Search results for: water resource
8406 Fuzzy Nail Cream Formula Treatment with Basic Iranian Traditional Medicine
Authors: Elahe Najafizade, Ahmad Mohammad Alkhateeb, Seyed Ali Hossein Zahraei, Iman Dianat
Abstract:
Introduction: Hangnails are short, torn, down parts of the skin surrounding the nails. At times they are very painful. The usual treatment advised is cutting the excess skin with clippers or scissors. To provide instant relief to the patients, we describe a simpler and more effective way to use surgical glue to paste them back into their original position. Method: The cream should not be on the heat; it is on the bain-marie. To achieve the desired emulsifier, 1 gram of borax was mixed in 10 grams of distilled water in a bain-marie until it melted, then stirred oserin, beeswax, and oil in the bain-marie until it melted. After that, 32 grams of distilled water was added little by little. We add and stir and gradually add the borax dissolved in 10 grams of distilled water. The bowl of cream was placed in a bowl of cold water and stirred until the cream was smooth. After that, we add gasoline, alcohol, or methylparaben preservatives. It should be noted that this amount of ingredients is enough for a 350-gram can (when we prepare the cream, we also add the extract). Result: The patient was a 40-year-old female with a hangnail problem that had been used several different creams and Vaseline, but the treatment was not useful, but after this cream was applied for treatment; the hangnail started to cure within one week, and complete treatment achieved after two weeks. Conclusion: Traditional methods with modification without using chemical substances somehow work better and safer, so research programs on them will be useful for less risky treatment procedures.Keywords: nail, cream, formula, traditional medicine
Procedia PDF Downloads 1138405 Dynamic Mechanical Analysis of Supercooled Water in Nanoporous Confinement and Biological Systems
Authors: Viktor Soprunyuk, Wilfried Schranz, Patrick Huber
Abstract:
In the present work, we show that Dynamic Mechanical Analysis (DMA) with a measurement frequency range f= 0.2 - 100 Hz is a rather powerful technique for the study of phase transitions (freezing and melting) and glass transitions of water in geometrical confinement. Inserting water into nanoporous host matrices, like e.g. Gelsil (size of pores 2.6 nm and 5 nm) or Vycor (size of pores 10 nm) allows one to study size effects occurring at the nanoscale conveniently in macroscopic bulk samples. One obtains valuable insight concerning confinement induced changes of the dynamics by measuring the temperature and frequency dependencies of the complex Young's modulus Y* for various pore sizes. Solid-liquid transitions or glass-liquid transitions show up in a softening or the real part Y' of the complex Young's modulus, yet with completely different frequency dependencies. Analysing the frequency dependent imaginary part of the Young´s modulus in the glass transition regions for different pore sizes we find a clear-cut 1/d-dependence of the calculated glass transition temperatures which extrapolates to Tg(1/d=0)=136 K, in agreement with the traditional value of water. The results indicate that the main role of the pore diameter is the relative amount of water molecules that are near an interface within a length scale of the order of the dynamic correlation length x. Thus we argue that the observed strong pore size dependence of Tg is an interfacial effect, rather than a finite size effect. We obtained similar signatures of Y* near glass transitions in different biological objects (fruits, vegetables, and bread). The values of the activation energies for these biological materials in the region of glass transition are quite similar to the values of the activation energies of supercooled water in the nanoporous confinement in this region. The present work was supported by the Austrian Science Fund (FWF, project Nr. P 28672 – N36).Keywords: biological systems, liquids, glasses, amorphous systems, nanoporous materials, phase transition
Procedia PDF Downloads 2388404 Evaluation of Iron Application Method to Remediate Coastal Marine Sediment
Authors: Ahmad Seiar Yasser
Abstract:
Sediment is an important habitat for organisms and act as a store house for nutrients in aquatic ecosystems. Hydrogen sulfide is produced by microorganisms in the water columns and sediments, which is highly toxic and fatal to benthic organisms. However, the irons have the capacity to regulate the formation of sulfide by poising the redox sequence and to form insoluble iron sulfide and pyrite compounds. Therefore, we conducted two experiments aimed to evaluate the remediation efficiency of iron application to organically enrich and improve sediments environment. Experiments carried out in the laboratory using intact sediment cores taken from Mikawa Bay, Japan at every month from June to September 2017 and October 2018. In Experiment 1, after cores were collected, the iron powder or iron hydroxide were applied to the surface sediment with 5 g/ m2 or 5.6 g/ m2, respectively. In Experiment 2, we experimentally investigated the removal of hydrogen sulfide using (2mm or less and 2 to 5mm) of the steelmaking slag. Experiments are conducted both in the laboratory with the same boundary conditions. The overlying water were replaced with deoxygenated filtered seawater, and cores were sealed a top cap to keep anoxic condition with a stirrer to circulate the overlying water gently. The incubation experiments have been set in three treatments included the control, and each treatment replicated and were conducted with the same temperature of the in-situ conditions. Water samples were collected to measure the dissolved sulfide concentrations in the overlying water at appropriate time intervals by the methylene blue method. Sediment quality was also analyzed after the completion of the experiment. After the 21 days incubation, experimental results using iron powder and ferric hydroxide revealed that application of these iron containing materials significantly reduced sulfide release flux from the sediment into the overlying water. The average dissolved sulfides concentration in the overlying water of the treatment group was significantly decrease (p = .0001). While no significant difference was observed between the control group after 21 day incubation. Therefore, the application of iron to the sediment is a promising method to remediate contaminated sediments in a eutrophic water body, although ferric hydroxide has better hydrogen sulfide removal effects. Experiments using the steelmaking slag also clarified the fact that capping with (2mm or less and 2 to 5mm) of slag steelmaking is an effective technique for remediation of bottom sediments enriched organic containing hydrogen sulfide because it leads to the induction of chemical reaction between Fe and sulfides occur in sediments which did not occur in conditions naturally. Although (2mm or less) of slag steelmaking has better hydrogen sulfide removal effects. Because of economic reasons, the application of steelmaking slag to the sediment is a promising method to remediate contaminated sediments in the eutrophic water body.Keywords: sedimentary, H2S, iron, iron hydroxide
Procedia PDF Downloads 1638403 Chemical Amelioration of Expansive Soils
Authors: B. R. Phanikumar, Sana Suri
Abstract:
Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures found in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and also to improve their engineering behaviour.Keywords: expansive soils, swelling, shrinkage, amelioration, lime, calcium chloride
Procedia PDF Downloads 3158402 Revitalizing Coastal Ecosystems: Evaluating the Costs and Benefits of Restoring Clam Gardens for Indigenous Communities in British Columbia
Authors: Daniel Chen, Chengyi Li, Naifu Xu, Shangxuan Yang
Abstract:
Climate change has led to substantial changes in coastal ecosystems, including elevated ocean temperatures, increased acidity, and disrupted marine habitats. These environmental impacts have also resulted in the decline of traditional Indigenous food sources on the coast of British Columbia, including clams and salmon, which have been essential to the diet and cultural practices of the coastal Indigenous communities. This research evaluates and analyzes the costs and benefits of restoring and building clam gardens, an ancestral Indigenous mariculture technique in the Pacific Northwest. Clam gardens, which involve the construction of intertidal rock walls to enhance clam production, have been shown to more than triple clam yields compared to non-walled beaches. This research analyzes the costs and benefits to Indigenous individuals, including factors such as travel, equipment, time, food supply, and cultural engagement; then it discusses the potential of clam gardens as a significant food resource with additional environmental co-benefits, given the prevalence of clam gardens and coastlines in British Columbia. Moreover, the study concludes with policy recommendations to support the restoration and preservation of clam gardens, highlighting their potential to provide sustainable seafood production, environmental co-benefits, and social-environmental educational opportunities for Indigenous communities and the wider public.Keywords: British Columbia coastline, clam garden, coastal resource management, Indigenous communities
Procedia PDF Downloads 228401 Embracing Circular Economy: Unlocking Sustainable Growth in Emerging Markets
Authors: Mario Jose Paillacho Silva, José Ángel Pérez López
Abstract:
This article delves into the critical role of circular economy principles in unlocking sustainable growth and addressing environmental inequalities in emerging markets. Circular economy practices, rooted in regenerative systems and resource conservation, offer a transformative pathway for dynamic economies to achieve prosperity while minimizing environmental impact. The article comprehensively explores the understanding of the circular economy in emerging markets, emphasizing its economic benefits, social implications, and environmental advantages. It highlights key challenges and opportunities faced by these markets and emphasizes the crucial role of governments in creating supportive policy frameworks. It emphasizes how circular economy practices empower local communities and promote social inclusion and equality. Furthermore, the article underscores how the adoption of circular economy practices can mitigate waste, pollution, and resource scarcity, thus contributing to climate change mitigation and adaptation. Integrating circular economy principles with the United Nations' sustainable development goals (SDGs), the article showcases the potential of circularity in fostering responsible consumption and production, sustainable economic growth, and environmental protection. Overall, the article advocates for cross-sector collaboration and knowledge sharing to overcome barriers and scale circular economy practices in emerging markets, ultimately leading to a more equitable, prosperous, and environmentally sustainable future.Keywords: circular economy, sustainability, emerging markets, circularity
Procedia PDF Downloads 818400 Investigating the Environmental Impact of Additive Manufacturing Compared to Conventional Manufacturing through Life Cycle Assessment
Authors: Gustavo Menezes De Souza Melo, Arnaud Heitz, Johannes Henrich Schleifenbaum
Abstract:
Additive manufacturing is a growing market that is taking over in many industries as it offers numerous advantages like new design possibilities, weight-saving solutions, ease of manufacture, and simplification of assemblies. These are all unquestionable technical or financial assets. As to the environmental aspect, additive manufacturing is often discussed whether it is the best solution to decarbonize our industries or if conventional manufacturing remains cleaner. This work presents a life cycle assessment (LCA) comparison based on the technological case of a motorbike swing-arm. We compare the original equipment manufacturer part made with conventional manufacturing (CM) methods to an additive manufacturing (AM) version printed using the laser powder bed fusion process. The AM version has been modified and optimized to achieve better dynamic performance without any regard to weight saving. Lightweight not being a priority in the creation of the 3D printed part brings us a unique perspective in this study. To achieve the LCA, we are using the open-source life cycle, and sustainability software OpenLCA combined with the ReCiPe 2016 at midpoint and endpoint level method. This allows the calculation and the presentation of the results through indicators such as global warming, water use, resource scarcity, etc. The results are then showing the relative impact of the AM version compared to the CM one and give us a key to understand and answer questions about the environmental sustainability of additive manufacturing.Keywords: additive manufacturing, environmental impact, life cycle assessment, laser powder bed fusion
Procedia PDF Downloads 2638399 Responses of Grain Yield, Anthocyanin and Antioxidant Capacity to Water Condition in Wetland and Upland Purple Rice Genotypes
Authors: Supaporn Yamuangmorn, Chanakan Prom-U-Thai
Abstract:
Wetland and upland purple rice are the two major types classified by its original ecotypes in Northern Thailand. Wetland rice is grown under flooded condition from transplanting until the mutuality, while upland rice is naturally grown under well-drained soil known as aerobic cultivations. Both ecotypes can be grown and adapted to the reverse systems but little is known on its responses of grain yield and qualities between the 2 ecotypes. This study evaluated responses of grain yield as well as anthocyanin and antioxidant capacity between the wetland and upland purple rice genotypes grown in the submerged and aerobic conditions. A factorial arrangement in a randomized complete block design (RCBD) with two factors of rice genotype and water condition were carried out in three replications. The two wetland genotypes (Kum Doi Saket: KDK and Kum Phayao: KPY) and two upland genotypes (Kum Hom CMU: KHCMU and Pieisu1: PES1) were used in this study by growing under submerged and aerobic conditions. Grain yield was affected by the interaction between water condition and rice genotype. The wetland genotypes, KDK and KPY grown in the submerged condition produced about 2.7 and 0.8 times higher yield than in the aerobic condition, respectively. The 0.4 times higher grain yield of upland genotype (PES1) was found in the submerged condition than in the aerobic condition, but no significant differences in KHCMU. In the submerged condition, all genotypes produced higher yield components of tiller number, panicle number and percent filled grain than in the aerobic condition by 24% and 32% and 11%, respectively. The thousand grain weight and spikelet number were affected by water condition differently among genotypes. The wetland genotypes, KDK and KPY, and upland genotype, PES1, grown in the submerged condition produced about 19-22% higher grain weight than in the aerobic condition. The similar effect was found in spikelet number which the submerged condition of wetland genotypes, KDK and KPY, and the upland genotype, KHCMU, had about 28-30% higher than the aerobic condition. In contrast, the anthocyanin concentration and antioxidant capacity were affected by both the water condition and genotype. Rice grain grown in the aerobic condition had about 0.9 and 2.6 times higher anthocyanin concentration than in the submerged condition was found in the wetland rice, KDK and upland rice, KHCMU, respectively. Similarly, the antioxidant capacity of wetland rice, KDK and upland rice, KHCMU were 0.5 and 0.6 times higher in aerobic condition than in the submerged condition. There was a negative correlation between grain yield and anthocyanin concentration in wetland genotype KDK and upland genotype KHCMU, but it was not found in the other genotypes. This study indicating that some rice genotype can be adapted in the reverse ecosystem in both grain yield and quality, especially in the wetland genotype KPY and upland genotype PES1. To maximize grain yield and quality of purple rice, proper water management condition is require with a key consideration on difference responses among genotypes. Increasing number of rice genotypes in both ecotypes is needed to confirm their responses on water management.Keywords: purple rice, water condition, anthocyanin, grain yield
Procedia PDF Downloads 1608398 Potentials and Challenges of Implementing Participatory Irrigation Management, Tanzania
Authors: Pilly Joseph Kagosi
Abstract:
The study aims at assessing challenges observed during implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation and literature review. Data collected from questionnaire was analyzed using SPSS while PRA data was analyzed with the help of local communities during PRA exercise. Data from other methods were analyzed using content analysis. The study revealed that PIM approach has contribution in improved food security at household level due to involvement of communities in water management activities and decision making which enhanced availability of water for irrigation and increased crop production. However there were challenges observed during implementation of the approach including; minimum participation of beneficiaries in decision making during planning and designing stages, meaning inadequate devolution of power among scheme owners; Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that, the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.Keywords: potentials of implementing participatory approach, challenges of participatory approach, irrigation management, Tanzania
Procedia PDF Downloads 3058397 An Integrated Geophysical Investigation for Earthen Dam Inspection: A Case Study of Huai Phueng Dam, Udon Thani, Northeastern Thailand
Authors: Noppadol Poomvises, Prateep Pakdeerod, Anchalee Kongsuk
Abstract:
In the middle of September 2017, a tropical storm named ‘DOKSURI’ swept through Udon Thani, Northeastern Thailand. The storm dumped heavy rain for many hours and caused large amount of water flowing into Huai Phueng reservoir. Level of impounding water increased rapidly, and the extra water flowed over a service spillway, morning-glory type constructed by concrete material for about 50 years ago. Subsequently, a sinkhole was formed on the dam crest and five points of water piping were found on downstream slope closely to spillway. Three techniques of geophysical investigation were carried out to inspect cause of failures; Electrical Resistivity Imaging (ERI), Multichannel Analysis of Surface Wave (MASW), and Ground Penetrating Radar (GPR), respectively. Result of ERI clearly shows evidence of overtop event and heterogeneity around spillway that implied possibility of previous shape of sinkhole around the pipe. The shear wave velocity of subsurface soil measured by MASW can numerically convert to undrained shear strength of impervious clay core. Result of GPR clearly reveals partial settlements of freeboard zone at top part of the dam and also shaping new refilled material to plug the sinkhole back to the condition it should be. In addition, the GPR image is a main answer to confirm that there are not any sinkholes in the survey lines, only that found on top of the spillway. Integrity interpretation of the three results together with several evidences observed during a field walk-through and data from drilled holes can be interpreted that there are four main causes in this account. The first cause is too much water flowing over the spillway. Second, the water attacking morning glory spillway creates cracks upon concrete contact where the spillway is cross-cut to the center of the dam. Third, high velocity of water inside the concrete pipe sucking fine particle of embankment material down via those cracks and flushing out to the river channel. Lastly, loss of clay material of the dam into the concrete pipe creates the sinkhole at the crest. However, in case of failure by piping, it is possible that they can be formed both by backward erosion (internal erosion along or into embedded structure of spillway walls) and also by excess saturated water of downstream material.Keywords: dam inspection, GPR, MASW, resistivity
Procedia PDF Downloads 2428396 Assessment of Chemical and Physical Properties of Surface Water Resources in Flood Affected Area
Authors: Siti Hajar Ya’acob, Nor Sayzwani Sukri, Farah Khaliz Kedri, Rozidaini Mohd Ghazi, Nik Raihan Nik Yusoff, Aweng A/L Eh Rak
Abstract:
Flood event that occurred in mid-December 2014 in East Coast of Peninsular Malaysia has driven attention from the public nationwide. Apart from loss and damage of properties and belongings, the massive flood event has introduced environmental disturbances on surface water resources in such flood affected area. A study has been conducted to measure the physical and chemical composition of Galas River and Pergau River prior to identification the flood impact towards environmental deterioration in surrounding area. Samples that have been collected were analyzed in-situ using YSI portable instrument and also in the laboratory for acid digestion and heavy metals analysis using Atomic Absorption Spectroscopy (AAS). Results showed that range of temperature (0C), DO (mg/L), Ec (µs/cm), TDS (mg/L), turbidity (NTU), pH, and salinity were 25.05-26.65, 1.51-5.85, 0.032-0.054, 0.022-0.035, 23.2-76.4, 3.46-7.31, and 0.01-0.02 respectively. The results from this study could be used as a primary database to evaluate the status of water quality of the respective river after the massive flood.Keywords: flood, river, heavy metals, AAS
Procedia PDF Downloads 3808395 Efficiency and Limits of Physicochemical Treatment of Dairy Wastewater: A Case Study of Dairy Industry in Western Algeria
Authors: Khedidja Benouis
Abstract:
Environmental issues in the food industry are related to the water because it consumes water and release large volumes of wastewater. The treatment of such discharges techniques can be adapted to different situations encountered. For dairy effluents, it is necessary and very effective to use a treatment that eliminates much of the pollutant load,thus, to drastically reduce the organic loading rate. This study aims to evaluate the Efficiency and limitations of physicochemical treatment by coagulation - flocculation of liquid effluent from this type of food industry in Algeria, to give an example of the type and the degree of pollution generated by this sector and in order to reduce pollution and minimize its environmental issues. Coagulation - flocculation-sedimentation was carried out using lime without addition of additive (flocculant), the processing efficiency is indicated by the concentration of pollutants in treated water. The results show that treatment is not sufficient to remove organic pollution, but it has significantly reduced the Total suspended solids (TSS), nitrate (NO3-N) and phosphate (PO4-P).Keywords: Algeria, coagulation-flocculation, dairy effluent, treatment
Procedia PDF Downloads 4228394 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.Keywords: water inflow, tunnel, discontinues rock, numerical simulation
Procedia PDF Downloads 5248393 Organic Pollution of Waters and Sediments in the Middle and Lower Valley of the Medjerda, Tunisia
Authors: Samia Khadhar, Anis Chekirbene, Nouha Khiari, Amira Mabrouki
Abstract:
The persistent organic pollutants (POPs) in aquatic environments are one of the most worrying problems for environmental sustainability and human health because of their carcinogenic and toxic characteristics. Human anthropogenic actions (wastewater discharges, agricultural and industrial activities) without prior treatment are the main cause of this organic pollution. Oued Madjerda is considered the most important river in Tunisia, hence the importance of assessing the level of organic pollution of water and sediments, taking into account the anthropogenic stress exerted on this river. Water and sediment samples were taken from the middle and lower valley of the Medjerda to determine the state of contamination by 7PCBs, priority 15PAHs, and pesticides. The analysis was performed by gas chromatography (GC) and liquid phase coupled to HPLC MS-MS mass spectroscopy. The results showed that for the waters, the total PAH and PCB contents vary respectively from 0.0023 to 7.72 mg/l and from 0.0001 to 0.179 mg/l. In surface sediments 0 to 15 cm, 7PCB levels vary from 1,112 to 110,062 µg/kg-1. In this study, we tried to determine the concentration of 96 pesticides in surface sediments; analyzes showed the presence of Buprofezin, propamocarb-HCl, hexaconazole, flutriafol, quinalphos, and tebufenpyrad with concentrations varying from 1.06 to 2.388 µg/kg-1. The pace of the spatial variation confirms the impact of wastewater discharged on the quality of water and sediments despite the perennial aspect of the river.Keywords: Wadi Madjerda, organic pollution, water and sediments surface, anthropics stress
Procedia PDF Downloads 1278392 Developing Alternative Recovery Technology of Waste Heat in Automobile Factory
Authors: Kun-Ping Cheng, Dong-Shang Chang, Rou-Wen Wang
Abstract:
Pre-treatment of automobile paint-shop procedures are the preparation of warm water rinsing tank, hot water rinsing tank, degreasing tank, phosphate tank. The conventional boiler steam fuel is natural gas, producing steam to supply the heat exchange of each tank sink. In this study, the high-frequency soldering economizer is developed for recovering waste heat in the automotive paint-shop (RTO, Regenerative Thermal Oxidation). The heat recovery rate of the new economizer is 20% to 30% higher than the conventional embedded heat pipe. The adaptive control system responded to both RTO furnace exhaust gas and heat demands. In order to maintain the temperature range of the tanks, pre-treatment tanks are directly heated by waste heat recovery device (gas-to-water heat exchanger) through the hot water cycle of heat transfer. The performance of developed waste heat recovery system shows the annual recovery achieved to 1,226,411,483 Kcal of heat (137.8 thousand cubic meters of natural gas). Boiler can reduce fuel consumption by 20 to 30 percent compared to without waste heat recovery. In order to alleviate environmental impacts, the temperature at the end of the flue is further reduced from 160 to 110°C. The innovative waste heat recovery is helpful to energy savings and sustainable environment.Keywords: waste heat recovery system, sustainability, RTO (Regenerative Thermal Oxidation), economizer, automotive industry
Procedia PDF Downloads 2628391 Effect of Carbon-Free Fly Ash and Ground Granulated Blast-Furnace Slag on Compressive Strength of Mortar under Different Curing Conditions
Authors: Abdul Khaliq Amiri, Shigeyuki Date
Abstract:
This study investigates the effect of using carbon-free fly ash (CfFA) and ground granulated blast-furnace slag (GGBFS) on the compressive strength of mortar. The CfFA used in this investigation is high-quality fly ash and the carbon content is 1.0% or less. In this study, three types of blends with a 30% water-binder ratio (w/b) were prepared: control, binary and ternary blends. The Control blend contained only Ordinary Portland Cement (OPC), in binary and ternary blends OPC was partially replaced with CfFA and GGBFS at different substitution rates. Mortar specimens were cured for 1 day, 7 days and 28 days under two curing conditions: steam curing and water curing. The steam cured specimens were exposed to two different pre-curing times (1.5 h and 2.5 h) and one steam curing duration (6 h) at 45 °C. The test results showed that water cured specimens revealed higher compressive strength than steam cured specimens at later ages. An increase in CfFA and GGBFS contents caused a decrease in the compressive strength of mortar. Ternary mixes exhibited better compressive strength than binary mixes containing CfFA with the same replacement ratio of mineral admixtures.Keywords: carbon-free fly ash, compressive strength, ground granulated blast-furnace slag, steam curing, water curing
Procedia PDF Downloads 1388390 Orange Peel Extracts (OPE) as Eco-Friendly Corrosion Inhibitor for Carbon Steel in Produced Oilfield Water
Authors: Olfat E. El-Azabawy, Enas M. Attia, Nadia Shawky, Amira M. Hypa
Abstract:
In this work, an attempt is made to study the effects of orange peel extract (OPE) as an environment-friendly corrosion inhibitor for carbon steel (CS) within a formation water solution (FW). The study was performed in different concentrations (0.5-2.5% (v/v)) of peel extracts at ambient temperatures (25oC) and (2.5% (v/v)) at temperature range (25- 55 oC) by weight loss measurements, open circuit potential, potentiodynamic polarization and electrochemical impedance. The inhibition efficiency was calculated from all measurements and confirmed by energy-dispersive X-ray spectroscopy (EDS). Inhibition was found to increase with increasing inhibitors concentration and decrease with increasing temperature. It was seen that IE% is about 92.84% in the presence of 2.5% (v/v) of orange peel inhibitor by using weight loss method. The adsorption process was of physical type and obey Langmuir adsorption isotherm. Also, adsorption, as well as the inhibition process, followed first-order kinetics at all concentrations.Keywords: eco-friendly corrosion inhibitor, OPE, oilfield water, electrochemical impedance
Procedia PDF Downloads 1508389 Tertiary Education Trust Fund Intervention Projects and Resource Utilization in Universities in South Western States, Nigeria
Authors: Oluwlola Felicia Kikelomo
Abstract:
This study examined the influence of Tertiary Education Trust Fund (TETF) intervention projects and resource utilization in universities in South Western State of Nigeria. The study was a descriptive design of the correlation type. Purposive sampling technique was used to select six out of 14 beneficiary universities in the States. Instruments used to collect data were TETF Intervention Projects Checklist (TETFIPC), Educational Facilities Checklists (EFC) and Resources Utilization Checklists (RUC). The research questions raised were answered using percentage and utilization rates, while Pearson product-moment correlation statistic was used to test the hypotheses formulated to guide the study 0.05 level of significance. Findings of the study indicated that building construction had the highest TETF allocation (64.5%), while staff development opportunities had the least (1.1%) in the sampled universities. Significant and positive relationship existed between time and space utilization rates and student academic performance in the universities (r (1,800) = 0.63 and r (1,800) = 0.59, p ≤ 0.05 respectively). Based, on these findings, it was recommended that there should be periodic evaluation of completed TETF projects and utilization to ensure that TETF funds are properly used for the approved projects; and that TETF should improve on the provision of educational facilities to universities for staff and students’ use through increase in education tax from 2% to 4% with collaboration with the world bank and other funding agencies as being practiced in other countries of the world such as Norway, Spain, and United Kingdom.Keywords: tertiary education trust fund, intervention, education, human development
Procedia PDF Downloads 3818388 Evaluation of Pollution in Underground Water from ODO-NLA and OGIJO Metropolis Industrial Areas in Ikorodu
Authors: Zaccheaus Olasupo Apotiola
Abstract:
This study evaluates the level of pollution in underground water from Ogijo and Odo-nla areas in lkorodu, Lagos State. Water sample were collected around various industries and transported in ice packs to the laboratory. Temperature and pH was determined on site, physicochemical parameters and total plate were determined using standard methods, while heavy metal concentration was determined using Atomic Absorption spectrophotometry method. The temperature was observed at a range of 20-28 oC, the pH was observed at a range of 5.64 to 6.91 mol/l and were significantly different (P < 0.05) from one another. The chloride content was observed at a range 70.92 to 163.10 mg/l there was no significant difference (P > 0.05) between sample 40 GAJ and ISUP, but there was significant difference (P < 0.05) between other samples. The acidity value varied from 11.0 – 34.5 (mg/l), the samples had no alkalinity. The Total plate count was found at 20-125 cfu/ml. Asernic, Lead, Cadmium, and Mercury concentration ranged between 0.03 - 0.09, 0.04 - 0.11, 0.00 -0.00, and 0.00 – 0.00(mg/l) respectively. However there was significant difference (p < 0.05) between all samples except for sample 4OGA, 5OGAJ, and 3SUTN that were not significantly different (P > 0.05). The results revealed all samples are not safe for human consumption as the levels of Asernic and Lead are above the maximum value of (0.01 mg/l) recommended by NIS 554 and WHO.Keywords: arsenic, cadmium, lead mercury, WHO
Procedia PDF Downloads 5198387 Distribution and Risk Assessment of Phthalates in Water and Sediment of Omambala River, Anambra State, Nigeria, in Wet Season
Authors: Ogbuagu Josephat Okechukwu, Okeke Abuchi Princewill, Arinze Rosemary Uche, Tabugbo Ifeyinwa Blessing, Ogbuagu Adaora Stellamaris
Abstract:
Phthalates or Phthalate esters (PAEs), categorized as an endocrine disruptor and persistent organic pollutants, are known for their environmental contamination and toxicological effects. In this study, the concentration of selected phthalates was determined across the sampling site to investigate their occurrence and the ecological and health risk assessment they pose to the environment. Water and sediment samples were collected following standard procedures. Solid phase and ultrasonic methods were used to extract seven different PAEs, which were analyzed by Gas Chromatography with Mass Detector (GCMS). The analytical average recovery was found to be within the range of 83.4% ± 2.3%. The results showed that PAEs were detected in six out of seven samples with a high percentage of detection rate in water. Di-n-butyl phthalate (DPB) and disobutyl phthalates (DiBP) showed a greater detection rate compared to other PAE monomers. The concentration of PEs was found to be higher in sediment samples compared to water samples due to the fact that sediments serve as a sink for most persistent organic pollutants. The concentrations of PAEs in water samples and sediments ranged from 0.00 to 0.23 mg/kg and 0.00 to 0.028 mg/l, respectively. Ecological risk assessment using the risk quotient method (RQ) reveals that the estimated environmental risk caused by phthalates lies within the moderate level as RQ ranges from 0.1 to 1.0, whereas the health risk assessment caused by phthalates on estimating the average daily dose reveals that the ingestion of phthalates was found to be approaching permissible limit which can cause serious carcinogenic occurrence in the human system with time due to excess accumulation.Keywords: phthalates, endocrine disruptor, risk assessment, ecological risk, health risk
Procedia PDF Downloads 748386 Effect of Convective Dryness Combined with Osmotic Dehydration, Blanching, Microwave and Ultrasonic Treatment on Bioactive Compounds and Rehydration Capacity of Dried Plums
Authors: Elena Corina Popescu, Magda Gabriela Bratu
Abstract:
Increasing interest in keeping bioactive compounds (anthocyanins, vitamin C) and dried fruit quality has motivated the researchers to investigate new combined drying technologies. The aim of this study was to evaluate the effects of convective dryness combined with osmotic dehydration, blanching, microwave treatment and ultrasonic treatment on the quality of dried plums. Osmotic dehydration was achieved by maintaining plums for 1 h in sucrose solution (300Brix). For microwave treatment, the plums were kept at 400 W for 80 sec. For ultrasonic treatment, plums were immersed in distilled water and sonicated for 30 minutes at 40 kHz and 200 W. The blanching consists of immersing plums in hot water at 90°C for 20 seconds and cooling them rapidly. Conventional drying was carried out at 70°C for 630 minutes. Drying curves, drying rate, anthocyanin and vitamin C stability, acidity variation (expressed as malic acid), reducing sugar content, and rehydration capacity of dried plums were analyzed. Blanching led to the largest amount of evaporated water. Blanched plums have had 13.36% less water than sonicated ones. The lowest anthocyanal loss of 34.5% was obtained in osmotically dehydrated plums, and 2.93% vitamin C is found in the plums sonicated. There were no significant differences in regards acidity and reducing sugar. The plums blanched before drying have had a high capacity of rehydration.Keywords: anthocyanin, dried plums, pretreatments, vitamin C
Procedia PDF Downloads 2358385 Human Activities Damaging the Ecosystem of Isheri Ogun River, South West Nigeria
Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, O. A. Ewumi, K. Fasina, S. O. Otubusin
Abstract:
A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.Keywords: damage, ecosystem, human activities, Isheri ogun river
Procedia PDF Downloads 5458384 Building Climate Resilience in the Health Sector in Developing Countries: Experience from Tanzania
Authors: Hussein Lujuo Mohamed
Abstract:
Introduction: Public health has always been influenced by climate and weather. Changes in climate and climate variability, particularly changes in weather extremes affect the environment that provides people with clean air, food, water, shelter, and security. Tanzania is not an exception to the threats of climate change. The health sector is mostly affected due to emergence and proliferation of infectious diseases, thereby affecting health of the population and thus impacting achievement of sustainable development goals. Methodology: A desk review on documented issues pertaining to climate change and health in Tanzania was done using Google search engine. Keywords included climate change, link, health, climate initiatives. In cases where information was not available, documents from Ministry of Health, Vice Presidents Office-Environment, Local Government Authority, Ministry of Water, WHO, research, and training institutions were reviewed. Some of the reviewed documents from these institutions include policy brief papers, fieldwork activity reports, training manuals, and guidelines. Results: Six main climate resilience activities were identified in Tanzania. These were development and implementation of climate resilient water safety plans guidelines both for rural and urban water authorities, capacity building of rural and urban water authorities on implementation of climate-resilient water safety plans, and capacity strengthening of local environmental health practitioners on mainstreaming climate change and health into comprehensive council health plans. Others were vulnerability and adaptation assessment for the health sector, mainstreaming climate change in the National Health Policy, and development of risk communication strategy on climate. In addition information, education, and communication materials on climate change and to create awareness were developed aiming to sensitize and create awareness among communities on climate change issues and its effect on public health. Conclusion: Proper implementation of these interventions will help the country become resilient to many impacts of climate change in the health sector and become a good example for other least developed countries.Keywords: climate, change, Tanzania, health
Procedia PDF Downloads 1198383 Wheat Yield and Yield Components under Raised Bed Planting System
Authors: Hamidreza Miri, Farahnaz Momtazi
Abstract:
Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates.Keywords: wheat, raised bed planting, drought stress, yield, water use
Procedia PDF Downloads 658382 Corrosion Protection and Failure Mechanism of ZrO₂ Coating on Zirconium Alloy Zry-4 under Varied LiOH Concentrations in Lithiated Water at 360°C and 18.5 MPa
Authors: Guanyu Jiang, Donghai Xu, Huanteng Liu
Abstract:
After the Fukushima-Daiichi accident, the development of accident tolerant fuel cladding materials to improve reactor safety has become a hot topic in the field of nuclear industry. ZrO₂ has a satisfactory neutron economy and can guarantee the fission chain reaction process, which enables it to be a promising coating for zirconium alloy cladding. Maintaining a good corrosion resistance in primary coolant loop during normal operations of Pressurized Water Reactors is a prerequisite for ZrO₂ as a protective coating on zirconium alloy cladding. Research on the corrosion performance of ZrO₂ coating in nuclear water chemistry is relatively scarce, and existing reports failed to provide an in-depth explanation for the failure causes of ZrO₂ coating. Herein, a detailed corrosion process of ZrO₂ coating in lithiated water at 360 °C and 18.5 MPa was proposed based on experimental research and molecular dynamics simulation. Lithiated water with different LiOH solutions in the present work was deaerated and had a dissolved oxygen concentration of < 10 ppb. The concentration of Li (as LiOH) was determined to be 2.3 ppm, 70 ppm, and 500 ppm, respectively. Corrosion tests were conducted in a static autoclave. Modeling and corresponding calculations were operated on Materials Studio software. The calculation of adsorption energy and dynamics parameters were undertaken by the Energy task and Dynamics task of the Forcite module, respectively. The protective effect and failure mechanism of ZrO₂ coating on Zry-4 under varied LiOH concentrations was further revealed by comparison with the coating corrosion performance in pure water (namely 0 ppm Li). ZrO₂ coating provided a favorable corrosion protection with the occurrence of localized corrosion at low LiOH concentrations. Factors influencing corrosion resistance mainly include pitting corrosion extension, enhanced Li+ permeation, short-circuit diffusion of O²⁻ and ZrO₂ phase transformation. In highly-concentrated LiOH solutions, intergranular corrosion, internal oxidation, and perforation resulted in coating failure. Zr ions were released to coating surface to form flocculent ZrO₂ and ZrO₂ clusters due to the strong diffusion and dissolution tendency of α-Zr in the Zry-4 substrate. Considering that primary water of Pressurized Water Reactors usually includes 2.3 ppm Li, the stability of ZrO₂ make itself a candidate fuel cladding coating material. Under unfavorable conditions with high Li concentrations, more boric acid should be added to alleviate caustic corrosion of ZrO₂ coating once it is used. This work can provide some references to understand the service behavior of nuclear coatings under variable water chemistry conditions and promote the in-pile application of ZrO₂ coating.Keywords: ZrO₂ coating, Zry-4, corrosion behavior, failure mechanism, LiOH concentration
Procedia PDF Downloads 858381 Effects of Alternative Opportunities and Compensation on Turnover Intention of Singapore PMET
Authors: Han Guan Chew, Keith Yong Ngee Ng, Shan-Wei Fan
Abstract:
In Singapore, talent retention is one of the most persistent and real issue companies have to grapple with due to the tight labour market. Being resource-scarce, Singapore depends solely on its talented pool of high quality human resource to sustain its competitive advantage in the global economy. But the complex and multifaceted nature of turnover phenomenon makes the prescription of effective talent retention strategies in such a competitive labour market very challenging, especially when it comes to monetary incentives, companies struggle to answer the question of “How much is enough?” By examining the interactive effects of perceived alternative employment opportunities, annual salary and satisfaction with compensation on the turnover intention of 102 Singapore Professionals, Managers, Executives and Technicians (PMET) through correlation analyses and multiple regressions, important insights into the psyche of the Singapore talent pool can be drawn. It is found that annual salary influence turnover intention indirectly through mediation and moderation effects on PMET’s satisfaction on compensation. PMET are also found to be heavily swayed by better external opportunities. This implies that talent retention strategies should not adopt a purely monetary based blanket approach but rather a comprehensive and holistic one that considers the dynamics of prevailing market conditions.Keywords: employee turnover, high performers, knowledge workers, perceived alternative employment opportunities salary, satisfaction on compensation, Singapore PMET, talent retention
Procedia PDF Downloads 2818380 The Trial Using Bio-Product for Reducing Arsenic Heavy Metal in Soil in Grow Organic Vegetables
Authors: Nittaya Nokham, Nattaphon Kamon, Pipatpong Pimkhot, Pedcharada Yusuk
Abstract:
Testing efficacy of a bio-product (bp) to reduce amount of arsenic was carried out in soil which were used for cultivation of organic vegetables, at Watchan Royal Project Development Center, Kulayaniwattana district, Chiang Mai. The test consists of 6 treatments e.g. Tr.1) Control: To underlie the planting pits (pp)with compost; Tr.2) Using bp: To underlie thepp with compost mixed with (+) bp at 100 g/pit; Tr.3) Using bp: To underlie the pp with compost + bp at 100 g/pit and to spray the vegetables with bp at 2 l/20 l of water, once a week; Tr.4) Using bp: To spread the compost bp on the planting area at 3 kg/1 m2 ; Tr.5) Using bp: To spread the compost + bp on the planting area at 3 kg/1 m2and to spray vegetables with bp at 2 l/20 l of water; Tr.6) Using bp: To spray vegetables with bp at 2 l/20 l of water. Result showed that after first trial of pointed cabbage cultivation, only Tr.6 had a small reduction of arsenic; while the others had higher amount of the metal. After second trial of growing red oak leaf, Tr.6 had more reduction of arsenic while Tr.5 and Tr.3 had less reduction compared to Tr.6 but more reduction than the others. In the third trial of growing mustard, very small reduction could be found on Tr.6 and Tr.5 but more reduction in Tr.3. For the fourth (last) trial with cos romaine lettuce: Tr.6, Tr.5 showed most reduction of arsenic to about half of the original amount. So, it can be concluded that this bio-product can help reducing arsenic when using this product by spraying the bp to vegetables at concentration of 2 l/20 l of water once week (Tr.6), or using the bio-product mixed with compost to spread on the planting area at 3 kg/1 m2 together with spraying the product (Tr.5). The results obtained from continuous planting 4 kinds of vegetables at the same area. The amount of arsenic found in roots and stem is very small in the 4 vegetables.Keywords: organic vegetables, bio-product, arsenic, soil
Procedia PDF Downloads 2828379 DC/DC Boost Converter Applied to Photovoltaic Pumping System Application
Authors: S. Abdourraziq, M. A. Abdourraziq
Abstract:
One of the most famous and important applications of solar energy systems is water pumping. It is often used for irrigation or to supply water in countryside or private firm. However, the cost and the efficiency are still a concern, especially with a continued variation of solar radiation and temperature throughout the day. Then, the improvement of the efficiency of the system components is one of the different solutions to reducing the cost. In this paper, we will present a detailed definition of each element of a PV pumping system, and we will present the different MPPT algorithm used in the literature. Our system consists of a PV panel, a boost converter, a motor-pump set, and a storage tank.Keywords: PV cell, converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 1588378 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies
Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof
Abstract:
Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics
Procedia PDF Downloads 1498377 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging
Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui
Abstract:
Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture
Procedia PDF Downloads 328