Search results for: forest fire detection
2427 Application of Proper Foundation in Building Construction
Authors: Chukwuma Anya
Abstract:
Foundation is popularly defined as the lowest load-bearing part of a building typically below the ground level. It serves as an underlying base which acts as the principle on which every building stands. There are various types of foundations in practice which includes the strip, pile, pad, and raft foundations, and each of these have their various applications in building construction. However due to lack of professional knowledge, cost, or scheduled time frame to complete a certain project, some of these foundation types are some times neglected or used interchangeably resulting to a misuse or abuse of the building materials, man power, and sometimes altering the stability, balance and aesthetics of most buildings. This research work is aimed at educating the academic community on the proper application of the various foundation types to suit different environments such as the rain forest, desert, swampy area, rocky area etc. A proper application of the foundation will ensure the safety of the building from acid grounds, damping and weakening of the foundation, and even building settlement and stability. In addition to those, it will improve aesthetics and maintain cost effectiveness, both construction cost and maintenance cost. Finally, it will ensure the safety of the building and its inhabitants.Keywords: foundation, stability, balance, aesthetic
Procedia PDF Downloads 122426 Distribution and Risk Assessment of Phthalates in Water and Sediment of Omambala River, Anambra State, Nigeria, in Wet Season
Authors: Ogbuagu Josephat Okechukwu, Okeke Abuchi Princewill, Arinze Rosemary Uche, Tabugbo Ifeyinwa Blessing, Ogbuagu Adaora Stellamaris
Abstract:
Phthalates or Phthalate esters (PAEs), categorized as an endocrine disruptor and persistent organic pollutants, are known for their environmental contamination and toxicological effects. In this study, the concentration of selected phthalates was determined across the sampling site to investigate their occurrence and the ecological and health risk assessment they pose to the environment. Water and sediment samples were collected following standard procedures. Solid phase and ultrasonic methods were used to extract seven different PAEs, which were analyzed by Gas Chromatography with Mass Detector (GCMS). The analytical average recovery was found to be within the range of 83.4% ± 2.3%. The results showed that PAEs were detected in six out of seven samples with a high percentage of detection rate in water. Di-n-butyl phthalate (DPB) and disobutyl phthalates (DiBP) showed a greater detection rate compared to other PAE monomers. The concentration of PEs was found to be higher in sediment samples compared to water samples due to the fact that sediments serve as a sink for most persistent organic pollutants. The concentrations of PAEs in water samples and sediments ranged from 0.00 to 0.23 mg/kg and 0.00 to 0.028 mg/l, respectively. Ecological risk assessment using the risk quotient method (RQ) reveals that the estimated environmental risk caused by phthalates lies within the moderate level as RQ ranges from 0.1 to 1.0, whereas the health risk assessment caused by phthalates on estimating the average daily dose reveals that the ingestion of phthalates was found to be approaching permissible limit which can cause serious carcinogenic occurrence in the human system with time due to excess accumulation.Keywords: phthalates, endocrine disruptor, risk assessment, ecological risk, health risk
Procedia PDF Downloads 792425 Barrier to Implementing Public-Private Mix Approach for Tuberculosis Case Management in Nepal
Authors: R. K. Yadav, S. Baral, H. R. Paudel, R. Basnet
Abstract:
The Public-Private Mix (PPM) approach is a strategic initiative that involves engaging all private and public healthcare providers in the fight against tuberculosis using international healthcare standards. For tuberculosis control in Nepal, the PPM approach could be a milestone. This study aimed to explore the barriers to a public-private mix approach in the management of tuberculosis cases in Nepal. A total of 20 respondents participated in the study. Barriers to PPM were identified in the following three themes: 1) Obstacles related to TB case detection, 2) Obstacles related to patients, and 3) Obstacles related to the healthcare system. PPM implementation was challenged by following subthemes that included staff turnover, low private sector participation in workshops, a lack of training, poor recording and reporting, insufficient joint monitoring and supervision, poor financial benefit, lack of coordination and collaboration, and non-supportive TB-related policies and strategies. The study concludes that numerous barriers exist in the way of effective implementation of the PPM approach, including TB cases detection barriers such as knowledge of TB diagnosis and treatment, HW attitude, workload, patient-related barriers such as knowledge of TB, self-medication practice, stigma and discrimination, financial status, and health system-related barriers such as staff turnover and poor engagement of the private sector in workshops, training, recording, and re-evaluation. Government stakeholders must work together with private sector stakeholders to perform joint monitoring and supervision. Private practitioners should receive training and orientation, and presumptive TB patients should be given adequate time and counseling as well as motivation to visit a government health facility.Keywords: barrier, tuberculosis, case finding, PPM, nepal
Procedia PDF Downloads 1122424 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: Adesuyi Ayodeji Steve, Zahn Munch
Abstract:
This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.Keywords: change detection, land cover, modis, NDVI
Procedia PDF Downloads 4032423 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP
Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang
Abstract:
Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species
Procedia PDF Downloads 682422 Climate Change and Its Effects on Terrestrial Insect Diversity in Mukuruthi National Park, Nilgiri Biosphere Reserve, Tamilnadu, India
Authors: M. Elanchezhian, C. Gunasekaran, A. Agnes Deepa, M. Salahudeen
Abstract:
In recent years climate change is one of the most emerging threats facing by biodiversity both the animals and plants species. Elevated carbon dioxide and ozone concentrations, extreme temperature, changes in rainfall patterns, insects-plant interaction are the main criteria that affect biodiversity. In the present study, which emphasis the climate change and its effects on terrestrial insect diversity in Mukuruthi National Park a protected areas of Western Ghats in India. Sampling was done seasonally at the three areas using pitfall traps, over the period of January to December 2013. The statistical findings were done by Shannon wiener diversity index (H). A significant seasonal variation pattern was detected for total insect’s diversity at the different study areas. Totally nine orders of insects were recorded. Diversity and abundance of terrestrial insects shows much difference between the Natural, Shoal forest and the Grasslands.Keywords: biodiversity, climate change, mukuruthi national park, terrestrial invertebrates
Procedia PDF Downloads 5172421 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)
Authors: Medjadj Tarek, Ghribi Hayet
Abstract:
This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management
Procedia PDF Downloads 952420 Use of the Occupational Repetitive Action Method in Different Productive Sectors: A Literature Review 2007-2018
Authors: Aanh Eduardo Dimate-Garcia, Diana Carolina Rodriguez-Romero, Edna Yuliana Gonzalez Rincon, Diana Marcela Pardo Lopez, Yessica Garibello Cubillos
Abstract:
Musculoskeletal disorders (MD) are the new epidemic of chronic diseases, are multifactorial and affect the different productive sectors. Although there are multiple instruments to evaluate the static and dynamic load, the method of repetitive occupational action (OCRA) seems to be an attractive option. Objective: It is aimed to analyze the use of the OCRA method and the prevalence of MD in workers of various productive sectors according to the literature (2007-2018). Materials and Methods: A literature review (following the PRISMA statement) of studies aimed at assessing the level of biomechanical risk (OCRA) and the prevalence of MD in the databases Scielo, Science Direct, Scopus, ProQuest, Gale, PubMed, Lilacs and Ebsco was realized; 7 studies met the selection criteria; the majority are quantitative (cross section). Results: it was evidenced (gardening and flower-growers) in this review that 79% of the conditions related to the task require physical requirements and involve repetitive movements. In addition, of the high appearance of DM in the high-low back, upper and lower extremities that are produced by the frequency of the activities carried out (footwear production). Likewise, there was evidence of 'very high risks' of developing MD (salmon industry) and a medium index (OCRA) for repetitive movements that require special care (U-Assembly line). Conclusions: the review showed the limited use of the OCRA method for the detection of MD in workers from different sectors, and this method can be used for the detection of biomechanical risk and the appearance of MD.Keywords: checklist, cumulative trauma disorders, musculoskeletal diseases, repetitive movements
Procedia PDF Downloads 1832419 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation
Authors: A. El-S. Makled, M. K. Al-Tamimi
Abstract:
A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters
Procedia PDF Downloads 3132418 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images
Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy
Abstract:
Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms
Procedia PDF Downloads 3802417 Prediction of Ionizing Radiation Doses in Irradiated red Pepper (Capsicum annuum) and Mint (Mentha piperita) by Gel Electrophoresis
Authors: Şeyma Özçirak Ergün, Ergün Şakalar, Emrah Yalazi̇, Nebahat Şahi̇n
Abstract:
Food irradiation is a usage of exposing food to ionising radiation (IR) such as gamma rays. IR has been used to decrease the number of harmful microorganisms in the food such as spices. Excessive usage of IR can cause damage to both food and people who consuming food. And also it causes to damages on food DNA. Generally, IR detection techniques were utilized in literature for spices are Electron Spin Resonance (ESR), Thermos Luminescence (TL). Storage creates negative effect on IR detection method then analyses of samples have been performed without storage in general. In the experimental part, red pepper (Capsicum annuum) and mint (Mentha piperita) as spices were exposed to 0, 0.272, 0.497, 1.06, 3.64, 8.82, and 17.42 kGy ionize radiation. ESR was applied to samples irradiated. DNA isolation from irradiated samples was performed using GIDAGEN Multi Fast DNA isolation kit. The DNA concentration was measured using a microplate reader spectrophotometer (Infinite® 200 PRO-Life Science–Tecan). The concentration of each DNA was adjusted to 50 ng/µL. Genomic DNA was imaged by UV transilluminator (Gel Doc XR System, Bio-Rad) for the estimation of genomic DNA bp-fragment size after IR. Thus, agarose gel profiles of irradiated spices were obtained to determine the change of band profiles. Besides, samples were examined at three different time periods (0, 3, 6 months storage) to show the feasibility of developed method. Results of gel electrophoresis showed especially degradation of DNA of irradiated samples. In conclusion, this study with gel electrophoresis can be used as a basis for the identification of the dose of irradiation by looking at degradation profiles at specific amounts of irradiation. Agarose gel results of irradiated samples were confirmed with ESR analysis. This method can be applied widely to not only food products but also all biological materials containing DNA to predict radiation-induced damage of DNA.Keywords: DNA, electrophoresis, gel electrophoresis, ionizeradiation
Procedia PDF Downloads 2592416 Quality Analysis of Vegetables Through Image Processing
Authors: Abdul Khalique Baloch, Ali Okatan
Abstract:
The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria
Procedia PDF Downloads 712415 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples
Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari
Abstract:
Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.Keywords: doxycycline, electrochemical sensor, food control, gold nanoparticles, honey, molecular imprinted polymer
Procedia PDF Downloads 3182414 Antidiabetic Potential of Pseuduvaria monticola Bark Extract on the Pancreatic Cells, NIT-1 and Type 2 Diabetic Rat Model
Authors: Hairin Taha, Aditya Arya, M. A. Hapipah, A. M. Mustafa
Abstract:
Plants have been an important source of medicine since ancient times. Pseuduvaria monticola is a rare montane forest species from the Annonaceae family. Traditionally, the plant was used to cure symptoms of fever, inflammation, stomach-ache and also to reduce the elevated levels of blood glucose. Scientifically, we have evaluated the antidiabetic potential of the Pseuduvaria monticola bark methanolic extract on certain in vitro cell based assays, followed by in vivo study. Results from in vitro models displayed PMm upregulated glucose uptake and insulin secretion in mouse pancreatic β-cells. In vivo study demonstrated the PMm down-regulated hyperglycaemia, oxidative stress and elevated levels of pro-inflammatory cytokines in type 2 diabetic rat models. Altogether, the study revealed that Pseuduvaria monticola might be used as a potential candidate for the management of type 2 diabetes and its related complications.Keywords: type 2 diabetes, Pseuduvaria monticola, insulin secretion, glucose uptake
Procedia PDF Downloads 4402413 Electrophoretic Deposition of Ultrasonically Synthesized Nanostructured Conducting Poly(o-phenylenediamine)-Co-Poly(1-naphthylamine) Film for Detection of Glucose
Authors: Vaibhav Budhiraja, Chandra Mouli Pandey
Abstract:
The ultrasonic synthesis of nanostructured conducting copolymer is an effective technique to synthesize polymer with desired chemical properties. This tailored nanostructure, shows tremendous improvement in sensitivity and stability to detect a variety of analytes. The present work reports ultrasonically synthesized nanostructured conducting poly(o-phenylenediamine)-co-poly(1-naphthylamine) (POPD-co-PNA). The synthesized material has been characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy, transmission electron microscopy, X-ray diffraction and cyclic voltammetry. FTIR spectroscopy confirmed random copolymerization, while UV-visible studies reveal the variation in polaronic states upon copolymerization. High crystallinity was achieved via ultrasonic synthesis which was confirmed by X-ray diffraction, and the controlled morphology of the nanostructures was confirmed by transmission electron microscopy analysis. Cyclic voltammetry shows that POPD-co-PNA has rather high electrochemical activity. This behavior was explained on the basis of variable orientations adopted by the conducting polymer chains. The synthesized material was electrophoretically deposited at onto indium tin oxide coated glass substrate which is used as cathode and parallel platinum plate as the counter electrode. The fabricated bioelectrode was further used for detection of glucose by crosslinking of glucose oxidase in the PODP-co-PNA film. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.72, charge transfer rate constant (ks) of 21.77 s⁻¹ and diffusion coefficient 7.354 × 10⁻¹⁵ cm²s⁻¹.Keywords: conducting, electrophoretic, glucose, poly (o-phenylenediamine), poly (1-naphthylamine), ultrasonic
Procedia PDF Downloads 1442412 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy
Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll
Abstract:
ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy
Procedia PDF Downloads 2282411 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)
Authors: Salvatore Luongo, Carlo Luongo
Abstract:
This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilitiesKeywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification
Procedia PDF Downloads 2862410 On Hyperbolic Gompertz Growth Model (HGGM)
Authors: S. O. Oyamakin, A. U. Chukwu,
Abstract:
We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz
Procedia PDF Downloads 4442409 Hazardous Waste Management at Chemistry Section in Dubai Police Forensic Lab
Authors: Adnan Lanjawi
Abstract:
This paper is carried out to investigate the management of hazardous waste in the chemistry section which belongs to Dubai Police forensic laboratory. The chemicals are the main contributor toward the accumulation of hazardous waste in the section. This is due to the requirement to use it in analysis, such as of explosives, drugs, inorganic and fire debris cases. This leads to negative effects on the environment and to the employees’ health and safety. The research investigates the quantity of chemicals there, the labels, the storage room and equipment used. The target is to reduce the need for disposal by looking at alternative options, such as elimination, substitution and recycling. The data was collected by interviewing the top managers there who have been working in the lab more than 20 years. Also, data was collected by observing employees and how they carry out experiments. Therefore, a survey was made to assess their knowledge about the hazardous waste. The management of hazardous chemicals in the chemistry section needs to be improved. The main findings illustrate that about 110 bottles of reference substances were going to be disposed of in 2014. These bottles were bought for about 100,000 UAE Dirhams (£17,600). This means that the management of substances purchase is not organised. There is no categorisation programme in place, which makes the waste control very difficult. In addition, the findings show that chemical are segregated according to alphabetical order, whereas the efficient way is to separate them according to their nature and property. In addition, the research suggested technology and experiments to follow to reduce the need for using solvents and chemicals in the sample preparation.Keywords: control, hazard, laboratories, waste,
Procedia PDF Downloads 4112408 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines
Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto
Abstract:
Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.Keywords: aerial image, landcover, LiDAR, soil fertility degradation
Procedia PDF Downloads 2542407 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 942406 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors
Procedia PDF Downloads 2752405 Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land
Authors: Jalil Badamfirooz
Abstract:
Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses.Keywords: mulch, bitumen emulsion, arid land, PAH
Procedia PDF Downloads 912404 Aggregation-Induced-Active Stimuli-Responsive Based Nano-Objects for Wastewater Treatment Application
Authors: Parvaneh Eskandari, Rachel O'Reilly
Abstract:
In the last years, controlling the self-assembly behavior of stimuli-responsive nano-objects, including micelles, vesicles, worm-like, etc., at different conditions is considered a pertinent challenge in the polymer community. The aim of the project was to synthesize aggregation-induced emission (AIE)-active stimuli-responsive polymeric nano-objects to control the self-assemblies morphologies of the prepared nano-objects. Two types of nanoobjects, micelle and vesicles, including PDMAEMA-b-P(BzMA-TPEMA) [PDMAEMA: poly(N,Ndimethylaminoethyl methacrylate); P(BzMA-TPEMA): poly[benzyl methacrylate-co- tetraphenylethene methacrylate]] were synthesized by using reversible addition−fragmentation chain-transfer (RAFT)- mediated polymerization-induced self-assembly (PISA), which combines polymerization and self-assembly in a single step. Transmission electron microscope and dynamic light scattering (DLS) analysis were used to confirm the formed self-assemblies morphologies. The controlled self-assemblies were applied as nitrophenolic compounds (NPCs) adsorbents from wastewater, thanks to their CO2-responsive part, PDMAEMA. Moreover, the fluorescence-active part of the prepared nano-objects, P(BzMA-TPEMA), played a key role in the detection of the NPCs at the aqueous solution. The optical properties of the prepared nano-objects were studied by UV/Vis and fluorescence spectroscopies. For responsivity investigations, the hydrodynamic diameter and Zeta-potential (ζ-potential) of the sample's aqueous solution were measured by DLS. In the end, the prepared nano-objects were used for the detection and adsorption of different NPCs.Keywords: aggregation-induced emission polymers, stimuli-responsive polymers, reversible addition−fragmentation chain-transfer polymerization, polymerization-induced self-assembly, wastewater treatment
Procedia PDF Downloads 752403 Nanowire Sensor Based on Novel Impedance Spectroscopy Approach
Authors: Valeriy M. Kondratev, Ekaterina A. Vyacheslavova, Talgat Shugabaev, Alexander S. Gudovskikh, Alexey D. Bolshakov
Abstract:
Modern sensorics imposes strict requirements on the biosensors characteristics, especially technological feasibility, and selectivity. There is a growing interest in the analysis of human health biological markers, which indirectly testifying the pathological processes in the body. Such markers are acids and alkalis produced by the human, in particular - ammonia and hydrochloric acid, which are found in human sweat, blood, and urine, as well as in gastric juice. Biosensors based on modern nanomaterials, especially low dimensional, can be used for this markers detection. Most classical adsorption sensors based on metal and silicon oxides are considered non-selective, because they identically change their electrical resistance (or impedance) under the action of adsorption of different target analytes. This work demonstrates a feasible frequency-resistive method of electrical impedance spectroscopy data analysis. The approach allows to obtain of selectivity in adsorption sensors of a resistive type. The method potential is demonstrated with analyzis of impedance spectra of silicon nanowires in the presence of NH3 and HCl vapors with concentrations of about 125 mmol/L (2 ppm) and water vapor. We demonstrate the possibility of unambiguous distinction of the sensory signal from NH3 and HCl adsorption. Moreover, the method is found applicable for analysis of the composition of ammonia and hydrochloric acid vapors mixture without water cross-sensitivity. Presented silicon sensor can be used to find diseases of the gastrointestinal tract by the qualitative and quantitative detection of ammonia and hydrochloric acid content in biological samples. The method of data analysis can be directly translated to other nanomaterials to analyze their applicability in the field of biosensory.Keywords: electrical impedance spectroscopy, spectroscopy data analysis, selective adsorption sensor, nanotechnology
Procedia PDF Downloads 1152402 Design of Self-Heating Containers Using Sodium Acetate Trihydrate for Chemical Energy – Food Products
Authors: Rameshaiah Gowdara Narayanappa, Manikonda Prithvi, Manoj Kumar, Suraj Bhavani, Vikram Singh
Abstract:
Long ago heating of food was only related to fire or electricity. Heating and storage of consumer foods were satisfied by the use of vacuum thermo flaks, electric heating cans and DC powered heating cans. But many of which did not sustain the heat for a long period of time and were impractical for remote areas. The use of chemical energy for heating foods directed us to think about the applications of exothermic reactions as a source of heat. Initial studies of calcium oxide showed desirability but not feasible because the reaction was uncontrollable and irreversible. In this research work we viewed at crystallization of super saturated sodium acetate trihydrate solution. Supersaturated sodium acetate trihydrate has a freezing point of 540 C (1300 F), but it observed to be stable as a liquid at much lower temperatures. Mechanical work is performed to create an active chemical energy zone within the working fluid, when crystallization process is initiated. Due to this the temperature rises to its freezing point which in turn heats the contents in the storage container. Present work endeavor to design a self-heating storage container is suitable for consumer dedications.Keywords: crystallization, exothermic reactions, self-heating container, super saturation, vacuum thermo flask
Procedia PDF Downloads 4662401 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan
Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad
Abstract:
Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules
Procedia PDF Downloads 1082400 Reproductive Behavior of Caspian Red Deer (Cervus Elaphus Maral) in Wildlife Refuge of Semeskande, Sari
Authors: Behrang Ekrami, Amin Tamadon
Abstract:
Caspian red deer or maral (Cervus elaphus maral) is a ruminant from the family of Cervidae. Maintenance and protection of maral requires knowing the behavioral, physiological, environmental characteristics and factors harmful to this species. In this article, reproductive and behavioral traits of this species in both sexes are presented based on observations and the available records of protected deer in Wildlife Refuge of Semeskande, Sari (one of the sites that preserve the maral in the Free Zones of Hyrcanian forest) from 2006 to 2011. Hart characteristics including sexual behavior, apparent changes during reproductive season and reproductive physiology; and hind characteristics including of ovulation, reproductive cycle, mating, pregnancy and parturition, have been evaluated. Identification of maral reproductive characteristics in Wildlife Refuge of Semeskande, Sari is one of the most important information requirements to preserve and breed this species and will open up new routes for performing new methods of reproduction of this species in Iran wildlife parks or other refuge areas.Keywords: caspian red deer, reproduction, behavior, Iran
Procedia PDF Downloads 4912399 Detection of JC Virus DNA and T-Ag Expression in a Subpopulation of Tunisian Colorectal Carcinomas
Authors: Wafa Toumi, Alessandro Ripalti, Luigi Ricciardiello, Dalila Gargouri, Jamel Kharrat, Abderraouf Cherif, Ahmed Bouhafa, Slim Jarboui, Mohamed Zili, Ridha Khelifa
Abstract:
Background & aims: Colorectal cancer (CRC) is one of the most common malignancies throughout the world. Several risk factors, both genetic and environmental, including viral infections, have been linked to colorectal carcinogenesis. A few studies report the detection of human polyomavirus JC (JCV) DNA and transformation antigen (T-Ag) in a fraction of the colorectal tumors studied and suggest an association of this virus with CRC. In order to investigate whether such an association of JCV with CRC will hold in a different epidemiological setting, we looked for the presence of JCV DNA and T-Ag expression in a group of Tunisian CRC patients. Methods: Fresh colorectal mucosa biopsies were obtained from 17 healthy volunteers and from both colorectal tumors and adjacent normal tissues of 47 CRC patients. DNA was extracted from fresh biopsies or from formalin-fixed, paraffin-embedded tissue sections using the Invitrogen Purelink Genomic DNA mini Kit. A simple PCR and a nested PCR were used to amplify a region of the T-Ag gene. The obtained PCR products revealed a 154 bp and a 98 bp bands, respectively. Specificity was confirmed by sequencing of the PCR products. T-Ag expression was determined by immunohistochemical staining using a mouse monoclonal antibody (clone PAb416) directed against SV40 T-Ag that cross reacts with JCV T-Ag. Results: JCV DNA was found in 12 (25%) and 22 (46%) of the CRC tumors by simple PCR and by nested PCR, respectively. All paired adjacent normal mucosa biopsies were negative for viral DNA. Sequencing of the DNA amplicons obtained confirmed the authenticity of T-Ag sequences. Immunohistochemical staining showed nuclear T-Ag expression in all 22 JCV DNA- positive samples and in 3 additional tumor samples which appeared DNA-negative by PCR. Conclusions: These results suggest an association of JCV with a subpopulation of Tunisian colorectal tumors.Keywords: colorectal cancer, immunohistochemistry, Polyomavirus JC, PCR
Procedia PDF Downloads 3642398 Cadmium and Lead Extraction from Environmental Samples with Complexes Matrix by Nanomagnetite Solid-Phase and Determine Their Trace Amounts
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) with sodium dodecyl sulfate- 1-(2-pyridylazo)-2-naphthol (SDS-PAN) as a new sorbent solid phase extraction (SPE) has been successfully synthesized and applied for preconcentration and separation of Cd and Pb in environmental samples. Compared with conventional SPE methods, the advantages of this new magnetic Mixed Hemimicelles Solid-Phase Extraction Procedure (MMHSPE) still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of Cd and Pb compounds from large volume water samples. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS-PAN, satisfactory concentration factor and extraction recoveries can be produced with only 0.05 g Fe3O4/Al2O3 NPs. The metals were eluted with 3mL HNO3 2 mol L-1 directly and detected with the detection system Flame Atomic Absorption Spectrometry (FAAS). Various influencing parameters on the separation and preconcentration of trace metals, such as the amount of PAN, pH value, sample volume, standing time, desorption solvent and maximal extraction volume, amount of sorbent and concentration of eluent, were studied. The detection limits of this method for Cd and Pb were 0.3 and 0.7 ng mL−1 and the R.S.D.s were 3.4 and 2.8% (C = 28.00 ng mL-1, n = 6), respectively. The preconcentration factor of the modified nanoparticles was 166.6. The proposed method has been applied to the determination of these metal ions at trace levels in soil, river, tap, mineral, spring and wastewater samples with satisfactory results.Keywords: Alumina-coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Cd and Pb, soil sample
Procedia PDF Downloads 319