.4 vs. 93.1±8.7), concrete ability (82.3±11.5 vs. 92.6±1.7) and perceptual motor functioning (1.5±1.0 vs. 0.3±0.9) as compared to control group. Conclusion: Our investigations suggest that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain. Though, larger sample is needed to make more affirmative claims.Keywords: adolescents, body mass index, neurocognition, obesity
Procedia PDF Downloads 487487 The Genus Bacillus, Effect on Commercial Crops of Colombia
Authors: L. C. Sánchez, L. C. Corrales, A. G. Lancheros, E. Castañeda, Y. Ariza, L. S. Fuentes, L. Sierra, J. L. Cuervo
Abstract:
The importance of environment friendly alternatives in agricultural processes is the reason why the research group Ceparium, the Colegio Mayor de Cundinamarca University, Colombia, investigated the genus Bacillus and its applicability for improving crops of economic importance in Colombia. In this investigation, we presented a study in which the genus Bacillus plays a leading role as beneficial microorganism. The objective was to identify the biochemical potential of three indigenous species of Bacillus, which were able to carry out actions for biological control against pathogens and pests or promoted growth to improve productivity of crops in Colombia. The procedures were performed in three phases: first, the production of biomass of an indigenous strain and a reference strain starting from culture media for production of spores and toxins were made. Spore count was done in a Neubauer chamber, concentrations of spores of Bacillus sphaericus were prepared and a bioassay was done at the Laboratory of Entomology at the University Jorge Tadeo Lozano of Plutella xylostella larvae, insect pest of crucifers in several Colombian regions. The second phase included the extraction in the liquid state fermentation, a secondary metabolite that has antibiosis action against fungi, call iturin B, and was obtained from strains of Bacillus subtilis. The molecule was identified using High Resolution Chromatography (HPLC) and its biocontrol effect on Fusarium sp fungus causes vascular wilt in economically important plant varieties, was confirmed using testing of antagonism in Petri dish. In the third phase, an initial procedure in that let recover and identify microorganisms of the genus Bacillus from the rhizosphere in two aromatic herbs, Rosmarinus officinalis and Thymus vulgaris L. was used. Subsequently, testing of antagonism against Fusarium sp were made and an assay was done under greenhouse conditions to observe biocontrol and growth promoting action by comparing growth in length and dry weight. In the first experiment, native Bacillus sphaericus was lethal to 92% Plutella xylostella larvae in 10 DDA. In the second experiment, iturin B was identified and biological control of Fusarium sp was demonstrated. In the third study, all strains demonstrated biological control and the B14 strain identified as Bacillus megaterium increased root length and productivity of the two plants in terms of weight. It was concluded that the native microorganisms of the genus Bacillus has a great biochemical potential that provides a beneficial interactions with plants, improve their growth and development and therefore a greater impact on production.Keywords: genus bacillus, biological control, PGPRs, biochemical potential
Procedia PDF Downloads 435486 Metagenomics, Urinary Microbiome, and Chronic Prostatitis
Authors: Elmira Davasaz Tabrizi, Mushteba Sevil, Ercan Arican
Abstract:
Directly or indirectly, the human microbiome, or the population of bacteria and other microorganisms living in the human body, has been linked with human health. Various research has examined the connection with both illness status and the composition of the human microbiome, even though current studies indicate that the gut microbiome influences the mucosa and immune system. A significant amount of effort is being put into understanding the human microbiome's natural history in terms of health outcomes while also expanding our comprehension of the molecular connections between the microbiome and the host. To maintain health and avoid disease, these efforts ultimately seek to find efficient methods for recovering human microbial communities. This review article describes how the human microbiome leads to chronic diseases and discusses evidence for an important significant disorder that is related to the microbiome and linked to prostate cancer: chronic prostatitis (CP).Keywords: urobiome, chronic prostatitis, metagenomic, urinary microbiome
Procedia PDF Downloads 76485 Effect of Sub Supercritical CO2 Processing on Microflora and Shelf Life Tempe
Authors: M. Kustyawati, F. Pratama, D. Saputra, A. Wijaya
Abstract:
Tempe composes of not only molds but also bacteria and yeasts. The structure of microorganisms needs to be in balance number in order the tempe to be an acceptable quality for an extended time. Sub supercritical carbon dioxide can be a promising preservation method for tempe as it induces microbial inactivation avoiding alterations of its quality attributes. Fresh tempe were processed using supercritical and sub supercritical CO2 for a defined holding times, then the growth ability of molds and bacteria were analyzed. The results showed that the supercritical CO2 processing for 5 minutes reduced the number of bacteria and molds to 0.30 log cycle and 1.17 log cycles, respectively. In addition, sub supercritical CO2 processing for 20 minutes had fungicidal effect against mold tempe; whereas, the sub supercritical CO2 for 10 minutes had reducing effect against bacteria tempe, and had fungistatic affect against mold tempe. It suggested that sub-supercritical CO2 processing for 10 min could be useful alternative technique for preservation of tempe.Keywords: tempe, sub supercritical CO2, fungistatic effect, preservation
Procedia PDF Downloads 269484 Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii
Authors: Mohammadhosein Rahimi, Mohammad Raouf Hosseini, Mehran Bakhshi, Alireza Baghbanan
Abstract:
Silver ions (Ag+) and their compounds are consequentially toxic to microorganisms, showing biocidal effects on many species of bacteria. Silver-phosphate (or silver orthophosphate) is one of these compounds, which is famous for its antimicrobial effect and catalysis application. In the present study, a green method was presented to synthesis silver-phosphate nanoparticles using Sporosarcina pasteurii. The composition of the biosynthesized nanoparticles was identified as Ag3PO4 using X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Also, Fourier Transform Infrared (FTIR) spectroscopy showed that Ag3PO4 nanoparticles was synthesized in the presence of biosurfactants, enzymes, and proteins. In addition, UV-Vis adsorption of the produced colloidal suspension approved the results of XRD and FTIR analyses. Finally, Transmission Electron Microscope (TEM) images indicated that the size of the nanoparticles was about 20 nm.Keywords: bacteria, biosynthesis, silver-phosphate, Sporosarcina pasteurii, nanoparticle
Procedia PDF Downloads 451483 Extract and Naphthoquinone Derivatives from in vitro Culture of an Ascomycetous Marine Fungus with Antibacterial Activity
Authors: Uftah Ali M. Shushni, Viola Stuppec, Ulrike Lindequist
Abstract:
Because of the evolving resistance of microorganisms to existing antibiotics, there is an increasing need for new antibiotics not only in human but also in veterinary medicine. As part of our ongoing work on the secondary metabolites produced by marine fungi, the organic extract of the culture filtrate of an Ascomycetous fungus, which was found on driftwood collected from the coast of the Greifswalder Bodden, Baltic Sea, Germany displayed antimicrobial activity against some fish and human pathogenic bacteria. Bioactivity-guided column chromatographic separation led to the isolation of 6-Deoxybostrycoidin. The structure was determined from the interpretation of spectroscopic data (UV, MS, and NMR). 6-Deoxybostrycoidin exhibited in vitro activity against Bacillus subtilis, Staphylococcus aureus and Flexibacter maritimus with minimal inhibitory concentrations of 25, 12.5 and 12.5 μg/ml respectively.Keywords: marine fungi, fish pathogenic bacteria, microorganism, medicine
Procedia PDF Downloads 529482 Structural and Morphological Characterization of the Biomass of Aquatics Macrophyte (Egeria densa) Submitted to Thermal Pretreatment
Authors: Joyce Cruz Ferraz Dutra, Marcele Fonseca Passos, Rubens Maciel Filho, Douglas Fernandes Barbin, Gustavo Mockaitis
Abstract:
The search for alternatives to control hunger in the world, generated a major environmental problem. Intensive systems of fish production can cause an imbalance in the aquatic environment, triggering the phenomenon of eutrophication. Currently, there are many forms of growth control aquatic plants, such as mechanical withdrawal, however some difficulties arise for their final destination. The Egeria densa is a species of submerged aquatic macrophyte-rich in cellulose and low concentrations of lignin. By applying the concept of second generation energy, which uses lignocellulose for energy production, the reuse of these aquatic macrophytes (Egeria densa) in the biofuels production can turn an interesting alternative. In order to make lignocellulose sugars available for effective fermentation, it is important to use pre-treatments in order to separate the components and modify the structure of the cellulose and thus facilitate the attack of the microorganisms responsible for the fermentation. Therefore, the objective of this research work was to evaluate the structural and morphological transformations occurring in the biomass of aquatic macrophytes (E.densa) submitted to a thermal pretreatment. The samples were collected in an intensive fish growing farm, in the low São Francisco dam, in the northeastern region of Brazil. After collection, the samples were dried in a 65 0C ventilation oven and milled in a 5mm micron knife mill. A duplicate assay was carried, comparing the in natural biomass with the pretreated biomass with heat (MT). The sample (MT) was submitted to an autoclave with a temperature of 1210C and a pressure of 1.1 atm, for 30 minutes. After this procedure, the biomass was characterized in terms of degree of crystallinity and morphology, using X-ray diffraction (XRD) techniques and scanning electron microscopy (SEM), respectively. The results showed that there was a decrease of 11% in the crystallinity index (% CI) of the pretreated biomass, leading to the structural modification in the cellulose and greater presence of amorphous structures. Increases in porosity and surface roughness of the samples were also observed. These results suggest that biomass may become more accessible to the hydrolytic enzymes of fermenting microorganisms. Therefore, the morphological transformations caused by the thermal pretreatment may be favorable for a subsequent fermentation and, consequently, a higher yield of biofuels. Thus, the use of thermally pretreated aquatic macrophytes (E.densa) can be an environmentally, financially and socially sustainable alternative. In addition, it represents a measure of control for the aquatic environment, which can generate income (biogas production) and maintenance of fish farming activities in local communities.Keywords: aquatics macrophyte, biofuels, crystallinity, morphology, pretreatment thermal
Procedia PDF Downloads 330481 Nano Gold and Silver for Control of Mosquitoes Manipulating Nanogeometries
Authors: Soam Prakash, Namita Soni
Abstract:
The synthesis of metallic nanoparticles is an active area of academic and more significantly, applied research in nanotechnology. Currently, nanoparticle research is an area of intense scientific interest. Silver (Ag) and Gold (Au) nanoparticles (NPs) have been the focus of fungi and plant based syntheses. Silver and gold nanoparticles are nanoparticles of silver and gold. These particles are of between 1 nm and 100 nm in size. Silver and gold have been use in the wide variety of potential applications in biomedical, optical, electronic field, treatment of burns, wounds, and several bacterial infections. There is a crucial need to produce new insecticides due to resistance and high-cost of organic insecticides which are more environmentally-friendly, safe, and target-specific. Synthesizing nanoparticles using plants and microorganisms can eliminate this problem by making the nanoparticles more biocompatible. Here we reviewed the mosquitocidal and antimicrobials activity of silver and gold nanoparticles using fungi, plants as well as bacteria.Keywords: nano gold, nano silver, Malaria, Chikengunia, dengue control
Procedia PDF Downloads 436480 Cotton Fabrics Functionalized with Green and Commercial Ag Nanoparticles
Authors: Laura Gonzalez, Santiago Benavides, Martha Elena Londono, Ana Elisa Casas, Adriana Restrepo-Osorio
Abstract:
Cotton products are sensitive to microorganisms due to its ability to retain moisture, which might cause change into the coloration, mechanical properties reduction or foul odor generation; consequently, this represents risks to the health of users. Nowadays, have been carried out researches to give antibacterial properties to textiles using different strategies, which included the use of silver nanoparticles (AgNPs). The antibacterial behavior can be affected by laundering process reducing its effectiveness. In the other way, the environmental impact generated for the synthetic antibacterial agents has motivated to seek new and more ecological ways for produce AgNPs. The aims of this work are to determine the antibacterial activity of cotton fabric functionalized with green (G) and commercial (C) AgNPs after twenty washing cycles, also to evaluate morphological and color changes. A plain weave cotton fabric suitable for dyeing and two AgNPs solutions were use. C a commercial product and G produced using an ecological method, both solutions with 0.5 mM concentration were impregnated on cotton fabric without stabilizer, at a liquor to fabric ratio of 1:20 in constant agitation during 30min and then dried at 70 °C by 10 min. After that the samples were subjected to twenty washing cycles using phosphate-free detergent simulated on agitated flask at 150 rpm, then were centrifuged and dried on a tumble. The samples were characterized using Kirby-Bauer test determine antibacterial activity against E. coli y S. aureus microorganisms, the results were registered by photographs establishing the inhibition halo before and after the washing cycles, the tests were conducted in triplicate. Scanning electron microscope (SEM) was used to observe the morphologies of cotton fabric and treated samples. The color changes of cotton fabrics in relation to the untreated samples were obtained by spectrophotometer analysis. The images, reveals the presence of inhibition halo in the samples treated with C and G AgNPs solutions, even after twenty washing cycles, which indicated a good antibacterial activity and washing durability, with a tendency to better results against to S. aureus bacteria. The presence of AgNPs on the surface of cotton fiber and morphological changes were observed through SEM, after and before washing cycles. The own color of the cotton fiber has been significantly altered with both antibacterial solutions. According to the colorimetric results, the samples treated with C lead to yellowing while the samples modified with G to red yellowing Cotton fabrics treated AgNPs C and G from 0.5 mM solutions exhibited excellent antimicrobial activity against E. coli and S. aureus with good laundering durability effects. The surface of the cotton fibers was modified with the presence of AgNPs C and G due to the presence of NPs and its agglomerates. There are significant changes in the natural color of cotton fabric due to deposition of AgNPs C and G which were maintained after laundering process.Keywords: antibacterial property, cotton fabric, fastness to wash, Kirby-Bauer test, silver nanoparticles
Procedia PDF Downloads 246479 Biotransformation of Monoterpenes by Whole Cells of Eleven Praxelis clematidea-Derived Endophytic Fungi
Authors: Daomao Yang, Qizhi Wang
Abstract:
Monoterpenoids are mainly found in plant essential oils and they are ideal substrates for biotransformation into oxygen-containing derivatives with important commercial value due to their low price and simple structure. In this paper, eleven strains of endophytic fungi from Praxelis clematidea were used as test strains to conduct the whole cell biotransformation of the monoterpenoids: (+)-limonene, (-)-limonene and myrcene. The fungi were inoculated in 50 ml Sabouraud medium and incubated at 30 ℃ with the agitation of 150 r/min for 6 d, and then 0.5% (v/v) substrates were added into the medium and biotransformed for further 3 d. Afterwards the cultures were filtered, and extracted using equal volume of ethyl acetate. The metabolites were analyzed by GC-MS technique with NIST database. The Total Ion Chromatogram of the extractions from the eleven strains showed that the main product of (+)- and (-)-limonene biotransformation was limonene-1,2-diol, while it is limonene and linalool oxide for biotransformation of myrcene. This work will help screen the microorganisms to biotransform the monoterpenes.Keywords: endophytic fungi, (+)–limonene, (-)–limonene, myrcene
Procedia PDF Downloads 126478 Isolation and Identification of the Dominant Flora of the Intestinal Microbiota of Rattus norvegicus an Algerian Firm West
Authors: Karima Ould Yerou, B. Meddah, A. Tir Touil
Abstract:
The intestinal flora also called the intestinal microbiota, consists of different bacteria and other microorganisms which occur naturally in the gastrointestinal tract organs components. These intestinal bacteria are present in their millions and help the functioning of the body in particular allowing aid to degradation of certain molecules into absorbable substrates. They also protect against invasion of the gut by other pathogenic bacteria, that is to say which may be responsible for disease. Factors like stress, antibiotics and diet can affect the balance of intestinal flora and in case of imbalance, digestive disorders type bloating, diarrhea or vomiting may occur. Rattus norvegicus of bad weight of 100 kg, an Algerian firm West are scarified and isolation of their ileum and colon respectively two Bactrian strains Escherichia coli and Lactobacillus are then purified and identified.Keywords: intestinal flora, Rattus norvegicus, Escherichia coli, lactobacillus, West Algerian farm
Procedia PDF Downloads 339477 The Effects of Salts Concentration into Microbiological, Physio-Chemical and Sensory Properties of Tempoyak (Indonesian Fermented Durian Flesh)
Authors: Addion Nizori, Mursalin, Dharia Renathe, Lavlinesia, Fitry Tafzi
Abstract:
Tempoyak was made from fermented durian flesh, which very popular among Jambi people Indonesia. This study aims to isolate and identification of bacteria developed during fermentations, determine physical-chemical properties of Tempoyak as the effect of adding salts at various concentration and the sensory evaluations of Tempoyak produced is also evaluated. The predominant microorganisms present in Tempoyak were Lactobacillus bacteria. The results also showed that the level of salts concentration has a significant effect on pH, lactic acid content, however, not has a significant impact on sensory evaluations. The best results were 3% of adding salts with the product properties of pH 3.64, lactic acid content 3.11% and overall acceptance score is 3.41.Keywords: Tempoyak, fermented foods, salts, sensory
Procedia PDF Downloads 200476 Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons.Keywords: forest soil, mineralization rate, heterotroph, soil respiration rate
Procedia PDF Downloads 336475 Social Freedom and Real Utopias: Making ‘Eroding Capitalism’ a Theme in Axel Honneth’s Theory of Socialism
Authors: Yotaro Natani
Abstract:
In his recent works, Frankfurt School theorist Axel Honneth elucidates an intersubjective notion of social freedom and outlines a vision of socialism as the realization of social freedom in the family, market economy, and public sphere. These arguments are part of his broader project of defending the tradition of immanent critique and normative reconstruction. In contrast, American Marxist sociologist Erik Olin Wright spells out a vision of socialism in terms of building real utopias -democratic, egalitarian, alternative institutions- through the exercise of civil society’s social power over the economy and state. Wright identifies ‘eroding capitalism’ as the framework for thinking about the strategic logics of gradually diminishing the dominance of capitalism. Both thinkers envision the transition toward socialism in terms of democratic experimentation; Honneth is more attentive to the immanent norms of social life, whereas Wright is better aware of the power of antagonistic structures. This paper attempts to synthesize the ideas of Honneth and Wright. It will show that Honneth’s critique of capitalism suffers from certain ambiguities because he attributes normative legitimacy to existing institutions, resulting in arguments that do not problematize aspects of capitalist structures. This paper will argue that incorporating the notion of power and thematizing the erosion of capitalism as a long-term goal for socialist change will allow Honneth to think more precisely about the conditions for realizing social freedom, in a manner that is still consistent with the immanent critique tradition. Such reformulation will result in a concept of social freedom that is less static and rooted in functional teleology and more oriented toward creative agency and experimental democracy.Keywords: Axel Honneth, immanent critique, real utopias, social freedom, socialism
Procedia PDF Downloads 145474 Stabilization of y-Sterilized Food, Packaging Materials by Synergistic Mixtures of Food-Contact Approval Stabilizers
Authors: Sameh A. S. Thabit Alariqi
Abstract:
Food is widely packaged with plastic materials to prevent microbial contamination and spoilage. Ionizing radiation is widely used to sterilize the food-packaging materials. Sterilization by γ-radiation causes degradation for the plastic packaging materials such as embrittlement, stiffening, softening, discoloration, odour generation, and decrease in molecular weight. Many antioxidants can prevent γ-degradation but most of them are toxic. The migration of antioxidants to its environment gives rise to major concerns in case of food packaging plastics. In this attempt, we have aimed to utilize synergistic mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene-diene terpolymer (EPDM) have been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organo-phosphites (hydroperoxide decomposer). Results were discussed by comparing the stabilizing efficiency of mixtures with and without phenol system. Among phenol containing systems where we mostly observed discoloration due to the oxidation of hindered phenol, the combination of secondary HAS, tertiary HAS, organo-phosphite and hindered phenol exhibited improved stabilization efficiency than single or binary additive systems. The mixture of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization. However, the combination of organo-phosphite with secondary HAS, tertiary HAS and phenol antioxidants have been found to give synergistic even at higher doses of -sterilization. The effects have been explained through the interaction between the stabilizers. After γ-irradiation, the consumption of oligomeric stabilizer significantly depends on the components of stabilization mixture. The effect of the organo-phosphite antioxidant on the overall stability has been discussed.Keywords: ethylene-propylene-diene terpolymer, synergistic mixtures, gamma sterilization, gamma stabilization
Procedia PDF Downloads 440473 Water Sorption of Self Cured Resin Acrylic Soaked in Clover Solution
Authors: Hermanto J. M, Mirna Febriani
Abstract:
Resin acrylic, which is widely used, has the physical properties that can absorb liquids. This can lead to a change in the dimensions of the acrylic resin material. If repeated immersions were done, its strength would be affected. Disinfectant solutions have been widely used to reduce microorganisms both inside and outside the patient's mouth. One of the disinfecting materials that can be used is a clover solution. The purpose of this research is to find the ratio of water absorption of the acrylic resin material of self-cured type, soaked in clover solution for 10 minutes. The results showed that the average value obtained before soaked in clover solution was 0.0692 mg/cm3 and after soaked, in clover solution, the value was 0.090 mg/cm3. The conclusion of this research shows that the values of water sorption of acrylic resin before and after soaked in clover solution is still in ISO standard 1567/2001. Differences in water sorption value of self-cured acrylic resin before and after the immersion are caused by the process of liquid diffusion into the acrylic resin.Keywords: absorption of fluid, self-cured acrylic resin, soaked, clover solution
Procedia PDF Downloads 163472 Evaluation of Oral Biofilm Suppression by Carribean Herbal Extracts
Authors: Ravi Teja Chitturi Suryaprakash, Chandrashekhar Unakal, Haytham Al-Bayaty, Duraisamy Saravanakumar
Abstract:
Background and significance: Oral biofilm formation is a well-known causative factor for caries and periodontal diseases. Scientists over the years have been trying to find a solution against the formation of oral biofilms. Though several advances have been made to understand the microbial ecology and how the bio film survives, it is still an enigma to researchers to find a chemical product that not only can inhibit the formation of oral bio film but also not disturb the oral micro flora required for oral health and not to cause damage to the cells of the oral cavity. One such product that has never been investigated much are herbal preparations. Some of the microorganisms important in the formation of biofilm are Streptococcus mutans, Actinomyces naeslundi, Streptococuss oralis and Prevotella intermedia. The aim of this study was to study the antimicrobial property of some herbal extracts available in Trinidad and Tobago against these pathogens. The significance of this study is that identification of biologically effective plant extracts can result in indigenous development of mouth rinses and tooth pastes that the people can benefit from to not only develop effective but also a cheap solution. Methodology: The extracts from the leaves of Plectranthus ambonicus, Ocmium tenuiflorum, Azadirchata indica, Anacardium occidentale, Psidium guajava were prepared by dissolving them in water. The extracts from the roots of Curcuma longa were prepared similarly and the antimicrobial activity of these six plant extracts was determined by the agar well diffusion method using minimum inhibitory concentration (MIC) against Streptococcus mutans, Actinomyces naeslundi, Streptococuss oralis and Prevotella intermedia and compared with chlorhexidine. Results: The six plant extracts showed variable effect on the oral micro-organisms. Ocmium tenuiflorum (16.66 ± 0.44, 14 ± 0.58, 13.33 ± 0.88, 12.83 ± 0.60), Azadirchata indica (17.5 ± 0.28, 14.83 ± 0.17, 15 ± 0.58, 12.83 ± 0.6) and Curcuma longa (16.16 ± 0.44, 13.66 ± 0.88, 12.33 ± 0.88, 11.33 ± 0.67) were found to have highest inhibitory activity against all the four pathogens (Streptococcus mutans, Streptococuss oralis, Actinomyces naeslundi, and Prevotella intermedia) respectively. Conclusion: Although the extracts were not pure compounds we obtained antimicrobial results which determine that they are potent antimicrobial agents. Further derivation of pure compounds from these extracts could be lucrative as it might lead to the development of a cost effective and biologically safe medicine to act against oral biofilms. Acknowledgement: The authors would like to acknowledge the Campus Research and Publication Fund Committee, The University of the West Indies for funding this study and would also like to acknowledge Dr. Leonette Cox, Department of Chemistry, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago for helping to prepare the plant extracts.Keywords: agar well diffusion method, herbal extracts, minimum inhibitory concentration, oral biofilm forming microorganisms
Procedia PDF Downloads 181471 MicroRNA Expression Distinguishes Neutrophil Subtypes
Authors: R. I. You, C. L. Ho, M. S. Dai, H. M. Hung, S. F. Yen, C. S. Chen, T. Y. Chao
Abstract:
Neutrophils are the most abundant innate immune cells to against invading microorganisms. Numerous data shown neutrophils have plasticity in response to physiological and pathological conditions. Tumor-associated neutrophils (TAN) exist in distinct types of tumor and play an important role in cancer biology. Different transcriptomic profiles of neutrophils in tumor and non-tumor samples have been identified. Several miRNAs have been recognized as regulators of gene expression in neutrophil, which may have key roles in neutrophil activation. However, the miRNAs expression patterns in TAN are not well known. To address this question, magnetic bead isolated neutrophils from tumor-bearing mice were used in this study. We analyzed production of reactive oxygen species (ROS) by luminol-dependent chemiluminescence assay. The expression of miRNAs targeting NADPH oxidase, ROS generation and autophagy was explored using quantitative real-time polymerase chain reaction. Our data suggest that tumor environment influence neutrophil develop to differential states of activation via miRNAs regulation.Keywords: tumor-associated neutrophil, miRNAs, neutrophil, ROS
Procedia PDF Downloads 470470 Controlling Olive Anthracnose with Antifungal Metabolites from Bacillus Species: A Biological Approach
Authors: Hafiz Husnain Nawaz
Abstract:
Anthracnose disease in olive, caused by the fungal pathogen Colletotrichum acutatum, is considered one of the most critical issues in olive orchards in Pakistan. This disease poses a significant threat as it results in infections that can lead to the complete damage of olive plants, affecting leaves, stems, and fruits in the field. Controlling this disease is particularly challenging due to the absence of an effective fungicide that does not pose risks to farmer health and the environment. To address this challenge, our study aimed to evaluate the antagonistic activity of a biosurfactant produced by the Bacillus subtilis PE-07 strain against the anthracnose-causing agent in olive plants. This strain was selected after screening sixty rhizobacteria strains. Additionally, we assessed the heat stability, pH range, and toxicity of the biosurfactant produced by strain PE-07. Our results revealed that the biosurfactant exhibited maximum antifungal activity against C. acutatum. In vitro studies indicated that the biosurfactant could reduce fungal activity by inhibiting the spore germination of C. acutatum. Furthermore, the biosurfactant demonstrated a wide pH and temperature range, displaying antifungal activity at pH levels ranging from 5 to 10 and a temperature range from room temperature to 110°C. To evaluate the biosurfactant's safety, we conducted toxicity tests on zebra fish (Danio rerio). The results showed that the biosurfactant had minimal harmful effects, even at maximum concentrations. In conclusion, our study confirmed that the biosurfactant produced by B. subtilis exhibited high pH and heat stability with minimal harmful effects. Therefore, it presents a promising alternative to chemical pesticides for effectively controlling olive anthracnose in Pakistan.Keywords: biological control, heat stability and PH range, toxicity, Danio rerio
Procedia PDF Downloads 60469 The Effect of Parameter Controls for Manure Composting in Waste Recycling Process
Authors: Junyoung Kim, Shangwha Cha, Soomee Kang, Jake S. Byun
Abstract:
This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventionalKeywords: manure composting, odor removal, parameter control, waste recycling
Procedia PDF Downloads 310