Search results for: fungicide resistance
934 Improve of Biomass Properties through Torrefaction Process
Authors: Malgorzata Walkowiak, Magdalena Witczak, Wojciech Cichy
Abstract:
Biomass is an important renewable energy source in Poland. As a biofuel, it has many advantages like renewable in noticeable time and relatively high energy potential. But disadvantages of biomass like high moisture content and hygroscopic nature causes that gaining, transport, storage and preparation for combustion become troublesome and uneconomic. Thermal modification of biomass can improve hydrophobic properties, increase its calorific value and natural resistance. This form of thermal processing is known as torrefaction. The aim of the study was to investigate the effect of the pre-heat treatment of wood and plant lignocellulosic raw materials on the properties of solid biofuels. The preliminary studies included pine, beech and willow wood and other lignocellulosic raw materials: mustard, hemp, grass stems, tobacco stalks, sunflower husks, Miscanthus straw, rape straw, cereal straw, Virginia Mallow straw, rapeseed meal. Torrefaction was carried out using variable temperatures and time of the process, depending on the material used. It was specified the weight loss and the ash content and calorific value was determined. It was found that the thermal treatment of the tested lignocellulosic raw materials is able to provide solid biofuel with improved properties. In the woody materials, the increase of the lower heating value was in the range of 0,3 MJ/kg (pine and beech) to 1,1 MJ/kg (willow), in non-woody materials – from 0,5 MJ/kg (tobacco stalks, Miscanthus) to 3,5 MJ/kg (rapeseed meal). The obtained results indicate for further research needs, particularly in terms of conditions of the torrefaction process.Keywords: biomass, lignocellulosic materials, solid biofuels, torrefaction
Procedia PDF Downloads 235933 Growth and Immune Response of Giant Freshwater Prawn Macrobrachium rosenbergii (De Man) Postlarvae Fed Diets Containing Chlorella vulgaris
Authors: Gian Carlo F. Maliwat, Stephanie F. Velasquez, Janice A. Ragaza
Abstract:
A 50-day growth trial was conducted to evaluate the efficacy of Chlorella vulgaris (Beijerinck) as an ingredient in the diets of giant freshwater prawn Macrobrachium rosenbergii (De Man) postlarvae (PL30). Immune response (total haemocyte count and prophenoloxidase activity) was also assessed by subjecting postlarvae to a challenge test against Aeromonas hydrophila (Chester) for 14 days. Isonitrogenous and iso-lipidic test diets were prepared using a fishmeal-based-positive control diet (D0) and four basal diets with inclusion levels of 2% (D2), 4% (D4), 6% (D6) and 8% (D8) C. vulgaris. Postlarvae of M. rosenbergii were randomly stocked (mean initial body weight of 0.19 ± 0.02 g) in 30-L tanks in three replicates per dietary treatment for evaluation of growth performance. Another set of postlarvae (mean initial body weight of 1.25 ± 0.02 g) was randomly distributed in 95-L tanks in three replicates per dietary treatment for the assessment of immune response. Results showed that specific growth rate was significantly higher (P < 0.05) in postlarvae fed D4 and D6. Variations in values for carcass protein, lipid, moisture, and ash were also evident. Postlarvae fed diets with Chlorella showed increased prophenol oxidase activity and total haemocyte counts. Moreover, the survival rate after challenge with A. hydrophila was significantly increased (P < 0.05). Inclusion of C. vulgaris in diets enhanced immune response and resistance of M. rosenbergii postlarvae against A. hydrophila infection.Keywords: Chlorella vulgaris, haemocyte count, Macrobrachium rosenbergii, prophenoloxidase activity
Procedia PDF Downloads 151932 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers
Authors: L. Achab, F. Iachachene
Abstract:
In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method
Procedia PDF Downloads 54931 Characterization of High Phosphorus Gray Iron for the Stub- Anode Connection in the Aluminium Reduction Cells
Authors: Mohamed M. Ali, Adel Nofal, Amr Kandil, Mahmoud Agour
Abstract:
High phosphorus gray iron (HPGI) is used to connect the steel stub of an anode rod to a prebaked anode carbon block in the aluminium reduction cells. In this paper, a complete characterization for HPGI was done, includes studying the chemical composition of the HPGI collar, anodic voltage drop, collar temperature over 30 days anode life cycle, microstructure and mechanical properties. During anode life cycle, the carbon content in HPGI was lowed from 3.73 to 3.38%, and different changes in the anodic voltage drop at the stub- collar-anode connection were recorded. The collar temperature increases over the anode life cycle and reaches to 850°C in four weeks after anode changing. Significant changes in the HPGI microstructure were observed after 3 and 30 days from the anode changing. To simulate the actual operating conditions in the steel stub/collar/carbon anode connection, a bench-scale experimental set-up was designed and used for electrical resistance and resistivity respectively. The results showed the current HPGI properties needed to modify or producing new alloys with excellent electrical and mechanical properties. The steel stub and HPGI thermal expansion were measured and studied. Considerable permanent expansion was observed for the HPGI collar after the completion of the heating-cooling cycle.Keywords: high phosphorus gray iron (HPGI), aluminium reduction cells, anodic voltage drop, microstructure, mechanical and electrical properties
Procedia PDF Downloads 454930 Comparative Study of the Abundance of Winter Nests of the Pine Processionary Caterpillar in Different Forests of Pinus Halepensis, pinus Pinaster, Pinus Pinea and Cedrus Atlantica, in Algeria
Authors: Boudjahem Ibtissem, Aouati Amel
Abstract:
Thaumetopoea pityocampa is one of the major insect pests of pine forests in Algeria, the Mediterranean region, and central Europe. This pest is responsible for several natural and human damages these last years. The caterpillar can feed itself during the larval stage on several species of pine or cedar. The forests attack by the insect can reduce their resistance against other forest enemies, fires, or drought conditions. In this case, the tree becomes more vulnerable to other pests. To understand the eating behavior of the insect in its ecological conditions, and its nutritional preference, we realized a study of the abundance of winter nests of the pine processionary caterpillar in four different forests: Pinus halepensis; Pinus pinaster; Pinus pinea, and Cedrus atlantica. A count of the sites affected by the processionary caterpillar was carried out on a hundred trees from the forests in different regions in Algeria; Alkala region, Mila region, Annaba region, and Blida region; the total rate and average abundance are calculated for each forest. Ecological parameters are also estimated for each infestation. The results indicated a higher rate of infestation in Pinus halepensis trees (85%) followed by Cedrus atlantica (66%) and Pinus pinaster (50%) trees. The Pinus pinea forest is the least attacked region by the pine processionary caterpillar (23%). The abundance of the pine processionary caterpillar can be influenced by the height of the trees, the climate of the region, the age of the forest but also the quality of needles.Keywords: Thaumetopoea pityocampa, Pinus halepensis, needles, winter nests
Procedia PDF Downloads 148929 A Techno-Economic Simulation Model to Reveal the Relevance of Construction Process Impact Factors for External Thermal Insulation Composite System (ETICS)
Authors: Virgo Sulakatko
Abstract:
The reduction of energy consumption of the built environment has been one of the topics tackled by European Commission during the last decade. Increased energy efficiency requirements have increased the renovation rate of apartment buildings covered with External Thermal Insulation Composite System (ETICS). Due to fast and optimized application process, a large extent of quality assurance is depending on the specific activities of artisans and are often not controlled. The on-site degradation factors (DF) have the technical influence to the façade and cause future costs to the owner. Besides the thermal conductivity, the building envelope needs to ensure the mechanical resistance and stability, fire-, noise-, corrosion and weather protection, and long-term durability. As the shortcomings of the construction phase become problematic after some years, the common value of the renovation is reduced. Previous work on the subject has identified and rated the relevance of DF to the technical requirements and developed a method to reveal the economic value of repair works. The future costs can be traded off to increased the quality assurance during the construction process. The proposed framework is describing the joint simulation of the technical importance and economic value of the on-site DFs of ETICS. The model is providing new knowledge to improve the resource allocation during the construction process by enabling to identify and diminish the most relevant degradation factors and increase economic value to the owner.Keywords: ETICS, construction technology, construction management, life cycle costing
Procedia PDF Downloads 418928 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells
Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe
Abstract:
Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.Keywords: CNT incorporation, ITO electrode, spin coating, thin film
Procedia PDF Downloads 114927 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method
Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier
Abstract:
Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.Keywords: refractory composite, fracture mechanics, crack propagation, DEM
Procedia PDF Downloads 77926 High Performance Concrete Using “BAUT” (Metal Aggregates) the Gateway to New Concrete Technology for Mega Structures
Authors: Arjun, Gautam, Sanjeev Naval
Abstract:
Concrete technology has been changing rapidly and constantly since its discovery. Concrete is the most widely used man-made construction material, versatility of making concrete is the 2nd largest consumed material on earth. In this paper an effort has been made to use metal aggregates in concrete has been discussed, the metal aggregates has been named as “BAUT” which had outstandingly qualities to resist shear, tension and compression forces. In this paper, COARSE BAUT AGGREGATES (C.B.A.) 10mm & 20mm and FINE BAUT AGGREGATES (F.B.A.) 3mm were divided and used for making high performance concrete (H.P.C). This “BAUT” had cutting edge technology through draft and design by the use of Auto CAD, ANSYS software can be used effectively In this research paper we study high performance concrete (H.P.C) with “BAUT” and consider the grade of M65 and finally we achieved the result of 90-95 Mpa (high compressive strength) for mega structures and irregular structures where center of gravity (CG) is not balanced. High Performance BAUT Concrete is the extraordinary qualities like long-term performance, no sorptivity by BAUT AGGREGATES, better rheological, mechanical and durability proportion that conventional concrete. This high strength BAUT concrete using “BAUT” is applied in the construction of mega structure like skyscrapers, dam, marine/offshore structures, nuclear power plants, bridges, blats and impact resistance structures. High Performance BAUT Concrete which is a controlled concrete possesses invariable high strength, reasonable workability and negligibly permeability as compare to conventional concrete by the mix of Super Plasticizers (SMF), silica fume and fly ash.Keywords: BAUT, High Strength Concrete, High Performance Concrete, Fine BAUT Aggregate, Coarse BAUT Aggregate, metal aggregates, cutting edge technology
Procedia PDF Downloads 501925 From Bureaucracy to Organizational Learning Model: An Organizational Change Process Study
Authors: Vania Helena Tonussi Vidal, Ester Eliane Jeunon
Abstract:
This article aims to analyze the change processes of management related bureaucracy and learning organization model. The theoretical framework was based on Beer and Nohria (2001) model, identified as E and O Theory. Based on this theory the empirical research was conducted in connection with six key dimensions: goal, leadership, focus, process, reward systems and consulting. We used a case study of an educational Institution located in Barbacena, Minas Gerais. This traditional center of technical knowledge for long time adopted the bureaucratic way of management. After many changes in a business model, as the creation of graduate and undergraduate courses they decided to make a deep change in management model that is our research focus. The data were collected through semi-structured interviews with director, managers and courses supervisors. The analysis were processed by the procedures of Collective Subject Discourse (CSD) method, develop by Lefèvre & Lefèvre (2000), Results showed the incremental growing of management model toward a learning organization. Many impacts could be seeing. As negative factors we have: people resistance; poor information about the planning and implementation process; old politics inside the new model and so on. Positive impacts are: new procedures in human resources, mainly related to manager skills and empowerment; structure downsizing, open discussions channel; integrated information system. The process is still under construction and now great stimulus is done to managers and employee commitment in the process.Keywords: bureaucracy, organizational learning, organizational change, E and O theory
Procedia PDF Downloads 433924 Effect of Clinical Parameters on Strength of Reattached Tooth Fragment in Anterior Teeth: Systematic Review and Meta-Analysis
Authors: Neeraj Malhotra, Ramya Shenoy
Abstract:
Objective: To assess the effect of clinical parameters (bonding agent, preparation design & storage media) on the strength of reattached anterior tooth fragment. Methodology: This is a systematic review and meta-analysis for articles referred from MEDLINE, PUBMED, and GOOGLE SCHOLAR. The articles on tooth reattachment and clinical factors affecting fracture strength/bond strength/fracture resistance of the reattached tooth fragment in anterior teeth and published in English from 1999 to 2016 were included for final review. Results: Out of 120 shortlisted articles, 28 articles were included for the systematic review and meta-analysis based on 3 clinical parameters i.e. bonding agent, tooth preparation design & storage media. Forest plot & funnel plots were generated based on individual clinical parameter and their effect on strength of reattached anterior tooth fragment. Results based on analysis suggest combination of both conclusive evidence favoring the experimental group as well as in-conclusive evidence for individual parameter. Conclusion: There is limited evidence as there are fewer articles supporting each parameter in human teeth. Bonding agent had showed better outcome in selected studies.Keywords: bonding agent, bond strength, fracture strength, preparation design, reattachment, storage media
Procedia PDF Downloads 177923 Growth Comparison and Intestinal Health in Broilers Fed Scent Leaf Meal (Ocimum gratissimum) and Synthetic Antibiotic
Authors: Adedoyin Akintunde Adedayo, Onilude Abiodun Anthony
Abstract:
The continuous usage of synthetic antibiotics in livestock production has led to the resistance of microbial pathogens. This has prompted research to find alternative sources. This study aims to compare the growth and intestinal health of broilers fed scent leaf meal (SLM) as an alternative to synthetic antibiotics. The study used a completely randomized design (CRD) with 300 one-week-old Arbor Acres broiler chicks. The chicks were divided into six treatments with five replicates of ten birds each. The feeding trial lasted 49 days, including a one-week acclimatization period. Commercial broiler diets were used. The diets included a negative control (no leaf meal or antibiotics), a positive control (0.10% oxy-tetracycline), and four diets with different levels of SLM (0.5%, 1.0%, 1.5%, and 2.0%). The supplementation of both oxy-tetracycline and SLM improved feed intake during the finisher phase. Birds fed SLM at a 1% inclusion level showed significantly (P<0.05) improved average body weight gain (ABWG), lowered feed-to-gain ratio, and cost per kilogram of weight gain compared to other diets. The mortality (2.0%) rate was significantly higher in the negative control group. White blood cell levels varied significantly (P<0.05) in birds fed SLM-supplemented diets, and the use of 2% SLM led to an increase in liver weight. However, welfare indices were not compromised.Keywords: Arbor Acres, phyto-biotic, synthetic antibiotic, white blood cell, liver weight
Procedia PDF Downloads 72922 Seismic Vulnerability Assessment of Masonry Buildings in Seismic Prone Regions: The Case of Annaba City, Algeria
Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente
Abstract:
Seismic vulnerability assessment of masonry buildings is a fundamental issue even for moderate to low seismic hazard regions. This fact is even more important when dealing with old structures such as those located in Annaba city (Algeria), which the majority of dates back to the French colonial era from 1830. This category of buildings is in high risk due to their highly degradation state, heterogeneous materials and intrusive modifications to structural and non-structural elements. Furthermore, they are usually shelter a dense population, which is exposed to such risk. In order to undertake a suitable seismic risk mitigation strategies and reinforcement process for such structures, it is essential to estimate their seismic resistance capacity at a large scale. In this sense, two seismic vulnerability index methods and damage estimation have been adapted and applied to a pilot-scale building area located in the moderate seismic hazard region of Annaba city: The first one based on the EMS-98 building typologies, and the second one derived from the Italian GNDT approach. To perform this task, the authors took the advantage of an existing data survey previously performed for other purposes. The results obtained from the application of the two methods were integrated and compared using a geographic information system tool (GIS), with the ultimate goal of supporting the city council of Annaba for the implementation of risk mitigation and emergency planning strategies.Keywords: Annaba city, EMS98 concept, GNDT method, old city center, seismic vulnerability index, unreinforced masonry buildings
Procedia PDF Downloads 617921 Intramuscular Heat Shock Protein 72 and Heme Oxygenase-1 mRNA are Reduced in Patients with Type 2 Diabetes Evidence That Insulin Resistance is Associated with a Disturbed Antioxidant Defense Mechanism
Authors: Ghibeche Abderrahmane
Abstract:
To examine whether genes associated with cellular defense against oxidative stress are associated with insulin sensitivity, patients with type 2 diabetes (n=7) and age-matched (n=5) and young (n=9) control subjects underwent a euglycemic-hyperinsulinemic clamp for 120 min. Muscle samples were obtained before and after the clamp and analyzed for heat shock protein (HSP)72 and heme oxygenase (HO)-1 mRNA, intramuscular triglyceride content, and the maximal activities of β-hyroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS). Basal expression of both HSP72 and HO-1 mRNA were lower (P < 0.05) by 33 and 55%, respectively, when comparing diabetic patients with age-matched and young control subjects, with no differences between the latter groups. Both basal HSP72 (r = 0.75, P < 0.001) and HO-1 (r = 0.50,P < 0.05) mRNA expression correlated with the glucose infusion rate during the clamp. Significant correlations were also observed between HSP72 mRNA and both β-HAD (r = 0.61, P < 0.01) and CS (r = 0.65, P < 0.01). HSP72 mRNA was induced (P < 0.05) by the clamp in all groups. Although HO-1 mRNA was unaffected by the clamp in both the young and age-matched control subjects, it was increased (P < 0.05) ∼70-fold in the diabetic patients after the clamp. These data demonstrate that genes involved in providing cellular protection against oxidative stress are defective in patients with type 2 diabetes and correlate with insulin-stimulated glucose disposal and markers of muscle oxidative capacity. The data provide new evidence that the pathogenesis of type 2 diabetes involves perturbations to the antioxidant defense mechanism within skeletal muscle.Keywords: euglycemic-hyperinsulinemic, HSP72, mRNA, diabete
Procedia PDF Downloads 437920 Corrosion Response of Friction Stir Processed Mg-Zn-Zr-RE Alloy
Authors: Vasanth C. Shunmugasamy, Bilal Mansoor
Abstract:
Magnesium alloys are increasingly being considered for structural systems across different industrial sectors, including precision components of biomedical devices, owing to their high specific strength, stiffness and biodegradability. However, Mg alloys exhibit a high corrosion rate that restricts their application as a biomaterial. For safe use as biomaterial, it is essential to control their corrosion rates. Mg alloy corrosion is influenced by several factors, such as grain size, precipitates and texture. In Mg alloys, microgalvanic coupling between the α-Mg matrix and secondary precipitates can exist, which results in an increased corrosion rate. The present research addresses this challenge by engineering the microstructure of a biodegradable Mg–Zn–RE–Zr alloy by friction stir processing (FSP), a severe plastic deformation process. The FSP-processed Mg alloys showed improved corrosion resistance and mechanical properties. FSPed Mg alloy showed refined grains, a strong basal texture and broken and uniformly distributed secondary precipitates in the stir zone. Mg, alloy base material, exposed to In vitro corrosion medium showed micro galvanic coupling between precipitate and matrix, resulting in the unstable passive layer. However, FS processed alloy showed uniform corrosion owing to stable surface film formation. The stable surface film is attributed to refined grains, preferred texture and distribution of precipitates. The research results show promising potential for Mg alloy to be developed as a biomaterial.Keywords: biomaterials, severe plastic deformation, magnesium alloys, corrosion
Procedia PDF Downloads 40919 Comparison of Serum Levels of Secreted Frizzler Protein 5 in Patients with Type 2 Diabetes Mellitus Treated and Not Treated with Metformin
Authors: Irma Gabriela Lopez-Moreno, Elva Perez-Luque, Herlinda Aguilar-Zavala
Abstract:
Introduction: Type 2 Diabetes Mellitus (T2DM) is characterized by combination of insulin resistance and deterioration of insulin secretion. Sfrp5 is a protein that antagonizes Wnt5a proteins by preventing it from reaching its receptor and activating the Wnt/β-catenin signaling pathway, this pathway is one of the most important regulators of adipogenesis. Although metformin decreases glucose levels its mechanisms of action are not fully known but it has been implicated in the inhibition of the Wnt/β-catenin signaling pathway. Objective: The objective was evaluating the effects of metformin on serum levels of Sfrp5 in patients with T2DM treated and not treated with metformin. Methods: Two groups of patients were selected: one group of T2DM patients treated with metformin (n = 35) and another group of subjects with recent diagnosis of T2DM untreated (n = 35) with a mean age of 48 ± 9 years. In these subjects anthropometric measures were taken as weight, height, waist and hip circumference, were calculated the percentage of body fat, visceral fat and muscle mass. In addition, were measured glucose levels, lipid profile, adiponectin and Sfrp5. Results: Sfrp5 were higher in metformin-treated patients compared to the untreated group (19.9 vs 13.6 ng/mL p < 0.001), a negative correlation was found between Sfrp5 levels and total cholesterol levels (r= -0.25, p = 0.03) and percentage of visceral fat (r = -0.26, p = 0.03) and a positive correlation with HDL cholesterol levels (r = 0.31, p = 0.01) and adiponectin (r=0.65, p = < 0.001). Conclusions: The findings show that metformin consumption increased levels of Sfrp5, which may lead to a decrease in the activation of the WNT/β-catenin pathway impacting on adipogenesis.Keywords: adiponectin, diabetes, metformin, Sfrp5
Procedia PDF Downloads 175918 Physical Tests on Localized Fluidization in Offshore Suction Bucket Foundations
Authors: Li-Hua Luu, Alexis Doghmane, Abbas Farhat, Mohammad Sanayei, Pierre Philippe, Pablo Cuellar
Abstract:
Suction buckets are promising innovative foundations for offshore wind turbines. They generally feature the shape of an inverted bucket and rely on a suction system as a driving agent for their installation into the seabed. Water is pumped out of the buckets that are initially placed to rest on the seabed, creating a net pressure difference across the lid that generates a seepage flow, lowers the soil resistance below the foundation skirt, and drives them effectively into the seabed. The stability of the suction mechanism as well as the possibility of a piping failure (i.e., localized fluidization within the internal soil plug) during their installation are some of the key questions that remain open. The present work deals with an experimental study of localized fluidization by suction within a fixed bucket partially embedded into a submerged artificial soil made of spherical beads. The transient process, from the onset of granular motion until reaching a stationary regime for the fluidization at the embedded bucket wall, is recorded using the combined optical techniques of planar laser-induced fluorescence and refractive index matching. To conduct a systematic study of the piping threshold for the seepage flow, we vary the beads size, the suction pressure, and the initial depth for the bucket. This experimental modelling, by dealing with erosion-related phenomena from a micromechanical perspective, shall provide qualitative scenarios for the local processes at work which are missing in the offshore practice so far.Keywords: fluidization, micromechanical approach, offshore foundations, suction bucket
Procedia PDF Downloads 181917 Vibration Damping Properties of Electrorheological Materials Based on Chitosan/Perlite Composite
Authors: M. Cabuk, M. Yavuz, T. A. Yesil, H. I. Unal
Abstract:
Electrorheological (ER) fluids are a class of smart materials exhibiting reversible changes in their rheological and mechanical properties under an applied electric field (E). ER fluids generally are composed of polarisable solid particles dispersed in non-conducting oil. ER fluids are fluids which exhibit. The resistance to motion of the ER fluid can be controlled by adjusting the applied E, due to their fast and reversible changes in their rheological properties presence of E. In this study, a series of chitosan/expanded perlite (CS/EP) composites with different chitosan mass fractions (10%, 20%, and 50%) was used. Characterizations of the composites were carried out by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) techniques. Antisedimentation stability and dielectric properties of the composites were also determined. The effects of volume fraction, electric field strength, shear rate, shear stress, and temperature onto ER properties of the CS/EP composite particles dispersed in silicone oil (SO) were investigated in detail. Vibration damping behavior of the CS/EP composites were determined as a function of frequence, storage (Gʹ) and loss (Gʹ ʹ) moduli. It was observed that ER response of the CS/EP/SO ER fluids increased with increasing electric field strength and exhibited the typical shear thinning non-Newtonian viscoelastic behaviors with increasing shear rate. The maximum yield stress was obtained with 1250 Pa under E = 3 kV/mm. Further, the CS/EP/SO ER fluids were observed to sensitive to vibration control by showing reversible viscosity enhancements (Gʹ > Gʹ ʹ). Acknowledgements: The authors thank the TÜBİTAK (214Z199) for the financial support of this work.Keywords: chitosan, electrorheology, perlite, vibration control
Procedia PDF Downloads 234916 Experimental Study of the Dynamics of Sediments in Natural Channels in a Non-Stationary Flow Regime
Authors: Fourar Ali, Fourar Fatima Zohra
Abstract:
Knowledge of sediment characteristics is fundamental to understanding their sedimentary functioning: sedimentation, settlement, and erosion processes of cohesive sediments are controlled by complex interactions between physical, chemical, and biological factors. Sediment transport is of primary importance in river hydraulics and river engineering. Indeed, the displacement of sediments can lead to lasting modifications of the bed in terms of its elevation, slope and roughness. The protection of a bank, for example, is likely to initiate a local incision of the river bed, which, in turn, can lead to the subsidence of the bank. The flows in the natural environment occur in general with heterogeneous boundary conditions because of the distribution of the roughnesses of the fixed or mobile bottoms and of the important deformations of the free surface, especially for the flows with a weak draft considering the irregularity of the bottom. Bedforms significantly influence flow resistance. The arrangement of particles lining the bottom of the stream bed or experimental channel generates waveforms of different sizes that lead to changes in roughness and consequently spatial variability in the turbulent characteristics of the flow. The study which is focused on the laws of friction in alluvial beds, aims to analyze the characteristics of flows and materials constituting the natural channels. Experimental results were obtained by simulating these flows on a rough bottom in an experimental channel at the Hydraulics Laboratory of the University of Batna 2. The system of equations governing the problem is solved using the program named: CLIPPER.5 and ACP.Keywords: free surface flow, heterogeneous sand, moving bottom bed, friction coefficient, bottom roughness
Procedia PDF Downloads 89915 The Experiences of Claiming Welfare Benefits for People with Disabilities in the UK
Authors: Jennifer McNeill
Abstract:
Over the years UK Governments have extended the use of welfare conditionality to more marginalised groups. Whereas in the past, disabled people’s rights to unconditional welfare were defended, significant numbers of disabled people have in recent years been re-classified as ‘fit for work’ as a result of this policy shift towards increased conditionality targeting more welfare service user groups. This paper discusses findings from a five-year project exploring the ethics and efficacy of welfare conditionality. Drawing on repeat interviews over three years with 58 disabled welfare service users across England and Scotland, the paper explores the experience of, and impact of conditionality upon, disabled participants. In particular, participants described the process of claiming disability-related benefits as stigmatising, with some describing the medical assessments as demeaning, traumatic and even painful. The medical assessments are conducted by private contractors and participants felt they were treated unfairly, under suspicion and under surveillance. This finding is important in line with a recent UN report concerned with the practice of such assessments. The findings reveal that notions of ‘deservedness’ are embedded in this system as disabled recipients argue for their entitlement to welfare claims relative to what are deemed to be less deserving groups of benefit claimants. This indicates an increasing competition ethic within different sections of the most marginalised social groups that facilitate further forms of social fragmentation, particularly in relation to opposition to benefit cuts and other changes requiring concerted and organised forms of resistance. The impact of media and political scapegoating of the most marginal has generated divisions within even those who position themselves as legitimate recipients.Keywords: disability, medical assessments, stigma, welfare conditionality
Procedia PDF Downloads 201914 Eco-Friendly Control of Bacterial Speck on Solanum lycopersicum by Azadirachta indica Extract
Authors: Navodit Goel, Prabir K. Paul
Abstract:
Tomato (Solanum lycopersicum) is attacked by Pseudomonas syringae pv. tomato causing speck lesions on the leaves leading to severe economic casualty. In the present study, aqueous fruit extracts of Azadirachta indica (neem) were sprayed on a single node of tomato plants grown under controlled contamination-free conditions. The treatment of plants was performed with neem fruit extract either alone or along with the pathogen. The parameters of observation were activities of polyphenol oxidase (PPO) and lysozyme, and isoform analysis of PPO; both at the treated leaves as well as untreated leaves away from the site of extract application. Polyphenol oxidase initiates phenylpropanoid pathway resulting in the synthesis of quinines from cytoplasmic phenols and production of reactive oxygen species toxic to broad spectrum microbes. Lysozyme is responsible for the breakdown of bacterial cell wall. The results indicate the upregulation of PPO and lysozyme activities in both the treated and untreated leaves along with de novo expression of newer PPO isoenzymes (which were absent in control samples). The appearance of additional PPO isoenzymes in bioelicitor-treated plants indicates that either the isoenzymes were expressed after bioelicitor application or the already expressed but inactive isoenzymes were activated by it. Lysozyme activity was significantly increased in the plants when treated with the bioelicitor or the pathogen alone. However, no new isoenzymes of lysozyme were expressed upon application of the extract. Induction of resistance by neem fruit extract could be a potent weapon in eco-friendly plant protection strategies.Keywords: Azadirachta indica, lysozyme, polyphenol oxidase, Solanum lycopersicum
Procedia PDF Downloads 286913 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition
Authors: Gabi N. Nehme, Saeed Ghalambor
Abstract:
The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear
Procedia PDF Downloads 349912 Body Composition Evaluation among High Intensity and Long Term Walking Distance Participants
Authors: Priscila Vitorino, Jeeziane Rezende, Edison Pereira, Adrielly Silva, Weimar Barroso
Abstract:
Body composition insight during physical activity is relevant to follow up sports income since it can be important and actuate in velocity, resistance, potency, and has an effect on force and agility. The purpose of this study was to identify anthropometric profile, evaluate and correlate body mass index and bioimpedance behavior during the days of Caminhada Ecológica de Goiás - Brasil. A longitudinal study was performed with 25 male participants, with an average age of 45.6±9.1 years. All patients were actives. Body composition was evaluated by body mass index (BMI) measurement and bioimpedance procedures. Both were collected 20 days before walking beginning (A0) and in the four days along the same (A1, A2, A3 e A4). Data were collected in the end of each walking day at athletes accommodations. Final distance during walking route was 308 km in five days, with an average of 62km/day and 7,6 km/hour, and an average temperature of 30°C. Data are represented with mean and standard deviation. ANOVA (Bonferroni pos test) was used to compare frequent measurements between the days. Pearson's correlation test was used to correlate BMI with lean mass, fat mass, and water. BMI decreased from A0 to A1, A2 and A3 (p < 0,01) and increased on A4 (p < 0,01). No changes were observed concerning fat percentage (p=0,60), lean mass (p=0,10) and body water composition (p=0,09). A positive and moderate correlation between BMI and fat percentage was observed; an inverse and moderate correlation between BMI, lean mass and body water composition occurred. Total body mass increased during high intensity and long term walking distance. However, the values of body fat, lean mass and water were maintained.Keywords: aerobic exercise, body composition, metabolism, sports
Procedia PDF Downloads 309911 Advances in Sesame Molecular Breeding: A Comprehensive Review
Authors: Micheale Yifter Weldemichael
Abstract:
Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.Keywords: abiotic stress, biotic stress, improvement, molecular breeding, oil, sesame, shattering
Procedia PDF Downloads 34910 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing
Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa
Abstract:
There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels
Procedia PDF Downloads 84909 Tolerance of Some Warm Season Turfgrasses to Compaction under Shade and Sunlight Conditions of Riyadh, Saudi Arabia
Authors: Mohammed A. Al-Yafrsi, Fahed A. Al-Mana
Abstract:
A study was conducted to evaluate the compaction-tolerance ability of some warm season turfgrasses under shade and sunlight conditions in Riyadh, Saudi Arabia. Hybrid bermudagrass (Cynodon dactylon): 'Tifway' and 'Tifsport', seashore paspalum (Paspalum vaginatum) and its cultivar 'Sea Isle 2000' were used. The study area was divided into two sections where one was exposed to sunlight and the other one was maintained under shade using green plastic grille (shade 70%). Turfgrasses were planted by sods in beds containing a mixture of sand, silt, and peat moss (4: 1: 1, v/v). The soil compaction was applied using a locally-made cylindrical roll (weighing 250 kg), passing four times over the growing turfgrasses for 3 days/week. The results revealed that compaction treatment led to a decrease in grass height, and it was the lowest (4.0 cm) for paspalum 'Sea Isle 2000' in February. At the shaded area, paspalum turfgrasses retained its high quality degree (4.0) in April, May, and June. In the sunlight area, the grass quality degree was the greatest (4.0) in 'Sea Isle 2000' and the lowest (3.0) in 'Tifsport'. Paspalum turfgrasses gave higher color degree (4) than bermuda grasses (2.5) in April, May, and June. The compaction also led to a decline in leaf area, fresh and dry weights of all grown turfgrasses. The grass density was high for paspalum turfgrasses indicating that their resistance to compaction was greater than bermudagrasses. It can be concluded that the best compaction and shade tolerant turfgrasses are 'Sea Isle 2000' and seashore paspalum.Keywords: hybrid bermudagrass, seashore paspalum, soil compaction, shade area, sunlight condition
Procedia PDF Downloads 118908 Structure-Based Drug Design of Daptomycin, Antimicrobial lipopeptide
Authors: Satya Eswari Jujjavarapu, Swast Dhagat
Abstract:
Contagious diseases enact severe public health problems and have upsetting consequences. The cyclic lipopeptides explained by bacteria Bacillus, Paenibacillus, Pseudomonas, Streptomyces, Serratia, Propionibacterium and fungus Fusarium are very critical in confining the pathogens. As the degree of drug resistance upsurges in unparalleled manner, the perseverance of searching novel cyclic lipopeptides is being professed. The intense study has shown the implication of these bioactive compounds extending beyond antibacterial and antifungal. Lipopeptides, composed of single units of peptide and fatty acyl moiety, show broad spectrum antimicrobial effects. Among the surplus of cyclic lipopeptides, only few have materialized as strong antibiotics. For their functional vigor, polymyxin, daptomycin, surfactin, iturin and bacillomycin have been integrated in mainstream healthcare. In our work daptomycin has been a major part of antimicrobial resource since the past decade. Daptomycin, a cyclic lipopeptide consists of 13-member amino acid with a decanoyl side-chain. This structure of daptomycin confers it the mechanism of action through which it forms pore in the bacterial cell membrane resulting in the death of cell. Daptomycin is produced by Streptococccus roseoporus and acts against Streptococcus pneumonia (PSRP), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The PDB structure and ligands of daptomycin are available online. The molecular docking studies of these ligands with the lipopeptides were performed and their docking score and glide energy were recorded.Keywords: daptomycin, molecular docking, structure-based drug design, lipopeptide
Procedia PDF Downloads 264907 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering
Abstract:
Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.Keywords: carbon composite, fault detection, fault identification, particle filter
Procedia PDF Downloads 194906 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques
Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri
Abstract:
Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior
Procedia PDF Downloads 306905 Effect of Sintering Time and Porosity on Microstructure, Mechanical and Corrosion Properties of Ti6Al15Mo Alloy for Implant Applications
Authors: Jyotsna Gupta, S. Ghosh, S. Aravindan
Abstract:
The requirement of artificial prostheses (such as hip and knee joints) has increased with time. Many researchers are working to develop new implants with improved properties such as excellent biocompatibility with no tissue reactions, corrosion resistance in body fluid, high yield strength and low elastic modulus. Further, the morphological properties of the artificial implants should also match with that of the human bone so that cell adhesion, proliferation and transportation of the minerals and nutrition through body fluid can be obtained. Present study attempts to make porous Ti6Al15Mo alloys through powder metallurgy route using space holder technique. The alloy consists of 6wt% of Al which was taken as α phase stabilizer and 15wt% Mo was taken as β phase stabilizer with theoretical density 4.708. Ammonium hydrogen carbonate is used as a space holder in order to generate the porosity. The porosity of these fabricated porous alloys was controlled by adding the 0, 50, 70 vol.% of the space holder content. Three phases were found in the microstructure: α, α_2 and β phase of titanium. Kirkendall pores are observed to be decreased with increase of holding time during sintering and parallelly compressive strength and elastic modulus value increased slightly. Compressive strength and elastic modulus of porous Ti-6Al-15Mo alloy (1.17 g/cm3 density) is found to be suitable for cancellous bone. Released ions from Ti-6Al-15Mo alloy are far below from the permissible limits in human body.Keywords: bone implant, powder metallurgy, sintering time, Ti-6Al-15Mo
Procedia PDF Downloads 143