Search results for: optical waveguide sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2853

Search results for: optical waveguide sensors

573 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices

Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi

Abstract:

Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.

Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics

Procedia PDF Downloads 191
572 Smart Oxygen Deprivation Mask: An Improved Design with Biometric Feedback

Authors: Kevin V. Bui, Richard A. Claytor, Elizabeth M. Priolo, Weihui Li

Abstract:

Oxygen deprivation masks operate through the use of restricting valves as a means to reduce respiratory flow where flow is inversely proportional to the resistance applied. This produces the same effect as higher altitudes where lower pressure leads to reduced respiratory flow. Both increased resistance with restricting valves and reduce the pressure of higher altitudes make breathing difficultier and force breathing muscles (diaphragm and intercostal muscles) working harder. The process exercises these muscles, improves their strength and results in overall better breathing efficiency. Currently, these oxygen deprivation masks are purely mechanical devices without any electronic sensor to monitor the breathing condition, thus not be able to provide feedback on the breathing effort nor to evaluate the lung function. That is part of the reason that these masks are mainly used for high-level athletes to mimic training in higher altitude conditions, not suitable for patients or customers. The design aims to improve the current method of oxygen deprivation mask to include a larger scope of patients and customers while providing quantitative biometric data that the current design lacks. This will be accomplished by integrating sensors into the mask’s breathing valves along with data acquisition and Bluetooth modules for signal processing and transmission. Early stages of the sensor mask will measure breathing rate as a function of changing the air pressure in the mask, with later iterations providing feedback on flow rate. Data regarding breathing rate will be prudent in determining whether training or therapy is improving breathing function and quantify this improvement.

Keywords: oxygen deprivation mask, lung function, spirometer, Bluetooth

Procedia PDF Downloads 200
571 Investigation and Identification of a Number of Precious and Semi-precious Stones Related to Bam Historical Citadel Using Micro Raman Spectroscopy and Scanning Electron Microscopy (SEM/EDX)

Authors: Nazli Darkhal

Abstract:

The use of gems and ornaments has been common in Iran since the beginning of history. The prosperity of the country, the wealth, and the interest of the people of this land in luxurious and glorious life, combined with beauty, have always attracted the attention of the gems and ornaments of the Iranian people. Iranians are famous in the world for having a long history of collecting and recognizing precious stones. In this case, we can use the unique treasure of national jewelry. Raman spectroscopy method is one of the oscillating spectroscopy methods that is classified in the group of nondestructive study methods, and like other methods, in addition to several advantages, it also has disadvantages and problems. Micro Raman spectroscopy is one of the different types of Raman spectroscopy in which an optical microscope is combined with a Raman device to provide more capabilities and advantages than its original method. In this way, with the help of Raman spectroscopy and a light microscope, while observing more details from different parts of the historical sample, natural or artificial pigments can be identified in a small part of it. The EDX electron microscope also functions as the basis for the interaction of the electron beam with the matter. The beams emitted from this interaction can be used to examine samples. In this article, in addition to introducing the micro Raman spectroscopy method, studies have been conducted on the structure of three samples of existing stones in the historic citadel of Bam. Using this method of study on precious and semi-precious stones, in addition to requiring a short time, can provide us with complete information about the structure and theme of these samples. The results of experiments and gemology of the stones showed that the selected beads are agate and jasper, and they can be placed in the chalcedony group.

Keywords: bam citadel, precious and semi-precious stones, Raman spectroscopy, scanning electron microscope

Procedia PDF Downloads 105
570 Solvent-Aided Dispersion of Tannic Acid to Enhance Flame Retardancy of Epoxy

Authors: Matthew Korey, Jeffrey Youngblood, John Howarter

Abstract:

Background and Significance: Tannic acid (TA) is a bio-based high molecular weight organic, aromatic molecule that has been found to increase thermal stability and flame retardancy of many polymer matrices when used as an additive. Although it is biologically sourced, TA is a pollutant in industrial wastewater streams, and there is a desire to find applications in which to downcycle this molecule after extraction from these streams. Additionally, epoxy thermosets have revolutionized many industries, but are too flammable to be used in many applications without additives which augment their flame retardancy (FR). Many flame retardants used in epoxy thermosets are synthesized from petroleum-based monomers leading to significant environmental impacts on the industrial scale. Many of these compounds also have significant impacts on human health. Various bio-based modifiers have been developed to improve the FR of the epoxy resin; however, increasing FR of the system without tradeoffs with other properties has proven challenging, especially for TA. Methodologies: In this work, TA was incorporated into the thermoset by use of solvent-exchange using methyl ethyl ketone, a co-solvent for TA, and epoxy resin. Samples were then characterized optically (UV-vis spectroscopy and optical microscopy), thermally (thermogravimetric analysis and differential scanning calorimetry), and for their flame retardancy (mass loss calorimetry). Major Findings: Compared to control samples, all samples were found to have increased thermal stability. Further, the addition of tannic acid to the polymer matrix by the use of solvent greatly increased the compatibility of the additive in epoxy thermosets. By using solvent-exchange, the highest loading level of TA found in literature was achieved in this work (40 wt%). Conclusions: The use of solvent-exchange shows promises for circumventing the limitations of TA in epoxy.

Keywords: sustainable, flame retardant, epoxy, tannic acid

Procedia PDF Downloads 105
569 Digital Twin for Retail Store Security

Authors: Rishi Agarwal

Abstract:

Digital twins are emerging as a strong technology used to imitate and monitor physical objects digitally in real time across sectors. It is not only dealing with the digital space, but it is also actuating responses in the physical space in response to the digital space processing like storage, modeling, learning, simulation, and prediction. This paper explores the application of digital twins for enhancing physical security in retail stores. The retail sector still relies on outdated physical security practices like manual monitoring and metal detectors, which are insufficient for modern needs. There is a lack of real-time data and system integration, leading to ineffective emergency response and preventative measures. As retail automation increases, new digital frameworks must control safety without human intervention. To address this, the paper proposes implementing an intelligent digital twin framework. This collects diverse data streams from in-store sensors, surveillance, external sources, and customer devices and then Advanced analytics and simulations enable real-time monitoring, incident prediction, automated emergency procedures, and stakeholder coordination. Overall, the digital twin improves physical security through automation, adaptability, and comprehensive data sharing. The paper also analyzes the pros and cons of implementation of this technology through an Emerging Technology Analysis Canvas that analyzes different aspects of this technology through both narrow and wide lenses to help decision makers in their decision of implementing this technology. On a broader scale, this showcases the value of digital twins in transforming legacy systems across sectors and how data sharing can create a safer world for both retail store customers and owners.

Keywords: digital twin, retail store safety, digital twin in retail, digital twin for physical safety

Procedia PDF Downloads 45
568 Imaging 255nm Tungsten Thin Film Adhesion with Picosecond Ultrasonics

Authors: A. Abbas, X. Tridon, J. Michelon

Abstract:

In the electronic or in the photovoltaic industries, components are made from wafers which are stacks of thin film layers of a few nanometers to serval micrometers thickness. Early evaluation of the bounding quality between different layers of a wafer is one of the challenges of these industries to avoid dysfunction of their final products. Traditional pump-probe experiments, which have been developed in the 70’s, give a partial solution to this problematic but with a non-negligible drawback. In fact, on one hand, these setups can generate and detect ultra-high ultrasounds frequencies which can be used to evaluate the adhesion quality of wafer layers. But, on the other hand, because of the quiet long acquisition time they need to perform one measurement, these setups remain shut in punctual measurement to evaluate global sample quality. This last point can lead to bad interpretation of the sample quality parameters, especially in the case of inhomogeneous samples. Asynchronous Optical Sampling (ASOPS) systems can perform sample characterization with picosecond acoustics up to 106 times faster than traditional pump-probe setups. This last point allows picosecond ultrasonic to unlock the acoustic imaging field at the nanometric scale to detect inhomogeneities regarding sample mechanical properties. This fact will be illustrated by presenting an image of the measured acoustical reflection coefficients obtained by mapping, with an ASOPS setup, a 255nm thin-film tungsten layer deposited on a silicone substrate. Interpretation of the coefficient reflection in terms of bounding quality adhesion will also be exposed. Origin of zones which exhibit good and bad quality bounding will be discussed.

Keywords: adhesion, picosecond ultrasonics, pump-probe, thin film

Procedia PDF Downloads 139
567 Sensitive Electrochemical Sensor for Simultaneous Detection of Endocrine Disruptors, Bisphenol A and 4- Nitrophenol Using La₂Cu₂O₅ Modified Glassy Carbon Electrode

Authors: S. B. Mayil Vealan, C. Sekar

Abstract:

Bisphenol A (BIS A) and 4 Nitrophenol (4N) are the most prevalent environmental endocrine-disrupting chemicals which mimic hormones and have a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to these harmful chemicals. Lanthanum Copper Oxide (La₂Cu₂O₅) nanoparticles were synthesized and investigated through various techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry and square wave voltammetry techniques are employed to evaluate the electrochemical behavior of as-synthesized samples toward the electrochemical detection of Bisphenol A and 4-Nitrophenol. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of BIS A and 4-N in the range of 0.01 to 600 μM with a detection limit of 2.44 nM and 3.8 nM. These are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BIS A and 4-N in real samples (food packing materials and river water) with excellent recovery values ranging from 95% to 99%. Better stability, sensitivity, selectivity and reproducibility, fast response, and ease of preparation made the sensor well-suitable for the simultaneous determination of bisphenol and 4 Nitrophenol. To the best of our knowledge, this is the first report in which La₂Cu₂O₅ nano particles were used as efficient electron mediators for the fabrication of endocrine disruptor (BIS A and 4N) chemical sensors.

Keywords: endocrine disruptors, electrochemical sensor, Food contacting materials, lanthanum cuprates, nanomaterials

Procedia PDF Downloads 56
566 Development and Evaluation of Virtual Basketball Game Using Motion Capture Technology

Authors: Shunsuke Aoki, Taku Ri, Tatsuya Yamazaki

Abstract:

These days, along with the development of e-sports, video games as a competitive sport is attracting attention. But, in many cases, action in the screen does not match the real motion of operation. Inclusiveness of player motion is needed to increase reality and excitement for sports games. Therefore, in this study, the authors propose a method to recognize player motion by using the motion capture technology and develop a virtual basketball game. The virtual basketball game consists of a screen with nine targets, players, depth sensors, and no ball. The players pretend a two-handed basketball shot without a ball aiming at one of the nine targets on the screen. Time-series data of three-dimensional coordinates of player joints are captured by the depth sensor. 20 joints data are measured for each player to estimate the shooting motion in real-time. The trajectory of the thrown virtual ball is calculated based on the time-series data and hitting on the target is judged as success or failure. The virtual basketball game can be played by 2 to 4 players as a competitive game among the players. The developed game was exhibited to the public for evaluation on the authors' university open campus days. 339 visitors participated in the exhibition and enjoyed the virtual basketball game over the two days. A questionnaire survey on the developed game was conducted for the visitors who experienced the game. As a result of the survey, about 97.3% of the players found the game interesting regardless of whether they had experienced actual basketball before or not. In addition, it is found that women are easy to comfort for shooting motion. The virtual game with motion capture technology has the potential to become a universal entertainment between e-sports and actual sports.

Keywords: basketball, motion capture, questionnaire survey, video ga

Procedia PDF Downloads 101
565 Modeling and Characterization of Organic LED

Authors: Bouanati Sidi Mohammed, N. E. Chabane Sari, Mostefa Kara Selma

Abstract:

It is well-known that Organic light emitting diodes (OLEDs) are attracting great interest in the display technology industry due to their many advantages, such as low price of manufacturing, large-area of electroluminescent display, various colors of emission included white light. Recently, there has been much progress in understanding the device physics of OLEDs and their basic operating principles. In OLEDs, Light emitting is the result of the recombination of electron and hole in light emitting layer, which are injected from cathode and anode. For improve luminescence efficiency, it is needed that hole and electron pairs exist affluently and equally and recombine swiftly in the emitting layer. The aim of this paper is to modeling polymer LED and OLED made with small molecules for studying the electrical and optical characteristics. The first simulation structures used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2’-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode usually an indium tin oxide (ITO) substrate, and a cathode, such as Al. In the second structure we replace MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). We choose MEH-PPV because of it's solubility in common organic solvents, in conjunction with a low operating voltage for light emission and relatively high conversion efficiency and Alq3 because it is one of the most important host materials used in OLEDs. In this simulation, the Poole-Frenkel- like mobility model and the Langevin bimolecular recombination model have been used as the transport and recombination mechanism. These models are enabled in ATLAS -SILVACO software. The influence of doping and thickness on I(V) characteristics and luminescence, are reported.

Keywords: organic light emitting diode, polymer lignt emitting diode, organic materials, hexoxy-phenylenevinylene

Procedia PDF Downloads 527
564 Simultaneous Saccharification and Fermentation for D-Lactic Acid Production from Dried Distillers Grains with Solubles

Authors: Nurul Aqilah Mohd Zaini, Afroditi Chatzifragkou, Dimitris Charalampopoulos

Abstract:

D-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, Polylactic Acid (PLA). In this study, D-lactic acid was produced in microbial cultures using Lactobacillus coryniformis subsp. torquens as D-lactic acid producer and hydrolysates of Dried Distillers Grains with Solubles (DDGS) as fermentation substrate. Prior to fermentation, DDGS was first alkaline pretreated with 5% (w/v) NaOH, for 15 minutes (121oC/ ~16 psi). This led to the generation of DDGS solid residues, rich in carbohydrates and especially cellulose (~52%). The carbohydrate-rich solids were then subjected to enzymatic hydrolysis with Accellerase® 1500. For Separate Hydrolysis and Fermentation (SHF), enzymatic hydrolysis was carried out at 50oC for 24 hours, followed by fermentation of D-lactic acid at 37oC in controlled pH 6. The obtained hydrolysate contained 24 g/l glucose, 5.4 g/l xylose and 0.6 g/l arabinose. In the case of Simultaneous Saccharification and Fermentation (SSF), hydrolysis and fermentation were conducted in a single step process at 37oC in pH 5. The enzymatic hydrolysis of DGGS pretreated solids took place mostly during lag phase of L. coryniformis fermentation, with only a small amount of glucose consumed during the first 6 h. When exponential phase was started, glucose generation reduced as the microorganism started to consume glucose for D-lactic acid production. Higher concentrations of D-lactic acid were produced when SSF approach was applied, with 28 g/l D-lactic acid after 24 h of fermentation (84.5% yield). In contrast, 21.2 g/l D-lactic acid were produced when SHF was used. The optical pu rity of D-lactic acid produced from both experiments was 99.9%. Besides, approximately 2 g/l acetic acid was also generated due to lactic acid degradation after glucose depletion in SHF. SSF was proved an efficient towards DDGS ulilisation and D-lactic acid production, by reducing the overall processing time, yielding sufficient D-lactic acid concentrations without the generation of fermentation by-products.

Keywords: DDGS, alkaline pretreatment, SSF, D-lactic acid

Procedia PDF Downloads 313
563 Wearable Heart Rate Sensor Based on Wireless System for Heart Health Monitoring

Authors: Murtadha Kareem, Oliver Faust

Abstract:

Wearable biosensor systems can be designed and developed for health monitoring. There is much interest in both scientific and industrial communities established since 2007. Fundamentally, the cost of healthcare has increased dramatically and the world population is aging. That creates the need to harvest technological improvements with small bio-sensing devices, wireless-communication, microelectronics and smart textiles, that leads to non-stop developments of wearable sensor based systems. There has been a significant demand to monitor patient's health status while the patient leaves the hospital in his/her personal environment. To address this need, there are numerous system prototypes which has been launched in the medical market recently, the aim of that is to provide real time information feedback about patient's health status, either to the patient himself/herself or direct to the supervising medical centre station, while being capable to give a notification for the patient in case of possible imminent health threatening conditions. Furthermore, wearable health monitoring systems comprise new techniques to address the problem of managing and monitoring chronic heart diseases for elderly people. Wearable sensor systems for health monitoring include various types of miniature sensors, either wearable or implantable. To be specific, our proposed system able to measure essential physiological parameter, such as heart rate signal which could be transmitted through Bluetooth to the cloud server in order to store, process, analysis and visualise the data acquisition. The acquired measurements are connected through internet of things to a central node, for instance an android smart phone or tablet used for visualising the collected information on application or transmit it to a medical centre.

Keywords: Wearable sensor, Heart rate, Internet of things, Chronic heart disease

Procedia PDF Downloads 140
562 Forensic Applications of Quantum Dots

Authors: Samaneh Nabavi, Hadi Shirzad, Somayeh Khanjani, Shirin Jalili

Abstract:

Quantum dots (QDs) are semiconductor nanocrystals that exhibit intrinsic optical and electrical properties that are size dependent due to the quantum confinement effect. Quantum confinement is brought about by the fact that in bulk semiconductor material the electronic structure consists of continuous bands, and that as the size of the semiconductor material decreases its radius becomes less than the Bohr exciton radius (the distance between the electron and electron-hole) and discrete energy levels result. As a result QDs have a broad absorption range and a narrow emission which correlates to the band gap energy (E), and hence QD size. QDs can thus be tuned to give the desired wavelength of fluorescence emission.Due to their unique properties, QDs have attracted considerable attention in different scientific areas. Also, they have been considered for forensic applications in recent years. The ability of QDs to fluoresce up to 20 times brighter than available fluorescent dyes makes them an attractive nanomaterial for enhancing the visualization of latent fingermarks, or poorly developed fingermarks. Furthermore, the potential applications of QDs in the detection of nitroaromatic explosives, such as TNT, based on directive fluorescence quenching of QDs, electron transfer quenching process or fluorescence resonance energy transfer have been paid to attention. DNA analysis is associated tightly with forensic applications in molecular diagnostics. The amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. Accordingly, highly sensitive detection of human genomic DNA is an essential issue for forensic study. QDs have also a variety of advantages as an emission probe in forensic DNA quantification.

Keywords: forensic science, quantum dots, DNA typing, explosive sensor, fingermark analysis

Procedia PDF Downloads 822
561 Assessing the Suitability of South African Waste Foundry Sand as an Additive in Clay Masonry Products

Authors: Nthabiseng Portia Mahumapelo, Andre van Niekerk, Ndabenhle Sosibo, Nirdesh Singh

Abstract:

The foundry industry generates large quantities of solid waste in the form of waste foundry sand. The ever-increasing quantities of this type of industrial waste put pressure on land-filling space and its proper management has become a global concern. The South African foundry industry is not different when it comes to this solid waste generation. Utilizing the foundry waste sand in other applications has become an attractive avenue to deal with this waste stream. In the present paper, an evaluation was done on the suitability of foundry waste sand as an additive in clay masonry products. Purchased clay was added to the foundry waste sand sample in a 50/50 ratio. The mixture was named FC sample. The FC sample was mixed with water in a pan mixer until the mixture was consistent and suitable for extrusion. The FC sample was extruded and cut into briquettes. Water absorption, shrinkage and modulus of rupture tests were conducted on the resultant briquettes. Foundry waste sand and FC samples were respectively characterized mineralogically using X-Ray Diffraction, and the major and trace elements were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. Adding purchased clay to the foundry waste sand positively influenced the workability of the test sample. Another positive characteristic was the low linear shrinkage, which indicated that products manufactured from the FC sample would not be susceptible to cracking. The water absorption values were acceptable and the unfired and fired strength values of the briquette’s samples were acceptable. In conclusion, tests showed that foundry waste sand can be used as an additive in masonry clay bricks, provided it is blended with good quality clay.

Keywords: foundry waste sand, masonry clay bricks, modulus of rupture, shrinkage

Procedia PDF Downloads 199
560 Role of Selenium and Vitamin E in Occupational Exposure to Heavy Metals (Mercury, Lead and Cadmium): Impact of Working in Lamp Factory

Authors: Tarek Elnimr, Rabab El-kelany

Abstract:

Heavy metals are environmental contaminants that may pose long-term health risks. Unfortunately, the consequent implementation of preventive measures was generally delayed, causing important negative effects to the exposed populations. The objective of this study was to determine whether co-consumption of nutritional supplements as selenium and vitamin E would treat the hazardous effects of exposure to mercury, lead and cadmium. 108 workers (60 males and 48 females) were the subject of this study, their ages ranged from 19-63 years, (M = 29.5±10.12). They were working in lamp factory for an average of 0.5-40 years (M= 5.3±8.8). Twenty control subjects matched for age and gender were used for comparison. All workers were subjected to neuropsychiatric evaluation. General Health Questionnaire (GHQ-28) revealed that 44.4% were complaining of anxiety, 52.7% of depression, 41.6% of social dysfunction and 22.2% of somatic symptoms. Cognitive tests revealed that long-term memory was not affected significantly when compared with controls, while short term memory and perceptual ability were affected significantly. Blood metal levels were measured by Inductively Coupled Plasma – optical emission spectrometry(ICP-OES), and revealed that the mean blood mercury, lead and cadmium concentrations before treatment were 1.6 mg/l, 0.39 mg/l and 1.7 µg/l, while they decreased significantly after treatment to 1.2 mg/l, 0.29 mg/l and 1.3 µg/l respectively. Anti-oxidative enzymes (paraoxonase and catalase) and lipid peroxidation product (malondialdehyde) were measured before and after treatment with selenium and vitamin E, and showed significant improvement. It could be concluded that co-consumption of selenium and vitamin E produces significant decrease in mercury, lead and cadmium levels in blood.

Keywords: mercury, lead, cadmium, neuropsychiatric impairment, selenium, vitamin E

Procedia PDF Downloads 319
559 From Sampling to Sustainable Phosphate Recovery from Mine Waste Rock Piles

Authors: Hicham Amar, Mustapha El Ghorfi, Yassine Taha, Abdellatif Elghali, Rachid Hakkou, Mostafa Benzaazoua

Abstract:

Phosphate mine waste rock (PMWR) generated during ore extraction is continuously increasing, resulting in a significant environmental footprint. The main objectives of this study consist of i) elaboration of the sampling strategy of PMWR piles, ii) a mineralogical and chemical characterization of PMWR piles, and iii) 3D block model creation to evaluate the potential valorization of the existing PMWR. Destructive drilling using reverse circulation from 13 drills was used to collect samples for chemical (X-ray fluorescence analysis) and mineralogical assays. The 3D block model was created based on the data set, including chemical data of the realized drills using Datamine RM software. The optical microscopy observations showed that the sandy phosphate from drills in the PMWR piles is characterized by the abundance of carbonate fluorapatite with the presence of calcite, dolomite, and quartz. The mean grade of composite samples was around 19.5±2.7% for P₂O₅. The mean grade of P₂O₅ exhibited an increasing tendency by depth profile from bottom to top of PMWR piles. 3D block model generated with chemical data confirmed the tendency of the mean grades’ variation and may allow a potential selective extraction according to %P₂O₅. The 3D block model of P₂O₅ grade is an efficient sampling approach that confirmed the variation of P₂O₅ grade. This integrated approach for PMWR management will be a helpful tool for decision-making to recover the residual phosphate, adopting the circular economy and sustainability in the phosphate mining industry.

Keywords: 3D modelling, reverse circulation drilling, circular economy, phosphate mine waste rock, sampling

Procedia PDF Downloads 47
558 Microstructure Analysis of TI-6AL-4V Friction Stir Welded Joints

Authors: P. Leo, E. Cerri, L. Fratini, G. Buffa

Abstract:

The Friction Stir Welding process uses an inert rotating mandrel and a force on the mandrel normal to the plane of the sheets to generate the frictional heat. The heat and the stirring action of the mandrel create a bond between the two sheets without melting the base metal. As matter of fact, the use of a solid state welding process limits the insurgence of defects, due to the presence of gas in melting bath, and avoids the negative effects of materials metallurgical transformation strictly connected with the change of phase. The industrial importance of Ti-6Al-4V alloy is well known. It provides an exceptional good balance of strength, ductility, fatigue and fracture properties together with good corrosion resistance and good metallurgical stability. In this paper, the authors analyze the microstructure of friction stir welded joints of Ti-6Al-4V processed at the same travel speed (35 mm/min) but at different rotation speeds (300-500 rpm). The microstructure of base material (BM), as result from both optical microscope and scanning electron microscope analysis is not homogenous. It is characterized by distorted α/β lamellar microstructure together with smashed zone of fragmented β layer and β retained grain boundary phase. The BM has been welded in the-as received state, without any previous heat treatment. Even the microstructure of the transverse and longitudinal sections of joints is not homogeneous. Close to the top of weld cross sections a much finer microstructure than the initial condition has been observed, while in the center of the joints the microstructure is less refined. Along longitudinal sections, the microstructure is characterized by equiaxed grains and lamellae. Both the length and area fraction of lamellas increases with distance from longitudinal axis. The hardness of joints is higher than that of BM. As the process temperature increases the average microhardness slightly decreases.

Keywords: friction stir welding, microhardness, microstructure, Ti-6Al-4V

Procedia PDF Downloads 354
557 Steel Industry Waste as Recyclable Raw Material for the Development of Ferrous-Aluminum Alloys

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

The study aims to assess if high-purity iron powder in iron-aluminum alloys can be replaced by SAE 1020 steel chips with an atomicity proportion of 50% for each element. Chips of SAE 1020 are rejected in industrial processes. Thus, the use of SAE 1020 as a replaceable composite for iron increase the sustainability of ferrous alloys by recycling industrial waste. The alloys were processed by high energy milling, of which the main advantage is the minimal loss of raw material. The raw material for three of the six samples were high purity iron powder and recyclable aluminum cans. For the other three samples, the high purity iron powder has been replaced with chips of SAE 1020 steel. The process started with the separate milling of chips of aluminum and SAE 1020 steel to obtain the powder. Subsequently, the raw material was mixed in the pre-defined proportions, milled together for five hours and then underwent a closed-die hot compaction at the temperature of 500 °C. Thereafter, the compacted samples underwent heat treatments known as sintering and solubilization. All samples were sintered one hour, and 4 samples were solubilized for either 4 or 10 hours under well-controlled atmosphere conditions. Lastly, the composition and the mechanical properties of their hardness were analyzed. The samples were analyzed by optical microscopy, scanning electron microscopy and hardness testing. The results of the analysis showed a similar chemical composition and interesting hardness levels with low standard deviations. This verified that the use of SAE 1020 steel chips can be a low-cost alternative for high-purity iron powder and could possibly replace high-purity Iron in industrial applications.

Keywords: Fe-Al alloys, high energy milling, iron-aluminum alloys, metallography characterization, powder metallurgy, recycling ferrous alloy, SAE 1020 steel recycling

Procedia PDF Downloads 337
556 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor

Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles

Procedia PDF Downloads 284
555 Analysis of Compressive and Tensile Response of Pumpkin Flesh, Peel and Unpeeled Tissues Using Experimental and FEA

Authors: Maryam Shirmohammadi, Prasad K. D. V. Yarlagadda, YuanTong Gu

Abstract:

The mechanical damage on the agricultural crop during and after harvesting can create high volume of damage on tissue. Uniaxial compression and tensile loading were performed on flesh and peel samples of pumpkin. To investigate the structural changes on the tissue, Scanning Electron Microscopy (SEM) was used to capture the cellular structure change before and after loading on tissue for tensile, compression and indentation tests. To obtain required mechanical properties of tissue for the finite element analysis (FEA) model, laser measurement sensors were used to record the lateral displacement of tissue under the compression loading. Uniaxial force versus deformation data were recorded using Universal Testing Machine for both tensile and compression tests. The experimental Results were employed to develop a material model with failure criteria. The results obtained by the simulation were compared with those obtained by experiments. Note that although modelling food materials’ behaviour is not a new concept however, majority of previous studies focused on elastic behaviour and damages under linear limit, this study, however, has developed FEA models for tensile and compressive loading of pumpkin flesh and peel samples using, as the first study, both elastic and elasto-plastic material types. In addition, pumpkin peel and flesh tissues were considered as two different materials with different properties under mechanical loadings. The tensile and compression loadings were used to develop the material model for a composite structure for FEA model of mechanical peeling of pumpkin as a tough skinned vegetable.

Keywords: compressive and tensile response, finite element analysis, poisson’s ratio, elastic modulus, elastic and plastic response, rupture and bio-yielding

Procedia PDF Downloads 309
554 A Comparative Study of Indoor Radon Concentrations between Dwellings and Workplaces in the Ko Samui District, Surat Thani Province, Southern Thailand

Authors: Kanokkan Titipornpun, Tripob Bhongsuwan, Jan Gimsa

Abstract:

The Ko Samui district of Surat Thani province is located in the high amounts of equivalent uranium in the ground surface that is the source of radon. Our research in the Ko Samui district aimed at comparing the indoor radon concentrations between dwellings and workplaces. Measurements of indoor radon concentrations were carried out in 46 dwellings and 127 workplaces, using CR-39 alpha-track detectors in closed-cup. A total of 173 detectors were distributed in 7 sub-districts. The detectors were placed in bedrooms of dwellings and workrooms of workplaces. All detectors were exposed to airborne radon for 90 days. After exposure, the alpha tracks were made visible by chemical etching before they were manually counted under an optical microscope. The track densities were assumed to be correlated with the radon concentration levels. We found that the radon concentrations could be well described by a log-normal distribution. Most concentrations (37%) were found in the range between 16 and 30 Bq.m-3. The radon concentrations in dwellings and workplaces varied from a minimum of 11 Bq.m-3 to a maximum of 305 Bq.m-3. The minimum (11 Bq.m-3) and maximum (305 Bq.m-3) values of indoor radon concentrations were found in a workplace and a dwelling, respectively. Only for four samples (3%), the indoor radon concentrations were found to be higher than the reference level recommended by the WHO (100 Bq.m-3). The overall geometric mean in the surveyed area was 32.6±1.65 Bq.m-3, which was lower than the worldwide average (39 Bq.m-3). The statistic comparison of the geometric mean indoor radon concentrations between dwellings and workplaces showed that the geometric mean in dwellings (46.0±1.55 Bq.m-3) was significantly higher than in workplaces (28.8±1.58 Bq.m-3) at the 0.05 level. Moreover, our study found that the majority of the bedrooms in dwellings had a closed atmosphere, resulting in poorer ventilation than in most of the workplaces that had access to air flow through open doors and windows at daytime. We consider this to be the main reason for the higher geometric mean indoor radon concentration in dwellings compared to workplaces.

Keywords: CR-39 detector, indoor radon, radon in dwelling, radon in workplace

Procedia PDF Downloads 260
553 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 388
552 Towards a Biologically Relevant Tumor-on-a-Chip: Multiplex Microfluidic Platform to Study Breast Cancer Drug Response

Authors: Soroosh Torabi, Brad Berron, Ren Xu, Christine Trinkle

Abstract:

Microfluidics integrated with 3D cell culture is a powerful technology to mimic cellular environment, and can be used to study cell activities such as proliferation, migration and response to drugs. This technology has gained more attention in cancer studies over the past years, and many organ-on-a-chip systems have been developed to study cancer cell behaviors in an ex-vivo tumor microenvironment. However, there are still some barriers to adoption which include low throughput, complexity in 3D cell culture integration and limitations on non-optical analysis of cells. In this study, a user-friendly microfluidic multi-well plate was developed to mimic the in vivo tumor microenvironment. The microfluidic platform feeds multiple 3D cell culture sites at the same time which enhances the throughput of the system. The platform uses hydrophobic Cassie-Baxter surfaces created by microchannels to enable convenient loading of hydrogel/cell suspensions into the device, while providing barrier free placement of the hydrogel and cells adjacent to the fluidic path. The microchannels support convective flow and diffusion of nutrients to the cells and a removable lid is used to enable further chemical and physiological analysis on the cells. Different breast cancer cell lines were cultured in the device and then monitored to characterize nutrient delivery to the cells as well as cell invasion and proliferation. In addition, the drug response of breast cancer cell lines cultured in the device was compared to the response in xenograft models to the same drugs to analyze relevance of this platform for use in future drug-response studies.

Keywords: microfluidics, multi-well 3d cell culture, tumor microenvironment, tumor-on-a-chip

Procedia PDF Downloads 240
551 Dual Electrochemical Immunosensor for IL-13Rα2 and E-Cadherin Determination in Cell, Serum and Tissues from Cancer Patients

Authors: Amira ben Hassine, A. Valverde, V. Serafín, C. Muñoz-San Martín, M. Garranzo-Asensio, M. Gamella, R. Barderas, M. Pedrero, N. Raouafi, S. Campuzano, P. Yáñez-Sedeño, J. M. Pingarrón

Abstract:

This work describes the development of a dual electrochemical immunosensing platform for accurate determination of two target proteins, IL-13 Receptor α2 (IL-13Rα2) and E-cadherin (E-cad). The proposed methodology is based on the use of sandwich immunosensing approaches (involving horseradish peroxidase-labeled detector antibodies) implemented onto magnetic microbeads (MBs) and amperometric transduction at screen-printed dual carbon electrodes (SPdCEs). The magnetic bioconjugates were captured onto SPdCEs and the amperometric transduction was performed using the H2O2/hydroquinone (HQ) system. Under optimal experimental conditions, the developed bio platform demonstrates linear concentration ranges of 1.0–25 and 5.0-100 ng mL-1, detection limits of 0.28 and 1.04 ng mL-1 for E-cad and IL-13Rα2, respectively, and excellent selectivity against other non-target proteins. The developed immuno-platform also offers a good reproducibility among amperometric responses provided by nine different sensors constructed in the same manner (Relative Standard Deviation values of 3.1% for E-cad and 4.3% for IL-13Rα2). Moreover, obtained results confirm the practical applicability of this bio-platform for the accurate determination of the endogenous levels of both extracellular receptors in colon cancer cells (both intact and lysed) with different metastatic potential and serum and tissues from patients diagnosed with colorectal cancer at different grades. Interesting features in terms of, simplicity, speed, portability and sample amount required to provide quantitative results, make this immuno-platform more compatible than conventional methodologies with the clinical diagnosis and prognosis at the point of care.

Keywords: electrochemistry, mmunosensors, biosensors, E-cadherin, IL-13 receptor α2, cancer colorectal

Procedia PDF Downloads 112
550 A Laboratory Study into the Effects of Surface Waves on Freestyle Swimming

Authors: Scott Draper, Nat Benjanuvatra, Grant Landers, Terry Griffiths, Justin Geldard

Abstract:

Open water swimming has been an Olympic sport since 2008 and is growing in popularity world-wide as a low impact form of exercise. Unlike pool swimming, open water swimmers experience a range of different environmental conditions, including surface waves, variable water temperature, aquatic life, and ocean currents. This presentation will describe experimental research to investigate how freestyle swimming behaviour and performance is influenced by surface waves. A group of 12 swimmers were instructed to swim freestyle in the 54 m long wave flume located at The University of Western Australia’s Coastal and Offshore Engineering Laboratory. A variety of different regular waves were simulated, varying in height (up to 0.3 m), period (1.25 – 4s), and direction (with or against the swimmer). Swimmer’s velocity and acceleration, respectively, were determined from video recording and inertial sensors attached to five different parts of the swimmer’s body. The results illustrate how the swimmers stroke rate and the wave encounter frequency influence their forward speed and how particular wave conditions can benefit or hinder performance. Comparisons to simplified mathematical models provide insight into several aspects of performance, including: (i) how much faster swimmers can travel when swimming with as opposed to against the waves, and (ii) why swimmers of lesser ability are expected to be affected proportionally more by waves than elite swimmers. These findings have implications across the spectrum from elite to ‘weekend’ swimmers, including how they are coached and their ability to win (or just successfully complete) iconic open water events such as the Rottnest Channel Swim held annually in Western Australia.

Keywords: open water, surface waves, wave height/length, wave flume, stroke rate

Procedia PDF Downloads 90
549 Tree Dress and the Internet of Living Things

Authors: Vibeke Sorensen, Nagaraju Thummanapalli, J. Stephen Lansing

Abstract:

Inspired by the indigenous people of Borneo, Indonesia and their traditional bark cloth, artist and professor Vibeke Sorensen executed a “digital unwrapping” of several trees in Southeast Asia using a digital panorama camera and digitally “stitched” them together for printing onto sustainable silk and fashioning into the “Tree Dress”. This dress is a symbolic “un-wrapping” and “re-wrapping” of the tree’s bark onto a person as a second skin. The “digital bark” is directly responsive to the real tree through embedded and networked electronics that connect in real-time to sensors at the physical site of the living tree. LEDs and circuits inserted into the dress display the continuous measurement of the O2 / CO2, temperature, humidity, and light conditions at the tree. It is an “Internet of Living Things” (IOLT) textile that can be worn to track and interact with it. The computer system connecting the dress and the tree converts the gas emission data at the site of the real tree into sound and music as sonification. This communicates not only the scientific data but also translates it into a poetic representation. The wearer of the garment can symbolically identify with the tree, or “become one” with it by adorning its “skin.” In this way, the wearer also becomes a human agent for the tree, bringing its actual condition to direct perception of the wearer and others who may engage it. This project is an attempt to bring greater awareness to issues of deforestation by providing a direct access to living things separated by physical distance, and hopefully, to increase empathy for them by providing a way to sense individual trees and their daily existential condition through remote monitoring of data. Further extensions to this project and related issues of sustainability include the use of recycled and alternative plant materials such as bamboo and air plants, among others.

Keywords: IOLT, sonification, sustainability, tree, wearable technology

Procedia PDF Downloads 110
548 Diagnostics and Explanation of the Current Status of the 40- Year Railway Viaduct

Authors: Jakub Zembrzuski, Bartosz Sobczyk, Mikołaj MIśkiewicz

Abstract:

Besides designing new constructions, engineers all over the world must face another problem – maintenance, repairs, and assessment of the technical condition of existing bridges. To solve more complex issues, it is necessary to be familiar with the theory of finite element method and to have access to the software that provides sufficient tools which to enable create of sometimes significantly advanced numerical models. The paper includes a brief assessment of the technical condition, a description of the in situ non-destructive testing carried out and the FEM models created for global and local analysis. In situ testing was performed using strain gauges and displacement sensors. Numerical models were created using various software and numerical modeling techniques. Particularly noteworthy is the method of modeling riveted joints of the crossbeam of the viaduct. It is a simplified method that consists of the use of only basic numerical tools such as beam and shell finite elements, constraints, and simplified boundary conditions (fixed support and symmetry). The results of the numerical analyses were presented and discussed. It is clearly explained why the structure did not fail, despite the fact that the weld of the deck plate completely failed. A further research problem that was solved was to determine the cause of the rapid increase in values on the stress diagram in the cross-section of the transverse section. The problems were solved using the solely mentioned, simplified method of modeling riveted joints, which demonstrates that it is possible to solve such problems without access to sophisticated software that enables to performance of the advanced nonlinear analysis. Moreover, the obtained results are of great importance in the field of assessing the operation of bridge structures with an orthotropic plate.

Keywords: bridge, diagnostics, FEM simulations, failure, NDT, in situ testing

Procedia PDF Downloads 50
547 Biophysical Study of the Interaction of Harmalol with Nucleic Acids of Different Motifs: Spectroscopic and Calorimetric Approaches

Authors: Kakali Bhadra

Abstract:

Binding of small molecules to DNA and recently to RNA, continues to attract considerable attention for developing effective therapeutic agents for control of gene expression. This work focuses towards understanding interaction of harmalol, a dihydro beta-carboline alkaloid, with different nucleic acid motifs viz. double stranded CT DNA, single stranded A-form poly(A), double-stranded A-form of poly(C)·poly(G) and clover leaf tRNAphe by different spectroscopic, calorimetric and molecular modeling techniques. Results of this study converge to suggest that (i) binding constant varied in the order of CT DNA > poly(C)·poly(G) > tRNAphe > poly(A), (ii) non-cooperative binding of harmalol to poly(C)·poly(G) and poly(A) and cooperative binding with CT DNA and tRNAphe, (iii) significant structural changes of CT DNA, poly(C)·poly(G) and tRNAphe with concomitant induction of optical activity in the bound achiral alkaloid molecules, while with poly(A) no intrinsic CD perturbation was observed, (iv) the binding was predominantly exothermic, enthalpy driven, entropy favoured with CT DNA and poly(C)·poly(G) while it was entropy driven with tRNAphe and poly(A), (v) a hydrophobic contribution and comparatively large role of non-polyelectrolytic forces to Gibbs energy changes with CT DNA, poly(C)·poly(G) and tRNAphe, and (vi) intercalated state of harmalol with CT DNA and poly(C)·poly(G) structure as revealed from molecular docking and supported by the viscometric data. Furthermore, with competition dialysis assay it was shown that harmalol prefers hetero GC sequences. All these findings unequivocally pointed out that harmalol prefers binding with ds CT DNA followed by ds poly(C)·poly(G), clover leaf tRNAphe and least with ss poly(A). The results highlight the importance of structural elements in these natural beta-carboline alkaloids in stabilizing different DNA and RNA of various motifs for developing nucleic acid based better therapeutic agents.

Keywords: calorimetry, docking, DNA/RNA-alkaloid interaction, harmalol, spectroscopy

Procedia PDF Downloads 210
546 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence

Authors: Sylvester Akpah, Selasi Vondee

Abstract:

Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.

Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle

Procedia PDF Downloads 119
545 Gap Formation into Bulk InSb Crystals Grown by the VDS Technique Revealing Enhancement in the Transport Properties

Authors: Dattatray Gadkari, Dilip Maske, Manisha Joshi, Rashmi Choudhari, Brij Mohan Arora

Abstract:

The vertical directional solidification (VDS) technique has been applied to the growth of bulk InSb crystals. The concept of practical stability is applied to the case of detached bulk crystal growth on earth in a simplified design. By optimization of the set up and growth parameters, 32 ingots of 65-75 mm in length and 10-22 mm in diameter have been grown. The results indicate that the wetting angle of the melt on the ampoule wall and the pressure difference across the interface are the crucial factors effecting the meniscus shape and stability. Taking into account both heat transfer and capillarity, it is demonstrated that the process is stable in case of convex menisci (seen from melt), provided that pressure fluctuations remain in a stable range. During the crystal growth process, it is necessary to keep a relationship between the rate of the difference pressure controls and the solidification to maintain the width of gas gap. It is concluded that practical stability gives valuable knowledge of the dynamics and could be usefully applied to other crystal growth processes, especially those involving capillary shaping. Optoelectronic properties were investigated in relation to the type of solidification attached and detached ingots growth. These samples, room temperature physical properties such as Hall mobility, FTIR, Raman spectroscopy and microhardness achieved for antimonide samples grown by VDS technique have shown the highest values gained till at this time. These results reveal that these crystals can be used to produce InSb with high mobility for device applications.

Keywords: alloys, electronic materials, semiconductors, crystal growth, solidification, etching, optical microscopy, crystal structure, defects, Hall effect

Procedia PDF Downloads 393
544 Drone On-Time Obstacle Avoidance for Static and Dynamic Obstacles

Authors: Herath M. P. C. Jayaweera, Samer Hanoun

Abstract:

Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GME′s velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use, and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks, including their tendency to generate longer routes when the obstacles are sideways of the drone′s route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilized on most types of drones that have basic distance measurement sensors and autopilot-supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS-supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.

Keywords: drones, force field methods, obstacle avoidance, path planning

Procedia PDF Downloads 56