Search results for: withdrawal resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3360

Search results for: withdrawal resistance

1050 NprRX Regulation on Surface Spreading Motility in Bacillus cereus

Authors: Yan-Shiang Chiou, Yi-Huang Hsueh

Abstract:

Bacillus cereus is a foodborne pathogen that causes two types of foodborne illness, the emetic and diarrheal syndromes. B. cereus consistently ranks among the top three among bacterial foodborne outbreaks in the ten years of 2001 to 2010 in Taiwan. Foodborne outbreak caused by B. cereus has been increased, and recently it ranks second foodborne pathogen after Vibrio parahaemolyticus. This pathogen is difficult to control due to its ubiquitousness in the environment, the psychrotrophic nature of many strains, and the heat resistance of their spores. Because complete elimination of biofilms is difficult, a better understanding of the molecular mechanisms of biofilm formation by B. cereus will help to develop better strategies to control this pathogen. Surface translocation can be an important factor in biofilm formation. In B. cereus, NprR is a quorum sensor, and its apo NprR is a dimer and changes to a tetramer in the presence of NprX. The small peptide NprX may induce conformational change allowing the apo dimer to switch to an active tetramer specifically recognizing target DNA sequences. Our result showed that mutation of nprRX causes surface spreading deficiency. Mutation of flagella, pili and surfactant genes (flgAB, bcpAB, krsABC), did not abolish spreading motility. Under nprRX mutant, mutation of spo0A restored the spreading deficiency. This suggests that spreading motility is not related surfactant, pili and flagella but other unknown mechanism and Spo0A, a sporulation initiation protein, inhibits spreading motility.

Keywords: Bacillus cereus, nprRX, spo0A, spreading motility

Procedia PDF Downloads 256
1049 In Vitro Antibacterial Effect of Hydroalcoholic Extract of Lawsonia Inermis, Malva Sylvestris and Boswellia Serrata on Aggregatibacter Actinomycetemcomitans

Authors: Surena V.

Abstract:

Background and Aim: Periodontal diseases are among the most common infectious diseases all around the world, even in developed countries. Considering the increased rate of microbial resistance to antibiotics and the chemical side effects of antibiotics and antiseptics used for the treatment of periodontal disease, there is a need for an alternative antimicrobial agent with fewer complications. Medicinal herbs have recently become popular as antimicrobial and preventive agents. This study aimed to assess the antibacterial effects of hydroalcoholic extracts of Lawsonia inermis, Malva sylvestris and Boswellia serrata on Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Materials and Methods: Hydroalcoholic extracts of the three medicinal plants were obtained by the maceration technique and A. actinomycetemcomitans was cultured. The antimicrobial efficacy of the three medicinal plants was compared with that of 0.2% chlorhexidine (CHX) according to the CLSI protocol using agar disc diffusion and broth microdilution techniques. All tests were repeated three times. Results: Hydroalcoholic extracts of all three plants had antimicrobial activity against A. actinomycetemcomitans. The minimum inhibitory concentration (MIC) of Lawsonia inermis, Malva sylvestris, and Boswellia serrata was 78.1, 156.2, and 1666 µg/mL with no significant difference between them. The MIC of CHX was 3.33 µg/mL, which was significantly higher than that of Boswellia serrata extract. Conclusion: Given that, further in vivo studies confirm other properties of these extracts and their safety in terms of cytotoxicity and mutagenicity, hydroalcoholic extracts of Lawsonia inermis and Malva sylvestris may be used in mouthwashes or local delivery systems to affect periodontal biofilm.

Keywords: actinobacilus actinomycetem commitans, lawsonia inermis, malva sylvestris, boswellia serrata

Procedia PDF Downloads 59
1048 Microbial Bioagent Triggered Biochemical Response in Tea (Camellia sinensis) Inducing Resistance against Grey Blight Disease and Yield Enhancement

Authors: Popy Bora, L. C. Bora, A. Bhattacharya, Sehnaz S. Ahmed

Abstract:

Microbial bioagents, viz., Pseudomonas fluorescens, Bacillus subtilis, and Trichoderma viride were assessed for their ability to suppress grey blight caused by Pestalotiopsis theae, a major disease of tea crop in Assam. The expression of defense-related phytochemicals due to the application of these bioagents was also evaluated. The individual bioagents, as well as their combinations, were screened for their bioefficacy against P. theae in vitro using nutrient agar (NA) as basal medium. The treatment comprising a combination of the three bioagents, P. fluorescens, B. subtilis, and T. viride showed significantly the highest inhibition against the pathogen. Bioformulation of effective bioagent combinations was further evaluated under field condition, where significantly highest reduction of grey blight (90.30%), as well as the highest increase in the green leaf yield (10.52q/ha), was recorded due to application of the bioformulation containing the three bioagents. The application of the three bioformulation also recorded an enhanced level of caffeine (4.15%) and polyphenols (22.87%). A significant increase in the enzymatic activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were recorded in the plants treated with the microbial bioformulation of the three bioagents. The present investigation indicates the role of microbial agents in suppressing disease, inducing plant defense response, as well as improving the quality of tea.

Keywords: enzymatic activity, grey blight, microbial bioagents, Pestalotiopsis theae, phytochemicals, plant defense, tea

Procedia PDF Downloads 141
1047 Effects of Boldenone Injections and Endurance Exercise on Hepatocyte Morphologic Damages in Male Wistar Rats

Authors: Seyyed Javad Ziaolhagh

Abstract:

Background: The purpose of present study was to investigate, the effects of anabolic steroid Boldenone (BOL) with eight weeks of resistance training on structural changes in rat liver. Method: 21 Male adult Wistar rats, 12 weeks old and 228/53±7/94 g initial body weight were randomly assigned to three groups: group1: Control+ Placebo (C), group2: training+ Placebo (T), group3: Boldenone intramuscular injections 5mg/kg (B). The endurance training protocol consisted three exercise sessions weekly started by a 30-minute run with the speed of 12 m/min and lasted by 60min run with the speed of 30 m/min in 8 weeks. At the end of the experiment, for light microscopic study Slides were prepared. Results: Sections stained of rat's livers showed no any cell degeneration and cytoplasmic lipid vacuoles in all groups, but few samples were seen. Indeed, congested blood sinusoids, cell infiltration and degeneration were seen in the Boldenone-treated group. Hepatotoxic effects were severe in group treatment received 5 mg/kg and directly depended on the doses. Indeed, training group was no any hepatocyte degeneration, inflammation and congestion. Conclusion: The present results showed that BOL has a marked adverse effect on the liver tissue, even with low– dose and endurance training. As a result, athletes should aware of Boldenone dosage consumption.

Keywords: anabolic androgenic steroids, Boldenone, blood congestion, cellular inflammation, cellular degeneration, lipid vocuolations, endurance training

Procedia PDF Downloads 430
1046 MIM and Experimental Studies of the Thermal Drift in an Ultra-High Precision Instrument for Dimensional Metrology

Authors: Kamélia Bouderbala, Hichem Nouira, Etienne Videcoq, Manuel Girault, Daniel Petit

Abstract:

Thermal drifts caused by the power dissipated by the mechanical guiding systems constitute the main limit to enhance the accuracy of an ultra-high precision cylindricity measuring machine. For this reason, a high precision compact prototype has been designed to simulate the behaviour of the instrument. It ensures in situ calibration of four capacitive displacement probes by comparison with four laser interferometers. The set-up includes three heating wires for simulating the powers dissipated by the mechanical guiding systems, four additional heating wires located between each laser interferometer head and its respective holder, 19 Platinum resistance thermometers (Pt100) to observe the temperature evolution inside the set-up and four Pt100 sensors to monitor the ambient temperature. Both a Reduced Model (RM), based on the Modal Identification Method (MIM) was developed and optimized by comparison with the experimental results. Thereafter, time dependent tests were performed under several conditions to measure the temperature variation at 19 fixed positions in the system and compared to the calculated RM results. The RM results show good agreement with experiment and reproduce as well the temperature variations, revealing the importance of the RM proposed for the evaluation of the thermal behaviour of the system.

Keywords: modal identification method (MIM), thermal behavior and drift, dimensional metrology, measurement

Procedia PDF Downloads 396
1045 Linking Theory to Practice: An Analysis of Papers Submitted by Participants in a Teacher Mentoring Course

Authors: Varda Gil, Ella Shoval, Tussia Mira

Abstract:

Teacher mentoring is a complex practical profession whose unique characteristic is the teacher-mentors' commitment to helping teachers link theory with teaching practice in the process of decision-making and in their reflections on teaching. The aim of this research is to examine the way practicing teacher-mentors participating in a teacher mentoring course made the connection between theory and practice. The researchers analyzed 20 final papers submitted by participants in a course to train teacher mentors. The participants were all veteran high-school teachers. The course comprised 112 in-class hours in addition to mentoring novices in the field. The course covered the following topics: The teacher-mentors' perception of their role; formative and summative evaluation of the novices; tutoring strategies and tools; types of learners; and ways of communicating and dealing with novice teachers' resistance to counseling. The course participants were required to write a 4-5 page reflective summary of their field mentoring practice. In addition, they were required to link theories explicitly learned in the course to their practice in the field. A qualitative analysis of the papers led to the creation of the taxonomy of the link between theory and practice relating to four topics: The kinds of links made between theory and practice, the quality of these links, the links made between private teaching theories and official teaching theory, and the qualities of these links. This taxonomy may prove to be a useful tool in the teacher-mentor training processes.

Keywords: taxonomy, teacher-mentors, theory, practice, teacher-mentor training

Procedia PDF Downloads 354
1044 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 78
1043 The Effect of High-Pressure Processing on the Inactivation of Saccharomyces cerevisiae in Different Concentration of Manuka Honey and Its Relation with ° Brix

Authors: Noor Akhmazillah Fauzi, Mohammed Mehdi Farid, Filipa V. Silva

Abstract:

The aim of this paper is to investigate if different concentration of Manuka honey (as a model food) has a major influence on the inactivation of Saccharomyces cerevisiae (as the testing microorganism) after subjecting it to HPP. Honey samples with different sugar concentrations (20, 30, 40, 50, 60 and 70 °Brix) were prepared aseptically using sterilized distilled water. No dilution of honey was made for the 80 °Brix sample. For the 0 °Brix sample (control), sterilized distilled water was used. Thermal treatment at 55 °C for 10 min (conventionally applied in honey pasteurisation in industry) was carried out for comparison purpose. S. cerevisiae cell numbers in honey samples were established before and after each HPP and thermal treatment. The number of surviving cells was determined after a proper dilution of the untreated and treated samples by the viable plate count method. S. cerevisiae cells, in different honey concentrations (0 to 80 °Brix), subjected to 600 MPa (at ambient temperature) showed an increasing resistance to inactivation with °Brix. A significant correlation (p < 0.05) between cell reduction and °Brix was found. Cell reduction in high pressure-treated samples varied linearly with °Brix (R2 > 0.9), confirming that the baroprotective effect of the food is due to sugar content. This study has practical implications in establishing efficient process design for commercial manufacturing of high sugar food products and on the potential use of HPP for such products.

Keywords: high pressure processing, honey, Saccharomyces cerevisiae, °Brix

Procedia PDF Downloads 353
1042 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects

Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta

Abstract:

Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.

Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect

Procedia PDF Downloads 214
1041 Calculating Approach of Thermal Conductivity of 8 YSZ in Different Relative Humidities Corresponding to Low Water Contents

Authors: Yun Chol Kang, Myong Nam Kong, Nam Chol Yu, Jin Sim Kim, Un Yong Paek, Song Ho Kim

Abstract:

This study focuses on the calculating approach of the thermal conductivity of 8 mol% yttria-stabilized zirconia (8YSZ) in different relative humidity corresponding to low water contents. When water content in 8YSZ is low, water droplets can accumulate in the neck regions. We assume that spherical water droplets are randomly located in the neck regions formed by grains and surrounded by the pores. Based on this, a new hypothetical pore constituted by air and water is proposed using the microstructural modeling. We consider 8YSZ is a two-phase material constituted by the solid region and the hypothetical pore region where the water droplets are penetrated in the pores, randomly. The results showed that the thermal conductivity of the hypothetical pore is calculated using the parallel resistance for low water contents, and the effective thermal conductivity of 8YSZ material constituted by solid and hypothetical pore in different relative humidities using EMPT. When the numbers of water layers on the surface of 8YSZ are less than 1.5, the proposed approach gives a good interpretation of the experimental results. When the theoretical value of the number of water layers on 8YSZ surface is 1, the water content is not enough to cover the internal solid surface completely. The proposed approach gives a better interpretation of the experimental results in different relative humidities that numbers of water layers on the surface of 8YSZ are less than 1.5.

Keywords: 8YSZ, microstructure, thermal conductivity, relative humidity

Procedia PDF Downloads 88
1040 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Authors: Teerapon Pirom, Ura Pancharoen

Abstract:

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Keywords: aliquat336, amoxicillin, HFSLM, kinetic

Procedia PDF Downloads 275
1039 Antidepressant-Like Effects of EQC-34, a 5HT3 Receptor Antagonist in Neurobehavioral Mouse Model of Depression

Authors: D: Gupta, M. Radhakrishnan, Y. Kurhe, D. Thangaraj

Abstract:

Depression is among the leading causes of death worldwide. The current pharmacotherapy is associated with poor compliance, resistance and relapse, which necessitate the development of novel compounds with better efficacy. The present study designed and synthesized EQC-34 (N-cyclohexyl-3-ethoxyquinoxalin-2-carboxamide) as novel serotonin type-3 (5HT3) antagonist and evaluated its antidepressant-like effects using neurobehavioral mouse model. 5HT3 antagonism (as pA2 value) was determined on the longitudinal smooth muscle of guinea-pig ileum against 2-methyl-5HT (a 5HT3 agonist). The doses were calculated by dose response of basal locomotor activity. Consequently, effects of EQC-34 on neurobehavioral parameters were measured in forced swim (FST) and tail suspension test (TST). The possible mechanism was estimated by interaction study with fluoxetine (a selective serotonin reuptake inhibitor) and mCPBG (1-(m-chlorophenyl)-biguanide, a selective 5HT3 agonist), and confirmed by potentiation of head twitch response by 5hydroxy-L-tryptophan (5HTP). EQC-34 (1-4 mg/kg, i.p.) produced significant decreased behavioral despair effects in FST and TST. It potentiated fluoxetine response, while mCPBG reduced EQC-34 activity in FST. Further, EQC-34 potentiated 5HTP induced head twitch response. EQC-34 revealed potential antidepressant-like effects, which may involve 5HT3 receptor mediated facilitation of 5HT neurotransmission, thereby reversing the pathological deficiency of monoamines (5HT) observed in depression. Thus, it may be further investigated as promising agent to improve therapeutics of depression.

Keywords: depression, forced swim test, 5HT3 receptor antagonist, serotonin

Procedia PDF Downloads 435
1038 Synthesis and Tribological Properties of the Al-Cr-N/MoS₂ Self-Lubricating Coatings by Hybrid Magnetron Sputtering

Authors: Tie-Gang Wang, De-Qiang Meng, Yan-Mei Liu

Abstract:

Ternary AlCrN coatings were widely used to prolong cutting tool life because of their high hardness and excellent abrasion resistance. However, the friction between the workpiece and cutter surface was increased remarkably during machining difficult-to-cut materials (such as superalloy, titanium, etc.). As a result, a lot of cutting heat was generated and cutting tool life was shortened. In this work, an appropriate amount of solid lubricant MoS₂ was added into the AlCrN coating to reduce the friction between the tool and the workpiece. A series of Al-Cr-N/MoS₂ self-lubricating coatings with different MoS₂ contents were prepared by high power impulse magnetron sputtering (HiPIMS) and pulsed direct current magnetron sputtering (Pulsed DC) compound system. The MoS₂ content in the coatings was changed by adjusting the sputtering power of the MoS₂ target. The composition, structure and mechanical properties of the Al-Cr-N/MoS2 coatings were systematically evaluated by energy dispersive spectrometer, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, nano-indenter tester, scratch tester, and ball-on-disk tribometer. The results indicated the lubricant content played an important role in the coating properties. As the sputtering power of the MoS₂ target was 0.1 kW, the coating possessed the highest hardness 14.1GPa, the highest critical load 44.8 N, and the lowest wear rate 4.4×10−3μm2/N.

Keywords: self-lubricating coating, Al-Cr-N/MoS₂ coating, wear rate, friction coefficient

Procedia PDF Downloads 132
1037 Analysis of the Touch and Step Potential Characteristics of an Earthing System Based on Finite Element Method

Authors: Nkwa Agbor Etobi Arreneke

Abstract:

A well-designed earthing/grounding system will not only provide an effective path for direct dissipation of faulty currents into the earth/soil, but also ensure the safety of personnels withing and around its immediate surrounding perimeter is free from the possibility of fatal electric shock. In order to achieve the latter, it is of paramount importance to ensuring that both the step and touch potentials are kept within the allowable tolerance set by standards IEEE Std-80-2000. In this article, the step and touch potentials of an earthing system are simulated and conformity verified using the Finite Element Method (FEM), and has been found to be 242.4V and 194.80V respectively. The effect of injection current position is also analyzed to observe its effect on a person within or in contact with any active part of the earthing system of the substation. The values obtained closely matches those of other published works which made using different numerical methods and/or simulations Genetic Algorithm (GA). This current study is aimed at throwing more light to the dangers of step and touch potential of earthing systems of substation and electrical facilities as a whole, and the need for further in-dept analysis of these parameters. Observations made on this current paper shows that, the position of contact with an energize earthing system is of paramount important in determining its effect on living organisms in contact with any energized part of the earthing systems.

Keywords: earthing/grounding systems, finite element method (fem), ground/earth resistance, safety, touch and step potentials, generic algorithm

Procedia PDF Downloads 100
1036 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton, i. e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind–earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several spatially-distributed locations within each building. After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. The response modification factor (R) for the 15 storey RC building is evaluated from capacity and demand spectra (ATC-40). The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: seismic assessment, pushover analysis, ambient vibration, modal update

Procedia PDF Downloads 391
1035 Insults, Injuries, and Resistance: Challenging Environmental Classism and Embracing Working-Class Environmentalism

Authors: Karen Bell

Abstract:

It is vital to integrate a working-class perspective into the just transition to an inclusive and sustainable society because of the particular expertise and interests that working-class people bring to the debates and actions. In class societies, those who are not well represented in the current structures of power can find it easier to see when the system is not working. They are also more likely to be impacted by the environmental crises because wealthier people can change their dwelling places, jobs and other aspects of their lives in the face of risks. Therefore, challenging the ‘post-material values thesis’, this paper argues that, if enabled to do so, working-class people are more likely to identify what needs to be addressed and changed in transition and can be more motivated to make the changes necessary than other social groups. However, they are often excluded from environmental decision-making and environmental social movements. The paper is based on a mixed methodology; drawing on secondary data, interview material, participant observation and documentary analysis. It is based on years of research and activism on environmental issues in working-class communities. The analysis and conclusion discusses the seven kinds of change required to address this problem: 1) organizational change - participatory practice (2) legislative change - make class an equalities and human rights issue (3) policy change - reduce inequality (4) social movement change - radicalize the environmental movement and support the environmental working-class (5) political change - create an eco-social state based on sharing (6) cultural change - integrate social and environmental justice, and (7) revolutionary change - dismantle capitalism.

Keywords: environmentalism, just transition, sustainability, working class

Procedia PDF Downloads 152
1034 Single Atom Manipulation with 4 Scanning Tunneling Microscope Technique

Authors: Jianshu Yang, Delphine Sordes, Marek Kolmer, Christian Joachim

Abstract:

Nanoelectronics, for example the calculating circuits integrating at molecule scale logic gates, atomic scale circuits, has been constructed and investigated recently. A major challenge is their functional properties characterization because of the connecting problem from atomic scale to micrometer scale. New experimental instruments and new processes have been proposed therefore. To satisfy a precisely measurement at atomic scale and then connecting micrometer scale electrical integration controller, the technique improvement is kept on going. Our new machine, a low temperature high vacuum four scanning tunneling microscope, as a customer required instrument constructed by Omicron GmbH, is expected to be scaling down to atomic scale characterization. Here, we will present our first testified results about the performance of this new instrument. The sample we selected is Au(111) surface. The measurements have been taken at 4.2 K. The atomic resolution surface structure was observed with each of four scanners with noise level better than 3 pm. With a tip-sample distance calibration by I-z spectra, the sample conductance has been derived from its atomic locally I-V spectra. Furthermore, the surface conductance measurement has been performed using two methods, (1) by landing two STM tips on the surface with sample floating; and (2) by sample floating and one of the landed tips turned to be grounding. In addition, single atom manipulation has been achieved with a modified tip design, which is comparable to a conventional LT-STM.

Keywords: low temperature ultra-high vacuum four scanning tunneling microscope, nanoelectronics, point contact, single atom manipulation, tunneling resistance

Procedia PDF Downloads 280
1033 Investigation of Mechanical Properties of Aluminum Tailor Welded Blanks

Authors: Dario Basile, Manuela De Maddis, Raffaella Sesana, Pasquale Russo Spena, Roberto Maiorano

Abstract:

Nowadays, the reduction of CO₂ emissions and the decrease in energy consumption are the main aims of several industries, especially in the automotive sector. To comply with the increasingly restrictive regulations, the automotive industry is constantly looking for innovative techniques to produce lighter, more efficient, and less polluting vehicles. One of the latest technologies, and still developing, is based on the fabrication of the body-in-white and car parts through the stamping of Aluminum Tailor Welded Blanks. Tailor Welded Blanks (TWBs) are generally the combination of two/three metal sheets with different thicknesses and/or mechanical strengths, which are commonly butt-welded together by laser sources. The use of aluminum TWBs has several advantages such as low density and corrosion resistance adequate. However, their use is still limited by the lower formability with respect to the parent materials and the more intrinsic difficulty of laser welding of aluminum sheets (i.e., internal porosity) that, although its use in automated industries is constantly growing, remains a process to be further developed and improved. This study has investigated the effect of the main laser welding process parameters (laser power, welding speed, and focal distance) on the mechanical properties of aluminum TWBs made of 6xxx series. The research results show that a narrow weldability window can be found to ensure welded joints with high strength and limited or no porosity.

Keywords: aluminum sheets, automotive industry, laser welding, mechanical properties, tailor welded blanks

Procedia PDF Downloads 109
1032 Investigating the Properties of Asphalt Concrete Containing Recycled Fillers

Authors: Hasan Taherkhani

Abstract:

Increasingly accumulation of the solid waste materials has become a major environmental problem of communities. In addition to the protection of environment, the recycling and reusing of the waste materials are financially beneficial. Waste materials can be used in highway construction. This study aimed to investigate the applicability of recycled concrete, asphalt and steel slag powder, as a replacement of the primary mineral filler in asphalt concrete has been investigated. The primary natural siliceous aggregate filler, as control, has been replaced with the secondary recycled concrete, asphalt and steel slag powders, and some engineering properties of the mixtures have been evaluated. Marshal Stability, flow, indirect tensile strength, moisture damage, static creep and volumetric properties of the mixtures have been evaluated. The results show that, the Marshal Stability of the mixtures containing recycled powders is higher than that of the control mixture. The flow of the mixtures containing recycled steel slag is lower, and that of the mixtures containing recycled asphalt and cement concrete powder is found to be higher than that of the control mixture. It is also found that the resistance against moisture damage and permanent deformation of the mixture can be improved by replacing the natural filler with the recycled powders. The volumetric properties of the mixtures are not significantly influenced by replacing the natural filler with the recycled powders.

Keywords: filler, steel slag, recycled concrete, recycled asphalt concrete, tensile strength, moisture damage, creep

Procedia PDF Downloads 277
1031 Effect of Particle Shape on Monotonic and Cyclic Biaxial Behaviour of Sand Using Discrete Element Method

Authors: Raj Banerjee, Y. M. Parulekar, Aniruddha Sengupta, J. Chattopadhyay

Abstract:

This study proposes a Discrete Element Method (DEM) simulation using a commercial software PFC 2D (2019) for quantitatively simulating the monotonic and cyclic behaviour of sand using irregular shapes of sand grains. A preliminary analysis of the number of particles for optimal Representative Element Volume (REV) simulation of dimension 35mm x 35mm x 70mm using the scaled Grain Size Distribution (GSD) of sand is carried out. Subsequently, the effect of particle shape on the performance of sand during monotonic and cyclic bi-axial tests is assessed using numerical simulation. The validation of the numerical simulation for one case is carried out using the test results from the literature. Further numerical studies are performed in which the particles in REV are simulated by mixing round discs with irregular clumps (100% round disc, 75% round disc 25% irregular clump, 50% round disc 50% irregular clump, 25% round disc 75% irregular clump, 100% irregular clump) in different proportions using Dry Deposition (DD) method. The macro response for monotonic loading shows that irregular sand has a higher strength than round particles and that the Mohr-Coulomb failure envelope depends on the shape of the grains. During cyclic loading, it is observed that the liquefaction resistance curve (Cyclic Stress Ratio (CSR)-Number of cycles (N)) of sand is dependent on the combination of particle shapes with different proportions.

Keywords: biaxial test, particle shape, monotonic, cyclic

Procedia PDF Downloads 72
1030 Effects of Copper Oxide Doping on Hydrothermal Ageing in Alumina Toughened Zirconia

Authors: Mohamed Abbas, Ramesh Singh

Abstract:

This study investigates the hydrothermal aging behavior of undoped and copper oxide-doped alumina-toughened zirconia (ATZ). The ATZ ceramic composites underwent conventional sintering at temperatures ranging from 1250 to 1500°C with a holding time of 12 minutes. XRD analysis revealed a stable 100% tetragonal phase for conventionally sintered ATZ samples up to 1450°C, even after 100 hours of exposure. At 1500℃, XRD patterns of both undoped and doped ATZ samples showed no phase transformation after up to 3 hours of exposure to superheated steam. Extended exposure, however, resulted in phase transformation beyond 10 hours. CuO-doped ATZ samples initially exhibited lower monoclinic content, gradually increasing with aging. Undoped ATZ demonstrated better-aging resistance, maintaining ~40% monoclinic content after 100 hours. FESEM images post-aging revealed surface roughness changes due to the tetragonal-to-monoclinic phase transformation, with limited nucleation in the largest tetragonal grains. Fracture analysis exhibited macrocracks and microcracks on the transformed surface layer after aging. This study found that 0.2wt% CuO doping did not prevent the low-temperature degradation (LTD) phenomenon at elevated temperatures. Transformation zone depth (TZD) calculations supported the trend observed in the transformed monoclinic phase.

Keywords: alumina toughened zirconia, conventional sintering, copper oxide, hydrothermal ageing

Procedia PDF Downloads 68
1029 Apatite-Forming Ability of Doped-Ceria Coatings for Orthopedic Implants

Authors: Ayda Khosravanihaghighi, Pramod Koshy, Bill Walsh, Vedran Lovric, Charles Christopher Sorrell

Abstract:

There is an increasing demand for orthopedic implants owing to the increasing numbers of the aging population. Titanium alloy (Ti6Al4V) is a common material used for orthopedic implants owing to its advantageous properties in terms of good corrosion resistance, minimal elastic modulus mismatch with bone, bio-inertness, and high mechanical strength. However, it is important to improve the bioactivity and osseointegration of the titanium alloy and this can be achieved by coating the implant surface with suitable ceramic materials. In the present work, pure and doped-ceria (CeO₂) coatings were deposited by spin coating on the titanium alloy surface in order to enhance the biological interactions between the surface of the implant and the surrounding tissue. In order to examine the bone-binding ability of an implant, simulated body fluid (SBF) tests were conducted in order to assess the capability of apatite layer formation on the surface and thus predict in vivo bone bioactivity. Characterization was done using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses to determine the extent of apatite formation. Preliminary tests showed that the CeO₂ coatings were biocompatible and that the extent of apatite formation and its characteristics can be enhanced by doping with suitable metal ions.

Keywords: apatite layer, biocompatibility, ceria, orthopaedic implant, SBF, spin coater, Ti-implant

Procedia PDF Downloads 161
1028 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation

Authors: H. Rahman, T. Donchev, D. Petkova

Abstract:

Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.  

Keywords: shear walls, internal fibre reinforced polymer reinforcement, cyclic loading, energy dissipation, seismic behaviour

Procedia PDF Downloads 130
1027 The Effect of the Cultural Constraint on the Reform of Corporate Governance: The Observation of Taiwan's Efforts to Transform Its Corporate Governance

Authors: Yuanyi (Richard) Fang

Abstract:

Under the theory of La Porta, Lopez-de-Silanes, Shleifer, and Vishny, if a country can increase its legal protections for minority shareholders, the country can develop an ideal securities market that only arises under the dispersed ownership corporate governance. However, the path-dependence scholarship, such as Lucian Arye Bebchuk and Mark J. Roe, presented a different view with LLS&V. They pointed out that the initial framework of the ownership structure and traditional culture will prevent the change of the corporate governance structure through legal reform. This paper contends that traditional culture factors as an important aspect when forming the corporate governance structure. However, it is not impossible for the government to change its traditional corporate governance structure and traditional culture because the culture does not remain intact. Culture evolves with time. The occurrence of the important events will affect the people’s psychological process. The psychological process affects the evolution of culture. The new cultural norms can help defeat the force of the traditional culture and the resistance from the initial corporate ownership structure. Using Taiwan as an example, through analyzing the historical background, related corporate rules and the reactions of adoption new rules from the media, this paper try to show that Taiwan’s culture norms do not remain intact and have changed with time. It further provides that the culture is not always the hurdle for the adoption of the dispersed ownership corporate governance structure as the culture can change. A new culture can provide strong support for the adoption of the new corporate governance structure.

Keywords: LLS&V theory, corporate governance, culture, path–dependent theory

Procedia PDF Downloads 476
1026 Microstructural Characterization of Creep Damage Evolution in Welded Inconel 600 Superalloy

Authors: Lourdes Yareth Herrera-Chavez, Alberto Ruiz, Victor H. Lopez

Abstract:

Superalloys are used in components that operate at high temperatures such as pressure vessels and heat exchanger tubing. Design standards for these components must consider creep resistance among other criteria. Fusion welding processes are commonly used in the industry to join such components. Fusion processes commonly generate three distinctive zones, i.e. heat affected zone (HAZ), namely weld metal (WM) and base metal (BM). In nickel-based superalloy, the microstructure developed during fusion welding dictates the mechanical response of the welded component and it is very important to establish these effects in the mechanical response of the component. In this work, two plates of Inconel 600 superalloy were Gas Metal Arc Welded (GMAW). Creep samples were cut and milled to specifications and creep tested at a temperature (650 °C) using stress level of 350, 300, 275, 250 and 200 MPa. Microstructural analysis results showed a progressive creep damage evolution that depends on the stress levels with a preferential accumulation of creep damage at the heat affected zone where the creep rupture preferentially occurs owing to an austenitic matrix with grain boundary precipitated of the type Cr23C6. The fractured surfaces showed dimple patterns of cavity and voids. Results indicated that the damage mechanism is due to cavity growth by the combined effect of the power law and diffusion creep.

Keywords: austenitic microstructure, creep damage evolution, heat affected zone, vickers microhardness

Procedia PDF Downloads 203
1025 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric

Authors: J. R. Mudakavi, K. Puttanna

Abstract:

Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.

Keywords: activated carbon fabric, hexavalent chromium, adsorption, drinking water

Procedia PDF Downloads 336
1024 Information Technology Impacts on the Supply Chain Performance: Case Study Approach

Authors: Kajal Zarei

Abstract:

Supply chain management is becoming an increasingly important issue in many businesses today. In such circumstances, a number of reasons such as management deficiency in different segments of the supply chain, lack of streamlined processes, resistance to change the current systems and technologies, and lack of advanced information system have paved the ground to ask for innovative research studies. To this end, information technology (IT) is becoming a major driver to overcome the supply chain limitations and deficiencies. The emergence of IT has provided an excellent opportunity for redefining the supply chain to be more effective and competitive. This paper has investigated the IT impact on two-digit industry codes in the International Standard Industrial Classification (ISIC) that are operating in four groups of the supply chains. Firstly, the primary fields of the supply chain were investigated, and then paired comparisons of different industry parts were accomplished. Using experts' ideas and Analytical Hierarchy Process (AHP), the status of industrial activities in Kurdistan Province in Iran was determined. The results revealed that manufacturing and inventory fields have been more important compared to other fields of the supply chain. In addition, IT has had greater impact on food and beverage industry, chemical industry, wood industry, wood products, and production of basic metals. The results indicated the need to IT awareness in supply chain management; in other words, IT applications needed to be developed for the identified industries.

Keywords: supply chain, information technology, analytical hierarchy process, two-digit codes, international standard industrial classification

Procedia PDF Downloads 281
1023 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics

Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang

Abstract:

A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.

Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery

Procedia PDF Downloads 165
1022 Molluscicidal Activity of Some Aqueous and Organic Extract from Some Asteraceae

Authors: Lineda Rouissat-Dahane, Abdelkrim Cheriti, Abbderazak Marouf, Reddy Kandappa H., Govender Patrick

Abstract:

Natural phytochemicals extracted from folk herbal have drawn much attention in complementary and alternative medicine, and the plant kingdom is considered for developing new molluscicide. The aqueous and acetone extract of the aerial parts of some Asteraceae (Anvillea radiata, Bubonium graveolens, Launaea arborescens, Launaea nudicaulis and Warionia saharae) were investigated for its molluscicidal activity against Lymnaea acuminata showed significant molluscicidal activity with a median lethal concentration (LC50) of aqueous extract (8,178mg/ml) and organic extract 0.002μg/mL, which was indicated higher potency than the positive control, (LC50=100mg /mL for aqueous extract ; LC50=11.6 μg/mL for organic extract). Among the extract and their fractions, those of aerial parts of Launaea nudicaulis and Warionia saharae were found to exhibit significant molluscicidal activities. Among different solvent fractions of the acetone extract of Warionia saharae, the dichloromethane (DCM) soluble fraction showed the most potent molluscicidal activity against Lymnaea acuminata. Plants in species Anvillea radiata, Bubonium graveolens, Launaea arborescens, Launaea nudicaulis, and Warionia saharae produce a great variety of Flavonoids, Glucoside flavonoids, and Saponins that confer natural resistance against several pests. Most extracts were found to exhibit significant molluscicidal activity.

Keywords: acetone extract, aqueous extract, Asteraceae, molluscicidal activity, Lymnaea acuminata

Procedia PDF Downloads 128
1021 A Review on the Studies on Mechanical and Tribological Properties of Aluminum and Magnesium Alloys Welded by Friction Stir Welding

Authors: Sukhdeep Singh Gill, Gurbhinder Singh Brar

Abstract:

In recent years, friction stir welding (FSW) has attracted the main attention of the concerned researcher especially in case of joining of nonferrous alloys like aluminum and magnesium due to its unmatchable properties with respect to other welding techniques. Friction stir welding is a solid state welding process which is most suitable for the welding of nonferrous alloys, especially aluminum and magnesium alloys. Aluminum and magnesium alloys are widely used for structural applications of all types of automobiles due to their superior mechanical properties with their low density. This paper deals with the critical review of the different properties (like tensile strength, microhardness, impact strength, corrosion resistance, and metallurgical investigation on SEM) obtained by the FSW of aluminum and magnesium alloys. After a critical review of the existing published literature on concerned topics, all the properties of welding joins are compared in the tabulated manner to optimize the selection of materials and FSW parameters according to mechanical and tribological properties. Different tool designs used for the FSW process are also thoroughly studied, and the influence of the design of the tool used in FSW on the different properties has also been incorporated in this paper. It has been observed from the existing published literature that FSW is the most effective and practical technique for joining the non ferrous alloys especially aluminum and magnesium alloys, and among the different FSW tools, left hand threaded tri-flute (LHTTF) tool is best for the welding of non ferrous alloys like aluminum and magnesium alloys which gives the superior mechanical properties to welding joint.

Keywords: aluminum, friction stir welding, magnesium, structural applications, tool design

Procedia PDF Downloads 179