Search results for: active learning teaching model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25268

Search results for: active learning teaching model

1658 Understanding Risky Borrowing Behavior among Young Consumers: An Empirical Study

Authors: T. Hansen

Abstract:

Many consumers are uncertain of what financial borrowing behavior may serve their interests in the best way. This is important since consumers’ risky financial decisions may not only negatively affect their short-term liquidity but may haunt them for years after they are made. Obviously, this is especially critical for young adults who often carry large amounts of student loans or credit card debt, which in turn may hinder their future ability to obtain financial healthiness. Even though factors such as financial knowledge, attitudes towards risk, gender, and motivations of borrowing, among others, are known to influence consumer borrowing behavior, no existing model comprehensibly describes the mechanisms behind young adults’ risky borrowing behavior. This is unfortunate since a better understanding of the relationships between such factors and young adults’ risky borrowing behavior may be of value to financial service providers and financial authorities aiming to improve young adults’ borrowing behavior. This research extends prior research by developing a conceptual framework for the purpose of understanding young adults’ risky borrowing behavior. The study is based on two survey samples comprising 488 young adults aged 18-25 who have not obtained a risky loan (sample 1) and 214 young adults aged 18-25 who already have obtained a risky loan (sample 2), respectively. The results suggest several psychological, sociological, and behavioral factors that may influence young adults’ intentional risky borrowing behavior, which in turn is shown to affect actualized risky borrowing behavior. We also found that the relationship between intentional risky borrowing behavior and actualized risky borrowing behavior is negatively moderated by perceived risk – but not by perceived complexity. In particular, the results of this study indicate that public policy makers, banks and financial educators should seek to eliminate less desirable social norms on how to behave financially. In addition, they should seek to enhance young adults’ risky borrowing perceived risk, thereby preventing that intentional risky borrowing behavior translates into actualized risky behavior.

Keywords: financial services, risky borrowing behavior, young adults, financial knowledge, social norms, perceived risk, financial trust, public financial policy

Procedia PDF Downloads 250
1657 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy

Authors: John Dorrell, Matthew Ambrosia, Abilash

Abstract:

This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.

Keywords: bitcoin, mining, economics, energy

Procedia PDF Downloads 22
1656 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari

Abstract:

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

Keywords: CFD, moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine

Procedia PDF Downloads 192
1655 Construction Strategy of Urban Public Space in Driverless Era

Authors: Yang Ye, Hongfei Qiu, Yaqi Li

Abstract:

The planning and construction of traditional cities are oriented by cars, which leads to the problems of insufficient urban public space, fragmentation, and low utilization efficiency. With the development of driverless technology, the urban structure will change from the traditional single-core grid structure to the multi-core model. In terms of traffic organization, with the release of land for traffic facilities, public space will become more continuous and integrated with traffic space. In the context of driverless technology, urban public reconstruction is characterized by modularization and high efficiency, and its planning and layout features accord with points (service facilities), lines (smart lines), surfaces (activity centers). The public space of driverless urban roads will provide diversified urban public facilities and services. The intensive urban layout makes the commercial public space realize the functions of central activities and style display, respectively, in the interior (building atrium) and the exterior (building periphery). In addition to recreation function, urban green space can also utilize underground parking space to realize efficient dispatching of shared cars. The roads inside the residential community will be integrated into the urban landscape, providing conditions for the community public activity space with changing time sequence and improving the efficiency of space utilization. The intervention of driverless technology will change the thinking of traditional urban construction and turn it into a human-oriented one. As a result, urban public space will be richer, more connected, more efficient, and the urban space justice will be optimized. By summarizing the frontier research, this paper discusses the impact of unmanned driving on cities, especially urban public space, which is beneficial for landscape architects to cope with the future development and changes of the industry and provides a reference for the related research and practice.

Keywords: driverless, urban public space, construction strategy, urban design

Procedia PDF Downloads 100
1654 Time Domain Dielectric Relaxation Microwave Spectroscopy

Authors: A. C. Kumbharkhane

Abstract:

Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed.

Keywords: microwave, time domain reflectometry (TDR), dielectric measurement, relaxation time

Procedia PDF Downloads 327
1653 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact

Authors: Guillaume Richard, Sarra Zaied

Abstract:

Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.

Keywords: marine litter, advection-diffusion equation, sea current, numerical model

Procedia PDF Downloads 79
1652 Applying EzRAD Method for SNPs Discovery in Population Genetics of Freshwater and Marine Fish in the South of Vietnam

Authors: Quyen Vu Dang Ha, Oanh Truong Thi, Thuoc Tran Linh, Kent Carpenter, Thinh Doan Vu, Binh Dang Thuy

Abstract:

Enzyme restriction site associated DNA (EzRAD) has recently emerged as a promising genomic approach for exploring fish genetic diversity on a genome-wide scale. This is a simplified method for genomic genotyping in non-model organisms and applied for SNPs discovery in the population genetics of freshwater and marine fish in the South of Vietnam. The observations of regional-scale differentiation of commercial freshwater fish (smallscale croakers Boesemania microlepis) and marine fish (emperor Lethrinus lentjan) are clarified. Samples were collected along Hau River and coastal area in the south and center Vietnam. 52 DNA samples from Tra Vinh, An Giang Province for Boesemania microlepis and 34 DNA samples of Lethrinus lentjan from Phu Quoc, Nha Trang, Da Nang Province were used to prepare EzRAD libraries from genomic DNA digested with MboI and Sau3AI. A pooled sample of regional EzRAD libraries was sequenced using the HiSeq 2500 Illumina platform. For Boesemania microlepis, the small scale population different from upstream to downstream of Hau river were detected, An Giang population exhibited less genetic diversity (SNPs per individual from 14 to 926), in comparison to Tra Vinh population (from 11 to 2172). For Lethrinus lentjan, the result showed the minor difference between populations in the Northern and the Southern Mekong River. The numbers of contigs and SNPs vary from 1315 to 2455 and from 7122 to 8594, respectively (P ≤ 0.01). The current preliminary study reveals regional scale population disconnection probably reflecting environmental changing. Additional sampling and EzRad libraries need to be implemented for resource management in the Mekong Delta.

Keywords: Boesemania microlepis, EzRAD, Lethrinus lentjan, SNPs

Procedia PDF Downloads 494
1651 Combining Ability for Maize Grain Yield and Yield Component for Resistant to Striga hermmonthica (Del) Benth in Southern Guinea Savannah of Nigeria

Authors: Terkimbi Vange, Obed Abimiku, Lateef Lekan Bello, Lucky Omoigui

Abstract:

In 2014 and 2015, eight maize inbred lines resistant to Striga hermonthica (Del) Benth were crossed in 8 x 8 half diallel (Griffing method 11, model 1). The eight parent inbred lines were planted out in a Randomized Complete Block Design (RCBD) with three replications at two different Striga infested environments (Lafia and Makurdi) during the late cropping season. The objectives were to determine the combining ability of Striga resistant maize inbred lines and identify suitable inbreds for hybrids development. The lines were used to estimate general combining ability (GCA), and specific combining ability (SCA) effects for Striga related parameters such as Striga shoot counts, Striga damage rating (SDR), plant height and grain yield and other agronomic traits. The result of combined ANOVA revealed that mean squares were highly significant for all traits except Striga damage rating (SDR1) at 8WAS and Striga emergence count (STECOI) at 8WAS. Mean squares for SCA were significantly low for all traits. TZSTR190 was the highest yielding parent, and TZSTR166xTZST190 was the highest yielding hybrid (cross). Parent TZSTR166, TZEI188, TZSTR190 and TZSTR193 shows significant (p < 0.05) positive GCA effects for grain yield while the rest had negative GCA effects for grain yield. Parent TZSTR166, TZEI188, TZSTR190, and TZSTR193 could be used for initiating hybrid development. Also, TZSTR166xTZSTR190 cross was the best specific combiner followed by TZEI188xTZSTR193, TZEI80xTZSTR193, and TZSTR190xTZSTR193. TZSTR166xTZSTR190 and TZSTR190xTZSTR193 had the highest SCA effects. However, TZEI80 and TZSTR190 manifested a high positive SCA effect with TZSTR166 indicating that these two inbreds combined better with TZSTR166.

Keywords: combining ability, Striga hermonthica, resistance, grain yield

Procedia PDF Downloads 232
1650 Disaster Victim Identification: A Social Science Perspective

Authors: Victor Toom

Abstract:

Albeit it is never possible to anticipate the full range of difficulties after a catastrophe, efforts to identify victims of mass casualty events have become institutionalized and standardized with the aim of effectively and efficiently addressing the many challenges and contingencies. Such ‘disaster victim identification’ (DVI) practices are dependent on the forensic sciences, are subject of national legislation, and are reliant on technical and organizational protocols to mitigate the many complexities in the wake of catastrophe. Apart from such technological, legal and bureaucratic elements constituting a DVI operation, victims’ families and their emotions are also part and parcel of any effort to identify casualties of mass human fatality incidents. Take for example the fact that forensic experts require (antemortem) information from the group of relatives to make identification possible. An identified body or body part is also repatriated to kin. Relatives are thus main stakeholders in DVI operations. Much has been achieved in years past regarding facilitating victims’ families’ issues and their emotions. Yet, how families are dealt with by experts and authorities is still considered a difficult topic. Due to sensitivities and required emphatic interaction with families on the one hand, and the rationalized DVI efforts, on the other hand, there is still scope for improving communication, providing information and meaningful inclusion of relatives in the DVI effort. This paper aims to bridge the standardized world of DVI efforts and families’ experienced realities and makes suggestions to further improve DVI efforts through inclusion of victims’ families. Based on qualitative interviews, the paper narrates involvement and experiences of inter alia DVI practitioners, victims’ families, advocates and clergy in the wake of the 1995 Srebrenica genocide which killed approximately 8,000 men, and the 9/11 in New York City with 2,750 victims. The paper shows that there are several models of including victims’ families into a DVI operation, and it argues for a model of where victims’ families become a partner in DVI operations.

Keywords: disaster victim identification (DVI), victims’ families, social science (qualitative), 9/11 attacks, Srebrenica genocide

Procedia PDF Downloads 223
1649 Financial Performance Model of Local Economic Enterprises in Matalam, Cotabato

Authors: Kristel Faye Tandog

Abstract:

The State Owned Enterprise (SOE) or also called Public Enterprise (PE) has been playing a vital role in a country’s social and economic development. Following this idea, this study focused on the Factor Structures of Financial Performance of the Local Economic Enterprises (LEEs) namely: Food Court, Market, Slaughterhouse, and Terminal in Matalam, Cotabato. It aimed to determine the profile of the LEEs in terms of organizational structure, manner of creation, years in operation, source of initial operating requirements, annual operating budget, geographical location, and size or description of the facility. This study also included the different financial ratios of LEE that covered a five year period from Calendar Year 2009 to 2013. Primary data using survey questionnaire was administered to 468 respondents and secondary data were sourced out from the government archives and financial documents of the said LGU. There were 12 dominant factors identified namely: “management”, “enforcement of laws”, “strategic location”, “existence of non-formal competitors”, “proper maintenance”, “pricing”, “customer service”, “collection process”, “rentals and services”, “efficient use of resources”, “staffing”, and “timeliness and accuracy”. On the other hand, the financial performance of the LEE of Matalam, Cotabato using financial ratios needs reformatting. This denotes that refinement as to the following ratios: Cash Flow Indicator, Activity, Profitability and Growth is necessary. The cash flow indicator ratio showed difficulty in covering its debts in successive years. Likewise, the activity ratios showed that the LEE had not been effective in putting its investment at work. Moreover, profitability ratios revealed that it had operated in minimum capacity and had incurred net losses and thus, it had a weak profit performance. Furthermore, growth ratios showed that LEE had a declining growth trend particularly in net income.

Keywords: factor structures, financial performance, financial ratios, state owned enterprises

Procedia PDF Downloads 245
1648 Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers

Authors: Jonathan Rodriguez, Dominga Guerrero, Surupa Shaw

Abstract:

Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature.

Keywords: aerodynamics, CFD, freightage, pickup cover

Procedia PDF Downloads 151
1647 Technological Transference Tools to Diffuse Low-Cost Earthquake Resistant Construction with Adobe in Rural Areas of the Peruvian Andes

Authors: Marcial Blondet, Malena Serrano, Álvaro Rubiños, Elin Mattsson

Abstract:

In Peru, there are more than two million houses made of adobe (sun dried mud bricks) or rammed earth (35% of the total houses), in which almost 9 million people live, mainly because they cannot afford to purchase industrialized construction materials. Although adobe houses are cheap to build and thermally comfortable, their seismic performance is very poor, and they usually suffer significant damage or collapse with tragic loss of life. Therefore, over the years, researchers at the Pontifical Catholic University of Peru and other institutions have developed many reinforcement techniques as an effort to improve the structural safety of earthen houses located in seismic areas. However, most rural communities live under unacceptable seismic risk conditions because these techniques have not been adopted massively, mainly due to high cost and lack of diffusion. The nylon rope mesh reinforcement technique is simple and low-cost, and two technological transference tools have been developed to diffuse it among rural communities: 1) Scale seismic simulations using a portable shaking table have been designed to prove its effectiveness to protect adobe houses; 2) A step-by-step illustrated construction manual has been developed to guide the complete building process of a nylon rope mesh reinforced adobe house. As a study case, it was selected the district of Pullo: a small rural community in the Peruvian Andes where more than 80% of its inhabitants live in adobe houses and more than 60% are considered to live in poverty or extreme poverty conditions. The research team carried out a one-day workshop in May 2015 and a two-day workshop in September 2015. Results were positive: First, the nylon rope mesh reinforcement procedure was proven simple enough to be replicated by adults, both young and seniors, and participants handled ropes and knots easily as they use them for daily livestock activity. In addition, nylon ropes were proven highly available in the study area as they were found at two local stores in variety of color and size.. Second, the portable shaking table demonstration successfully showed the effectiveness of the nylon rope mesh reinforcement and generated interest on learning about it. On the first workshop, more than 70% of the participants were willing to formally subscribe and sign up for practical training lessons. On the second workshop, more than 80% of the participants returned the second day to receive introductory practical training. Third, community members found illustrations on the construction manual simple and friendly but the roof system illustrations led to misinterpretation so they were improved. The technological transfer tools developed in this project can be used to train rural dwellers on earthquake-resistant self-construction with adobe, which is still very common in the Peruvian Andes. This approach would allow community members to develop skills and capacities to improve safety of their households on their own, thus, mitigating their high seismic risk and preventing tragic losses. Furthermore, proper training in earthquake-resistant self-construction with adobe would prevent rural dwellers from depending on external aid after an earthquake and become agents of their own development.

Keywords: adobe, Peruvian Andes, safe housing, technological transference

Procedia PDF Downloads 286
1646 Process Evaluation for a Trienzymatic System

Authors: C. Müller, T. Ortmann, S. Scholl, H. J. Jördening

Abstract:

Multienzymatic catalysis can be used as an alternative to chemical synthesis or hydrolysis of polysaccharides for the production of high value oligosaccharides from cheap resources such as sucrose. However, development of multienzymatic processes is complex, especially with respect to suitable conditions for enzymes originating from different organisms. Furthermore, an optimal configuration of the catalysts in a reaction cascade has to be found. These challenges can be approached by design of experiments. The system investigated in this study is a trienzymatic catalyzed reaction which results in laminaribiose production from sucrose and comprises covalently immobilized sucrose phosphorylase (SP), glucose isomerase (GI) and laminaribiose phosphorylase (LP). Operational windows determined with design of experiments and kinetic data of the enzymes were used to optimize the enzyme ratio for maximum product formation and minimal production of byproducts. After adjustment of the enzyme activity ratio to 1: 1.74: 2.23 (SP: LP: GI), different process options were investigated in silico. The considered options included substrate dependency, the use of glucose as co-substrate and substitution of glucose isomerase by glucose addition. Modeling of batch operation in a stirred tank reactor led to yields of 44.4% whereas operation in a continuous stirred tank reactor resulted in product yields of 22.5%. The maximum yield in a bienzymatic system comprised of sucrose phosphorylase and laminaribiose phosphorylase was 67.7% with sucrose and different amounts of glucose as substrate. The experimental data was in good compliance with the process model for batch operation. The continuous operation will be investigated in further studies. Simulation of operational process possibilities enabled us to compare various operational modes regarding different aspects such as cost efficiency, with the minimum amount of expensive and time-consuming practical experiments. This gives us more flexibility in process implementation and allows us, for example, to change the production goal from laminaribiose to higher oligosaccharides.

Keywords: design of experiments, enzyme kinetics, multi-enzymatic system, in silico process development

Procedia PDF Downloads 326
1645 Evaluation of Compatibility between Produced and Injected Waters and Identification of the Causes of Well Plugging in a Southern Tunisian Oilfield

Authors: Sonia Barbouchi, Meriem Samcha

Abstract:

Scale deposition during water injection into aquifer of oil reservoirs is a serious problem experienced in the oil production industry. One of the primary causes of scale formation and injection well plugging is mixing two waters which are incompatible. Considered individually, the waters may be quite stable at system conditions and present no scale problems. However, once they are mixed, reactions between ions dissolved in the individual waters may form insoluble products. The purpose of this study is to identify the causes of well plugging in a southern Tunisian oilfield, where fresh water has been injected into the producing wells to counteract the salinity of the formation waters and inhibit the deposition of halite. X-ray diffraction (XRD) mineralogical analysis has been carried out on scale samples collected from the blocked well. Two samples collected from both formation water and injected water were analysed using inductively coupled plasma atomic emission spectroscopy, ion chromatography and other standard laboratory techniques. The results of complete waters analysis were the typical input parameters, to determine scaling tendency. Saturation indices values related to CaCO3, CaSO4, BaSO4 and SrSO4 scales were calculated for the water mixtures at different share, under various conditions of temperature, using a computerized scale prediction model. The compatibility study results showed that mixing the two waters tends to increase the probability of barite deposition. XRD analysis confirmed the compatibility study results, since it proved that the analysed deposits consisted predominantly of barite with minor galena. At the studied temperatures conditions, the tendency for barite scale is significantly increasing with the increase of fresh water share in the mixture. The future scale inhibition and removal strategies to be implemented in the concerned oilfield are being derived in a large part from the results of the present study.

Keywords: compatibility study, produced water, scaling, water injection

Procedia PDF Downloads 156
1644 Application of Electrochromic Glazing for Reducing Peak Cooling Loads

Authors: Ranojoy Dutta

Abstract:

HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.

Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load

Procedia PDF Downloads 119
1643 The Effect of "Trait" Variance of Personality on Depression: Application of the Trait-State-Occasion Modeling

Authors: Pei-Chen Wu

Abstract:

Both preexisting cross-sectional and longitudinal studies of personality-depression relationship have suffered from one main limitation: they ignored the stability of the construct of interest (e.g., personality and depression) can be expected to influence the estimate of the association between personality and depression. To address this limitation, the Trait-State-Occasion (TSO) modeling was adopted to analyze the sources of variance of the focused constructs. A TSO modeling was operated by partitioning a state variance into time-invariant (trait) and time-variant (occasion) components. Within a TSO framework, it is possible to predict change on the part of construct that really changes (i.e., time-variant variance), when controlling the trait variances. 750 high school students were followed for 4 waves over six-month intervals. The baseline data (T1) were collected from the senior high schools (aged 14 to 15 years). Participants were given Beck Depression Inventory and Big Five Inventory at each assessment. TSO modeling revealed that 70~78% of the variance in personality (five constructs) was stable over follow-up period; however, 57~61% of the variance in depression was stable. For personality construct, there were 7.6% to 8.4% of the total variance from the autoregressive occasion factors; for depression construct there were 15.2% to 18.1% of the total variance from the autoregressive occasion factors. Additionally, results showed that when controlling initial symptom severity, the time-invariant components of all five dimensions of personality were predictive of change in depression (Extraversion: B= .32, Openness: B = -.21, Agreeableness: B = -.27, Conscientious: B = -.36, Neuroticism: B = .39). Because five dimensions of personality shared some variance, the models in which all five dimensions of personality were simultaneous to predict change in depression were investigated. The time-invariant components of five dimensions were still significant predictors for change in depression (Extraversion: B = .30, Openness: B = -.24, Agreeableness: B = -.28, Conscientious: B = -.35, Neuroticism: B = .42). In sum, the majority of the variability of personality was stable over 2 years. Individuals with the greater tendency of Extraversion and Neuroticism have higher degrees of depression; individuals with the greater tendency of Openness, Agreeableness and Conscientious have lower degrees of depression.

Keywords: assessment, depression, personality, trait-state-occasion model

Procedia PDF Downloads 169
1642 Understanding the Influence of Cross-National Distances on Tourist Expenditure

Authors: Wei-Ting Hung

Abstract:

Inbound tourist expenditure might not only have influenced by individual tourist characteristics but may also be affected by nationality characteristics. The cross national distance effects on tourist consumption behavior should be incorporated in the analytical framework. Additionally, the often used factor analysis, cluster analysis and regression analysis overlook the hierarchical tourist consumption data structure and may lead to misleading results. The objectives of the present study were twofold. First, we propose a multilevel model that takes individual and cross-national differences into account under a hierarchical framework. Second, we further sought to determine the types of cross-national differences affecting tourist expenditure. Thus, this study incorporates the individual tourist effects and cross national distance effects simultaneously, uses the data of 2010 Annual Survey Report on Visitors’ Expenditure and Trends in Taiwan to investigate the determinants of inbound tourist expenditure. Multilevel analysis was used to investigate the influence of individual tourist effects and cross national distance effects on inbound tourist expenditure. The empirical results show that cross national distance plays a crucial role in tourist consumption behavior. Our findings also indicate age and income have positive influence on tourism expenditure., whereas education and gender do not have significant impact. Regarding macro-level factors, geographic and cultural differences exhibited significant positive relationships on tourism expenditure, while economic differences did not. Based on the above empirical results, it is suggested that tour operators should take tourists’ individual attributes, particularly their income and age, into consideration when arranging tours. In addition, nationality holds sway over tourists’ consumption behavior, of which geographic and cultural differences are the two major factors at play. The empirical results of this study serve as practical suggestions for tourism marketing strategies and policy implications for government policies.

Keywords: cross national distance, inbound tourist, multilevel analysis, tourist expenditure

Procedia PDF Downloads 350
1641 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity

Authors: Vahid Ebrahimipour

Abstract:

Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.

Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation

Procedia PDF Downloads 98
1640 Use of Giant Magneto Resistance Sensors to Detect Micron to Submicron Biologic Objects

Authors: Manon Giraud, Francois-Damien Delapierre, Guenaelle Jasmin-Lebras, Cecile Feraudet-Tarisse, Stephanie Simon, Claude Fermon

Abstract:

Early diagnosis or detection of harmful substances at low level is a growing field of high interest. The ideal test should be cheap, easy to use, quick, reliable, specific, and with very low detection limit. Combining the high specificity of antibodies-functionalized magnetic beads used to immune-capture biologic objects and the high sensitivity of a GMR-based sensors, it is possible to even detect these biologic objects one by one, such as a cancerous cell, a bacteria or a disease biomarker. The simplicity of the detection process makes its use possible even for untrained staff. Giant Magneto Resistance (GMR) is a recently discovered effect consisting in the electrical resistance modification of some conductive layers when exposed to a magnetic field. This effect allows the detection of very low variations of magnetic field (typically a few tens of nanoTesla). Magnetic nanobeads coated with antibodies targeting the analytes are mixed with a biological sample (blood, saliva) and incubated for 45 min. Then the mixture is injected in a very simple microfluidic chip and circulates above a GMR sensor that detects changes in the surrounding magnetic field. Magnetic particles do not create a field sufficient to be detected. Therefore, only the biological objects surrounded by several antibodies-functionalized magnetic beads (that have been captured by the complementary antigens) are detected when they move above the sensor. Proof of concept has been carried out on NS1 mouse cancerous cells diluted in PBS which have been bonded to magnetic 200nm particles. Signals were detected in cells-containing samples while none were recorded for negative controls. Binary response was hence assessed for this first biological model. The precise quantification of the analytes and its detection in highly diluted solution is the step now in progress.

Keywords: early diagnosis, giant magnetoresistance, lab-on-a-chip, submicron particle

Procedia PDF Downloads 242
1639 Experimental Study of Reflective Roof as a Passive Cooling Method in Homes Under the Paradigm of Appropriate Technology

Authors: Javier Ascanio Villabona, Brayan Eduardo Tarazona Romero, Camilo Leonardo Sandoval Rodriguez, Arly Dario Rincon, Omar Lengerke Perez

Abstract:

Efficient energy consumption in the housing sector in relation to refrigeration is a concern in the construction and rehabilitation of houses in tropical areas. Thermal comfort is aggravated by heat gain on the roof surface by heat gains. Thus, in the group of passive cooling techniques, one of the practices and technologies in solar control that provide improvements in comfortable conditions are thermal insulation or geometric changes of the roofs. On the other hand, methods with reflection and radiation are the methods used to decrease heat gain by facilitating the removal of excess heat inside a building to maintain a comfortable environment. Since the potential of these techniques varies in different climatic zones, their application in different zones should be examined. This research is based on the experimental study of a prototype of a roof radiator as a method of passive cooling in homes, which was developed through an experimental research methodology making measurements in a prototype built by means of the paradigm of appropriate technology, with the aim of establishing an initial behavior of the internal temperature resulting from the climate of the external environment. As a starting point, a selection matrix was made to identify the typologies of passive cooling systems to model the system and its subsequent implementation, establishing its constructive characteristics. Step followed by the measurement of the climatic variables (outside the prototype) and microclimatic variables (inside the prototype) to obtain a database to be analyzed. As a final result, the decrease in temperature that occurs inside the chamber with respect to the outside temperature was evidenced. likewise, a linearity in its behavior in relation to the variations of the climatic variables.

Keywords: appropriate technology, enveloping, energy efficiency, passive cooling

Procedia PDF Downloads 83
1638 The Role of Building Services in Energy Conservation into Residential Buildings

Authors: Osama Ahmed Ibrahim Masoud, Mohamed Ibrahim Mohamed Abdelhadi, Ahmed Mohamed Seddik Hassan

Abstract:

The problem of study focuses on thermal comfort realization in a residential building during hot and dry climate periods consumes a major electrical energy for air conditioning operation. Thermal comfort realization in a residential building during such climate becomes more difficult regarding the phenomena of climate change, and the use of building and construction materials which have the feature of heat conduction as (bricks-reinforced concrete) and the global energy crises. For that, this study aims to how to realize internal thermal comfort through how to make the best use of building services (temporarily used service spaces) for reducing the electrical energy transfer and saving self-shading. In addition, the possibility of reduction traditional energy (fossil fuel) consumed in cooling through the use of building services for reducing the internal thermal comfort and the relationship between them. This study is based on measuring the consumed electrical energy rate in cooling (by using Design-Builder program) for a residential building (the place of study is: Egypt- Suez Canal- Suez City), this design model has lots of alternatives designs for the place of building services (center of building- the eastern front- southeastern front- the southern front- the south-west front, the western front). The building services are placed on the fronts with different rates for determining the best rate on fronts which realizes thermal comfort with the lowest of energy consumption used in cooling. Findings of the study indicate to that the best position for building services is on the west front then the south-west front, and the more the building services increase, the more energy consumption used in cooling of residential building decreases. Recommendations indicate to the need to study the building services positions in the new projects progress to select the best alternatives to realize ‘Energy conservation’ used in cooling or heating into the buildings in general, residential buildings particularly.

Keywords: residential buildings, energy conservation, thermal comfort, building services, temporary used service spaces, DesignBuilder

Procedia PDF Downloads 274
1637 Cost-Effective Materials for Hydrocarbons Recovery from Produced Water

Authors: Fahd I. Alghunaimi, Hind S. Dossary, Norah W. Aljuryyed, Tawfik A. Saleh

Abstract:

Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing.

Keywords: graphite to graphene, oleophilic, produced water, separation

Procedia PDF Downloads 116
1636 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation

Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um

Abstract:

In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.

Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube

Procedia PDF Downloads 188
1635 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence

Authors: Gus Calderon, Richard McCreight, Tammy Schwartz

Abstract:

Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.

Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.

Procedia PDF Downloads 98
1634 Strategic Policy Formulation to Ensure the Atlantic Forest Regeneration

Authors: Ramon F. B. da Silva, Mateus Batistella, Emilio Moran

Abstract:

Although the existence of two Forest Transition (FT) pathways, the economic development and the forest scarcity, there are many contexts that shape the model of FT observed in each particular region. This means that local conditions, such as relief, soil quality, historic land use/cover, public policies, the engagement of society in compliance with legal regulations, and the action of enforcement agencies, represent dimensions which combined, creates contexts that enable forest regeneration. From this perspective we can understand the regeneration process of native vegetation cover in the Paraíba Valley (Forest Atlantic biome), ongoing since the 1960s. This research analyzed public information, land use/cover maps, environmental public policies, and interviewed 17 stakeholders from the Federal and State agencies, municipal environmental and agricultural departments, civil society, farmers, aiming comprehend the contexts behind the forest regeneration in the Paraíba Valley, Sao Paulo State, Brazil. The first policy to protect forest vegetation was the Forest Code n0 4771 of 1965, but this legislation did not promote the increase of forest, just the control of deforestation, not enough to the Atlantic Forest biome that reached its highest pick of degradation in 1985 (8% of Atlantic Forest remnants). We concluded that the Brazilian environmental legislation acted in a strategic way to promote the increase of forest cover (102% of regeneration between 1985 and 2011) from 1993 when the Federal Decree n0 750 declared the initial and advanced stages of secondary succession protected against any kind of exploitation or degradation ensuring the forest regeneration process. The strategic policy formulation was also observed in the Sao Paulo State law n0 6171 of 1988 that prohibited the use of fire to manage agricultural landscape, triggering a process of forest regeneration in formerly pasture areas.

Keywords: forest transition, land abandonment, law enforcement, rural economic crisis

Procedia PDF Downloads 540
1633 Metal Layer Based Vertical Hall Device in a Complementary Metal Oxide Semiconductor Process

Authors: Se-Mi Lim, Won-Jae Jung, Jin-Sup Kim, Jun-Seok Park, Hyung-Il Chae

Abstract:

This paper presents a current-mode vertical hall device (VHD) structure using metal layers in a CMOS process. The proposed metal layer based vertical hall device (MLVHD) utilizes vertical connection among metal layers (from M1 to the top metal) to facilitate hall effect. The vertical metal structure unit flows a bias current Ibias from top to bottom, and an external magnetic field changes the current distribution by Lorentz force. The asymmetric current distribution can be detected by two differential-mode current outputs on each side at the bottom (M1), and each output sinks Ibias/2 ± Ihall. A single vertical metal structure generates only a small amount of hall effect of Ihall due to the short length from M1 to the top metal as well as the low conductivity of the metal, and a series connection between thousands of vertical structure units can solve the problem by providing NxIhall. The series connection between two units is another vertical metal structure flowing current in the opposite direction, and generates negative hall effect. To mitigate the negative hall effect from the series connection, the differential current outputs at the bottom (M1) from one unit merges on the top metal level of the other unit. The proposed MLVHD is simulated in a 3-dimensional model simulator in COMSOL Multiphysics, with 0.35 μm CMOS process parameters. The simulated MLVHD unit size is (W) 10 μm × (L) 6 μm × (D) 10 μm. In this paper, we use an MLVHD with 10 units; the overall hall device size is (W) 10 μm × (L)78 μm × (D) 10 μm. The COMSOL simulation result is as following: the maximum hall current is approximately 2 μA with a 12 μA bias current and 100mT magnetic field; This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: CMOS, vertical hall device, current mode, COMSOL

Procedia PDF Downloads 289
1632 Marginal Productivity of Small Scale Yam and Cassava Farmers in Kogi State, Nigeria: Data Envelopment Analysis as a Complement

Authors: M. A. Ojo, O. A. Ojo, A. I. Odine, A. Ogaji

Abstract:

The study examined marginal productivity analysis of small scale yam and cassava farmers in Kogi State, Nigeria. Data used for the study were obtained from primary source using a multi-stage sampling technique with structured questionnaires administered to 150 randomly selected yam and cassava farmers from three Local Government Areas of the State. Description statistics, data envelopment analysis and Cobb-Douglas production function were used to analyze the data. The DEA result on the overall technical efficiency of the farmers showed that 40% of the sampled yam and cassava farmers in the study area were operating at frontier and optimum level of production with mean technical efficiency of 1.00. This implies that 60% of the yam and cassava farmers in the study area can still improve their level of efficiency through better utilization of available resources, given the current state of technology. The results of the Cobb-Douglas analysis of factors affecting the output of yam and cassava farmers showed that labour, planting materials, fertilizer and capital inputs positively and significantly affected the output of the yam and cassava farmers in the study area. The study further revealed that yam and cassava farms in the study area operated under increasing returns to scale. This result of marginal productivity analysis further showed that relatively efficient farms were more marginally productive in resource utilization This study also shows that estimating production functions without separating the farms to efficient and inefficient farms bias the parameter values obtained from such production function. It is therefore recommended that yam and cassava farmers in the study area should form cooperative societies so as to enable them have access to productive inputs that will enable them expand. Also, since using a single equation model for production function produces a bias parameter estimates as confirmed above, farms should, therefore, be decomposed into efficient and inefficient ones before production function estimation is done.

Keywords: marginal productivity, DEA, production function, Kogi state

Procedia PDF Downloads 467
1631 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites

Authors: Sarra Haouala, Issam Doghri

Abstract:

In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.

Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization

Procedia PDF Downloads 355
1630 Aerodynamic Interference of Propellers Group with Adjustable Mutual Position

Authors: Michal Biały, Krzysztof Skiba, Zdzislaw Kaminski

Abstract:

The research results of the influence of the adjustable mutual position of the propellers for getting optimal lift force on a specially designed bench. The bench consists of frame with electric motors and with attached propellers. Engines were arranged in a matrix of two columns and three rows. The distance between the columns averages from 0 to 20”, while the engine was placed at a height of 8”, 15.5” and 23.6”. By adjusting the tilt of an electric motor, an angle of the propeller in the range of 0° to 60°, by 15° was controlled. Propellers with a diameter of 8" and pitch of 4.5” were driven by brushless model engines Roxxy BL-Outrunner 2827/26 with a power of 110W (each). Rotational speed control of electric motors were realized parallel for all propellers. The speed adjustment was realized using an aggregate of radio-controlled regulators. Electric power supplied to the engines from zero to maximum power, by the setting for every 14W, was controlled by radio system. Measurement system was placed on a laboratory scale. The lift was measured and recorded by an electronic scale. The lift force for different configurations of propellers arrangement was recorded during the test. All propellers were driven in one rotational direction and in different directions when they were in the same pairs. Propellers were driven concurrently and contra-concurrently along one of the columns and along the selected rows. During the tests, except the lift, parameters such as: rotational speed of propellers, voltage and current to the electric engines were recorded. The main aim of the research was to show the influence of aerodynamic interference between the propellers to receive lift force depending on the drive configuration of individual propellers. The research has shown that, this interference exists. The increase of the lift force for a distance between columns above 26.6” was noticed during the driving propellers in different directions. The optimum tilt angle of the propeller was 45°. Furthermore there has been also approx. 12% increase of the lift for propellers driven alternately in column and contra-concurrently in relation to the contra-rotating drive in the row.

Keywords: aerodynamic, interference, lift force, propeller, propulsion system

Procedia PDF Downloads 335
1629 Effect of Cumulative Dissipated Energy on Short-Term and Long-Term Outcomes after Uncomplicated Cataract Surgery

Authors: Palaniraj Rama Raj, Himeesh Kumar, Paul Adler

Abstract:

Purpose: To investigate the effect of ultrasound energy, expressed as cumulative dissipated energy (CDE), on short and long-term outcomes after uncomplicated cataract surgery by phacoemulsification. Methods: In this single-surgeon, two-center retrospective study, non-glaucomatous participants who underwent uncomplicated cataract surgery were investigated. Best-corrected visual acuity (BCVA) and intraocular pressure (IOP) were measured at 3 separate time points: pre-operative, Day 1 and ≥1 month. Anterior chamber (AC) inflammation and corneal odema (CO) were assessed at 2 separate time points: Pre-operative and Day 1. Short-term changes (Day 1) in BCVA, IOP, AC and CO and long-term changes (≥1 month) in BCVA and IOP were evaluated as a function of CDE using a multivariate multiple linear regression model, adjusting for age, gender, cataract type and grade, preoperative IOP, preoperative BCVA and duration of long-term follow-up. Results: 110 eyes from 97 non-glaucomatous participants were analysed. 60 (54.55%) were female and 50 (45.45%) were male. The mean (±SD) age was 73.40 (±10.96) years. Higher CDE counts were strongly associated with higher grades of sclerotic nuclear cataracts (p <0.001) and posterior subcapsular cataracts (p <0.036). There was no significant association between CDE counts and cortical cataracts. CDE counts also had a positive correlation with Day 1 CO (p <0.001). There was no correlation between CDE counts and Day 1 AC inflammation. Short-term and long-term changes in post-operative IOP did not demonstrate significant associations with CDE counts (all p >0.05). Though there was no significant correlation between CDE counts and short-term changes in BCVA, higher CDE counts were strongly associated with greater improvements in long-term BCVA (p = 0.011). Conclusion: Though higher CDE counts were strongly associated with higher grades of Day 1 postoperative CO, there appeared to be no detriment to long-term BCVA. Correspondingly, the strong positive correlation between CDE counts and long-term BCVA was likely reflective of the greater severity of underlying cataract type and grade. CDE counts were not associated with short-term or long-term postoperative changes in IOP.

Keywords: cataract surgery, phacoemulsification, cumulative dissipated energy, CDE, surgical outcomes

Procedia PDF Downloads 172