Search results for: intergenerational technology learning
11471 Blended Intensive Programmes: A Way Forward to Promote Internationalization in Higher Education
Authors: Sonja Gögele, Petra Kletzenbauer
Abstract:
International strategies are ranked as one of the core activities in the development plans of Austrian universities. This has led to numerous promising activities in terms of internationalization (i.e. development of international degree programmes, increased staff and student mobility, and blended international projects). The latest innovative approach in terms of Erasmus+ are so called Blended Intensive Programmes (BIP) which combine jointly delivered teaching and learning elements of at least three participating ERASMUS universities in a virtual and short-term mobility setup. Students who participate in BIP can maintain their study plans at their home institution and include BIP as a parallel activity. This paper presents the experiences of this programme on the topic of sustainable computing hosted by the University of Applied Sciences FH JOANNEUM. By means of an online survey and face-to-face interviews with all stakeholders (20 students, 8 professors), the empirical study addresses the challenges of hosting an international blended learning programme (i.e. virtual phase and on-site intensive phase) and discusses the impact of such activities in terms of internationalization and Englishization. In this context, key roles are assigned to the development of future transnational and transdisciplinary curricula by considering innovative aspects for learning and teaching (i.e. virtual collaboration, research-based learning).Keywords: internationalization, englishization, short-term mobility, international teaching and learning
Procedia PDF Downloads 12011470 Predicting Mobile Payment System Adoption in Nigeria: An Empirical Analysis
Authors: Aminu Hamza
Abstract:
This study examines the factors that play vital role in the adoption of mobile payment system among consumers in Nigeria. Technology Acceptance Model (TAM) was used with two additional variables to form the conceptual model. The study was conducted in three Universities in Kano state, Nigeria. Convenience sampling method was used with a total valid 202 respondents which involved the students of Bayero University Kano (BUK), Northwest University, and Kano University of Science and Technology (KUST) Wudil, Kano, Nigeria. Results of the regression analysis revealed that Perceived ease of use (PEOU) and Perceived usefulness (PU) have significant and positive correlation with the behavioral intention to adopt mobile payment system. The findings of this study would be useful to the policy makers Central Bank of Nigeria (CBN), mobile network operators and providers of the services.Keywords: mobile payment system, Nigeria, technology adoption, technology acceptance model
Procedia PDF Downloads 30611469 Exploring the Formation of High School Students’ Science Identity: A Qualitative Study
Authors: Sitong. Chen, Bing Wei
Abstract:
As a sociocultural concept, identity has increasingly gained attention in educational research, and the notion of students’ science identity has been widely discussed in the field of science education. Science identity was proved to be a key indicator of students’ learning engagement, persistence, and career intentions in science-related and STEM fields. Thus, a great deal of educational effort has been made to promote students’ science identity in former studies. However, most of this research was focused on students’ identity development during undergraduate and graduate periods, except for a few studies exploring high school students’ identity formation. High school has been argued as a crucial period for promoting science identity. This study applied a qualitative method to explore how high school students have come to form their science identities in previous learning and living experiences. Semi-structured interviews were conducted with 8 newly enrolled undergraduate students majoring in science-related fields. As suggested by the narrative data from interviews, students’ formation of science identities was driven by their five interrelated experiences: growing self-recognition as a science person, achieving success in learning science, getting recognized by influential others, being interested in science subjects, and informal science experiences in various contexts. Specifically, students’ success and achievement in science learning could facilitate their interest in science subjects and others’ recognition. And their informal experiences could enhance their interest and performance in formal science learning. Furthermore, students’ success and interest in science, as well as recognition from others together, contribute to their self-recognition. Based on the results of this study, some practical implications were provided for science teachers and researchers in enhancing high school students’ science identities.Keywords: high school students, identity formation, learning experiences, living experiences, science identity
Procedia PDF Downloads 5811468 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food
Authors: Paulomi (Polly) Burey, Zoe Lynch
Abstract:
In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.Keywords: chemistry, food science, future pedagogy, STEM Education
Procedia PDF Downloads 15911467 Charting Sentiments with Naive Bayes and Logistic Regression
Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri
Abstract:
The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.Keywords: machine learning, sentiment analysis, visualisation, python
Procedia PDF Downloads 5611466 A Sustainable Training and Feedback Model for Developing the Teaching Capabilities of Sessional Academic Staff
Authors: Nirmani Wijenayake, Louise Lutze-Mann, Lucy Jo, John Wilson, Vivian Yeung, Dean Lovett, Kim Snepvangers
Abstract:
Sessional academic staff at universities have the most influence and impact on student learning, engagement, and experience as they have the most direct contact with undergraduate students. A blended technology-enhanced program was created for the development and support of sessional staff to ensure adequate training is provided to deliver quality educational outcomes for the students. This program combines innovative mixed media educational modules, a peer-driven support forum, and face-to-face workshops to provide a comprehensive training and support package for staff. Additionally, the program encourages the development of learning communities and peer mentoring among the sessional staff to enhance their support system. In 2018, the program was piloted on 100 sessional staff in the School of Biotechnology and Biomolecular Sciences to evaluate the effectiveness of this model. As part of the program, rotoscope animations were developed to showcase ‘typical’ interactions between staff and students. These were designed around communication, confidence building, consistency in grading, feedback, diversity awareness, and mental health and wellbeing. When surveyed, 86% of sessional staff found these animations to be helpful in their teaching. An online platform (Moodle) was set up to disseminate educational resources and teaching tips, to host a discussion forum for peer-to-peer communication and to increase critical thinking and problem-solving skills through scenario-based lessons. The learning analytics from these lessons were essential in identifying difficulties faced by sessional staff to further develop supporting workshops to improve outcomes related to teaching. The face-to-face professional development workshops were run by expert guest speakers on topics such as cultural diversity, stress and anxiety, LGBTIQ and student engagement. All the attendees of the workshops found them to be useful and 88% said they felt these workshops increase interaction with their peers and built a sense of community. The final component of the program was to use an adaptive e-learning platform to gather feedback from the students on sessional staff teaching twice during the semester. The initial feedback provides sessional staff with enough time to reflect on their teaching and adjust their performance if necessary, to improve the student experience. The feedback from students and the sessional staff on this model has been extremely positive. The training equips the sessional staff with knowledge and insights which can provide students with an exceptional learning environment. This program is designed in a flexible and scalable manner so that other faculties or institutions could adapt components for their own training. It is anticipated that the training and support would help to build the next generation of educators who will directly impact the educational experience of students.Keywords: designing effective instruction, enhancing student learning, implementing effective strategies, professional development
Procedia PDF Downloads 12811465 Developing Creative and Critically Reflective Digital Learning Communities
Authors: W. S. Barber, S. L. King
Abstract:
This paper is a qualitative case study analysis of the development of a fully online learning community of graduate students through arts-based community building activities. With increasing numbers and types of online learning spaces, it is incumbent upon educators to continue to push the edge of what best practices look like in digital learning environments. In digital learning spaces, instructors can no longer be seen as purveyors of content knowledge to be examined at the end of a set course by a final test or exam. The rapid and fluid dissemination of information via Web 3.0 demands that we reshape our approach to teaching and learning, from one that is content-focused to one that is process-driven. Rather than having instructors as formal leaders, today’s digital learning environments require us to share expertise, as it is the collective experiences and knowledge of all students together with the instructors that help to create a very different kind of learning community. This paper focuses on innovations pursued in a 36 hour 12 week graduate course in higher education entitled “Critical and Reflective Practice”. The authors chronicle their journey to developing a fully online learning community (FOLC) by emphasizing the elements of social, cognitive, emotional and digital spaces that form a moving interplay through the community. In this way, students embrace anywhere anytime learning and often take the learning, as well as the relationships they build and skills they acquire, beyond the digital class into real world situations. We argue that in order to increase student online engagement, pedagogical approaches need to stem from two primary elements, both creativity and critical reflection, that are essential pillars upon which instructors can co-design learning environments with students. The theoretical framework for the paper is based on the interaction and interdependence of Creativity, Intuition, Critical Reflection, Social Constructivism and FOLCs. By leveraging students’ embedded familiarity with a wide variety of technologies, this case study of a graduate level course on critical reflection in education, examines how relationships, quality of work produced, and student engagement can improve by using creative and imaginative pedagogical strategies. The authors examine their professional pedagogical strategies through the lens that the teacher acts as facilitator, guide and co-designer. In a world where students can easily search for and organize information as self-directed processes, creativity and connection can at times be lost in the digitized course environment. The paper concludes by posing further questions as to how institutions of higher education may be challenged to restructure their credit granting courses into more flexible modules, and how students need to be considered an important part of assessment and evaluation strategies. By introducing creativity and critical reflection as central features of the digital learning spaces, notions of best practices in digital teaching and learning emerge.Keywords: online, pedagogy, learning, communities
Procedia PDF Downloads 40511464 Internal Assessment of Satisfaction with the Quality of the Learning Process
Authors: Bulatbayeva A. A., Maxutova I. O., Ergalieva A. N.
Abstract:
This article presents a study of the practice of self-assessment of the quality of training cadets in a military higher specialized educational institution. The research was carried out by means of a questionnaire survey aimed at identifying the degree of satisfaction of cadets with the organization of the educational process, quality of teaching, the quality of the organization of independent work, and the system of their assessment. In general, the results of the study are of an intermediate nature. Proven tools will be incorporated into the planning and effective management of the learning process. The results of the study can be useful for the administrators and managers of the military education system for teachers of military higher educational institutions for adjusting the content and technologies of training future specialists. The publication was prepared as part of applied grant research for 2020-2022 by order of the Ministry of Education and Science of the Republic of Kazakhstan on the topic "Development of a comprehensive methodology for assessing the quality of education of graduates of military special educational institutions."Keywords: teaching quality, quality satisfaction, learning management, quality management, process approach, classroom learning, interactive technologies, teaching quality
Procedia PDF Downloads 12711463 Learning Aid for Kids in India
Authors: Prabir Mukhopadhyay, Atul Kohale
Abstract:
Going to school for Indian kids is a panic situation. Many of them are unable to adjust themselves to the confinement of the school building and this problem is compounded by other factors like unknown people in the vicinity, absence of either parents etc. This project aims at addressing these issues by exposing the kids at home to the learning environment. The purpose is to design a physical model with interfaces at each surface. The model would be like a cube with interactive surfaces where the child would be able to draw, paint, complete a picture and do such fun activities.Keywords: interface, kids, play, computer systems engineering
Procedia PDF Downloads 21311462 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 7711461 The Effects of Anthropomorphism on Complex Technological Innovations
Authors: Chyi Jaw
Abstract:
Many companies have suffered as a result of consumers’ rejection of complex new products and experienced huge losses in the market. Marketers have to understand what block from new technology adoption or positive product attitude may exist in the market. This research examines the effects of techno-complexity and anthropomorphism on consumer psychology and product attitude when new technologies are introduced to the market. This study conducted a pretest and a 2 x 2 between-subjects experiment. Four simulated experimental web pages were constructed to collect data. The empirical analysis tested the moderation-mediation relationships among techno-complexity, technology anxiety, ability, and product attitude. These empirical results indicate (1) Techno-complexity of an innovation is negatively related to consumers’ product attitude, as well as increases consumers’ technology anxiety and reduces their self-ability perception. (2) Consumers’ technology anxiety and ability perception towards an innovation completely mediate the relationship between techno-complexity and product attitude. (3) Product anthropomorphism is positively related to consumers’ attitude of new technology, and also significantly moderates the effect of techno-complexity in the hypothesized model. In this work, the study presents the moderation-mediation model and the effects of anthropomorphized strategy, which describes how managers can better predict and influence the diffusion of complex technological innovations.Keywords: ability, anthropomorphic effect, innovation, techno-complexity, technology anxiety
Procedia PDF Downloads 19111460 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution
Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang
Abstract:
Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution
Procedia PDF Downloads 15811459 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning
Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel
Abstract:
Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection
Procedia PDF Downloads 4311458 Early Childhood Education and Learning Outcomes in Lower Primary Schools, Uganda
Authors: John Acire, Wilfred Lajul, Ogwang Tom
Abstract:
Using a qualitative research technique, this study investigates the influence of Early Childhood Education (ECE) on learning outcomes in lower primary schools in Gulu City, Uganda. The study, which is based on Vygotsky's sociocultural theory of human learning, fills gaps in the current literature on the influence of ECE on learning outcomes. The aims of the study include analyzing the state of learning outcomes, investigating ECE practices, and determining the influence of these practices on learning outcomes in lower primary schools. The findings highlight the critical significance of ECE in promoting children's overall development. Nursery education helps children improve their handwriting, reading abilities, and general cognitive development. Children who have received nursery education have improved their abilities to handle pencils, form letters, and engage in social interactions, highlighting the significance of fine motor skills and socializing. Despite the good elements, difficulties in implementing ECE practices were found, such as differences in teaching styles, financial limits, and potential weariness due to prolonged school hours. The study suggests focused interventions to improve the effectiveness of ECE practices, ensure their connection with educational goals and maximize their influence on children's development. The study's findings show that respondents agree on the importance of nursery education in supporting holistic development, socialization, language competency, and conceptual comprehension. Challenges in nursery education, such as differences in teaching techniques and insufficient resources, highlight the need for comprehensive measures to address these challenges. Furthermore, parental engagement in home learning activities was revealed as an important factor affecting early education outcomes. Children who were engaged at home performed better in lower primary, emphasizing the value of a supportive family environment. Finally, the report suggests measures to enhance parental participation, changes in teaching methods through retraining, and age-appropriate enrolment. Future studies might concentrate on the involvement of parents, ECE policy practice, and the influence of ECE teachers on lower primary school learning results. These ideas are intended to help create a more favorable learning environment by encouraging holistic development and preparing children for success in succeeding academic levels.Keywords: early childhood education, learning outcomes in lower primary schools, early childhood education practices, how ECE practices influence learning outcomes in lower primary schools
Procedia PDF Downloads 4311457 Effective Strategies for Teaching English Language to Beginners in Primary Schools in Nigeria
Authors: Halima Musa Kamilu
Abstract:
This paper discusses the effective strategies for teaching English language to learners in primary schools in Nigeria. English language development is the systematic use of instructional strategies designed to promote the acquisition of English by pupils in primary schools whose primary language is not English. Learning a second language is through total immersion. These strategies support this learning method, allowing pupils to have the knowledge of English language in a pattern similar to the way they learned their native language through regular interaction with others who already know the language. The focus is on fluency and learning to speak English in a social context with native speakers. The strategies allow for effective acquisition. The paper also looked into the following areas: visuals that reinforce spoken or written words, employ gestures for added emphasis, adjusting of speech, stressing of high-frequency vocabulary words, use of fewer idioms and clarifying the meaning of words or phrases in context, stressing of participatory learning and maintaining a low anxiety level and boosting of enthusiasm. It recommended that the teacher include vocabulary words that will make the content more comprehensible to the learner.Keywords: effective, strategies, teaching, beginners and primary schools
Procedia PDF Downloads 49411456 Weapon-Being: Weaponized Design and Object-Oriented Ontology in Hypermodern Times
Authors: John Dimopoulos
Abstract:
This proposal attempts a refabrication of Heidegger’s classic thing-being and object-being analysis in order to provide better ontological tools for understanding contemporary culture, technology, and society. In his work, Heidegger sought to understand and comment on the problem of technology in an era of rampant innovation and increased perils for society and the planet. Today we seem to be at another crossroads in this course, coming after postmodernity, during which dreams and dangers of modernity augmented with critical speculations of the post-war era take shape. The new era which we are now living in, referred to as hypermodernity by researchers in various fields such as architecture and cultural theory, is defined by the horizontal implementation of digital technologies, cybernetic networks, and mixed reality. Technology today is rapidly approaching a turning point, namely the point of no return for humanity’s supervision over its creations. The techno-scientific civilization of the 21st century creates a series of problems, progressively more difficult and complex to solve and impossible to ignore, climate change, data safety, cyber depression, and digital stress being some of the most prevalent. Humans often have no other option than to address technology-induced problems with even more technology, as in the case of neuron networks, machine learning, and AI, thus widening the gap between creating technological artifacts and understanding their broad impact and possible future development. As all technical disciplines and particularly design, become enmeshed in a matrix of digital hyper-objects, a conceptual toolbox that allows us to handle the new reality becomes more and more necessary. Weaponized design, prevalent in many fields, such as social and traditional media, urban planning, industrial design, advertising, and the internet in general, hints towards an increase in conflicts. These conflicts between tech companies, stakeholders, and users with implications in politics, work, education, and production as apparent in the cases of Amazon workers’ strikes, Donald Trump’s 2016 campaign, Facebook and Microsoft data scandals, and more are often non-transparent to the wide public’s eye, thus consolidating new elites and technocratic classes and making the public scene less and less democratic. The new category proposed, weapon-being, is outlined in respect to the basic function of reducing complexity, subtracting materials, actants, and parameters, not strictly in favor of a humanistic re-orientation but in a more inclusive ontology of objects and subjects. Utilizing insights of Object-Oriented Ontology (OOO) and its schematization of technological objects, an outline for a radical ontology of technology is approached.Keywords: design, hypermodernity, object-oriented ontology, weapon-being
Procedia PDF Downloads 15211455 Policy and Practice of Later-Life Learning in China: A Critical Document Discourse Analysis
Authors: Xue Wu
Abstract:
Since the 1980s, a series of policies and practices have been implemented in China in response to the unprecedented rate of ageing population. The paper provides a detailed narrative of what later-life learning policy discourses have been advocated and gives a description on relevant practical issues during the past three decades. The research process based on the discourse approach with a systematic review of the government-issued documents. It finds that the main practices taken by central government at various levels were making University of the Aged (UA) available in all urban and rural regions to consolidate the newly student enrollments; focusing social-recreational, leisure and cultural activities on 55-75 age group; and utilizing various methods including voluntary works and tourism to improve older adults’ physical and mental wellness. Although there were greater achievements with 30 years of development, many problems still exist. Finding reveals that the curriculum should be modified to meet the needs of the local development, to promote older adults’ contact and contribution to the community, and to enhance technical competences of those in rural areas involving in agricultural production. Central government should also integrate resources from all sectors of the society for further developing later-life learning in China. The result of this paper highlights the value to promote community-based later-life learning for building a society for active ageing and ageing in place.Keywords: ageing population, China, later-life learning, policy, University of the Aged
Procedia PDF Downloads 14411454 Beyond Typical Textbooks: Adapting Authentic Materials for Engaged Learning in the ELT Classroom
Authors: Fatemeh Miraki
Abstract:
The use of authentic materials in English Language Teaching (ELT) has become increasingly prominent as educators recognize the value of exposing learners to real-world language use and cultural contexts. The integration of authentic materials in ELT aligns with the understanding that language learning is most effective when situated within authentic contexts (Richards & Rodgers, 2001). Tomlinson (1998) highlights the significance of authentic materials in ELT by research indicating that they offer learners exposure to genuine language use and cultural contexts. Tomlinson's work emphasizes the importance of creating meaningful learning experiences through the use of authentic materials. Research by Dörnyei (2001) underscores the potential of authentic materials to enhance students' intrinsic motivation through their relevance to real-life language use. The goal of this review paper is to explore the use of authentic materials in English Language Teaching (ELT) and its impact on language learning. It also discusses best practices for selecting and integrating such authentic materials into ELT curriculum, highlighting the benefits and challenges of using authentic materials to enhance student engagement, motivation, and language proficiency. Drawing on current research and practical examples, this paper provides insights into how teachers can effectively navigate the world of authentic materials to create dynamic and meaningful learning experiences for 21st century ELT learners. The findings of this study advocates for a shift towards embracing authentic materials within the ELT classroom, acknowledging their profound impact on language proficiency, intercultural competence, and learner engagement. It showed the transformative potential of authentic materials, educators can undergo a vibrant and immersive language learning experience, enriched with real-world application and cultural authenticity.Keywords: authentic materials, ELT Classroom, ELT curriculum, students’ engagement
Procedia PDF Downloads 5711453 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms
Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama
Abstract:
Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.Keywords: machine learning, ChatGPT, education, learning, implications
Procedia PDF Downloads 23211452 Impact of Different Modulation Techniques on the Performance of Free-Space Optics
Authors: Naman Singla, Ajay Pal Singh Chauhan
Abstract:
As the demand for providing high bit rate and high bandwidth is increasing at a rapid rate so there is a need to see in this problem and finds a technology that provides high bit rate and also high bandwidth. One possible solution is by use of optical fiber. Optical fiber technology provides high bandwidth in THz. But the disadvantage of optical fiber is of high cost and not used everywhere because it is not possible to reach all the locations on the earth. Also high maintenance required for usage of optical fiber. It puts a lot of cost. Another technology which is almost similar to optical fiber is Free Space Optics (FSO) technology. FSO is the line of sight technology where modulated optical beam whether infrared or visible is used to transfer information from one point to another through the atmosphere which works as a channel. This paper concentrates on analyzing the performance of FSO in terms of bit error rate (BER) and quality factor (Q) using different modulation techniques like non return to zero on off keying (NRZ-OOK), differential phase shift keying (DPSK) and differential quadrature phase shift keying (DQPSK) using OptiSystem software. The findings of this paper show that FSO system based on DQPSK modulation technique performs better.Keywords: attenuation, bit rate, free space optics, link length
Procedia PDF Downloads 34711451 Current Methods for Drug Property Prediction in the Real World
Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh
Abstract:
Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning
Procedia PDF Downloads 8111450 Application of Fourier Series Based Learning Control on Mechatronic Systems
Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt
Abstract:
A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.Keywords: climbing stairs, FSBLC, ILC, service robot
Procedia PDF Downloads 31411449 Like Making an Ancient Urn: Metaphor Conceptualization of L2 Writing
Authors: Muhalim Muhalim
Abstract:
Drawing on Lakoff’s theory of metaphor conceptualization, this article explores the conceptualization of language two writing (L2W) of ten students-teachers in Indonesia via metaphors. The ten postgraduate English language teaching students and at the same time (former) English teachers received seven days of intervention in teaching and learning L2. Using introspective log and focus group discussion, the results illuminate us that all participants are unanimous on perceiving L2W as process-oriented rather than product-oriented activity. Specifically, the metaphor conceptualizations exhibit three categories of process-oriented L2W: deliberate process, learning process, and problem-solving process. However, it has to be clarified from the outset that this categorization is not rigid because some of the properties of metaphors might belong to other categories. Results of the study and implications for English language teaching will be further discussed.Keywords: metaphor conceptualisation, second language, learning writing, teaching writing
Procedia PDF Downloads 41311448 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 19511447 The Unspoken Learning Landscape of Indigenous Peoples (IP) Learners: A Process Documentation and Analysis
Authors: Ailene B. Anonuevo
Abstract:
The aim of the study was to evaluate the quality of life presently available for the IP students in selected schools in the Division of Panabo City. This further explores their future dreams and current status in classes and examines some implications relative to their studies. The study adopted the mixed methodology and used a survey research design as the operational framework for data gathering. Data were collected by self-administered questionnaires and interviews with sixty students from three schools in Panabo City. In addition, this study describes the learners’ background and school climate as variables that might influence their performance in school. The study revealed that an IP student needs extra attention due to their unfavorable learning environment. The study also found out that like any other students, IP learners yearns for a brighter future with the support of our government.Keywords: IP learners, learning landscape, school climate, quality of life
Procedia PDF Downloads 22411446 Live and Learn in Ireland: Supporting International Students
Authors: Tom Farrelly, Yvoonne Kavanagh, Tony Murphy
Abstract:
In the last 20 years, Ireland has enjoyed an upsurge in the number of international students coming to avail of its well-regarded Higher Education system. While welcome, the influx of international students has posed a number of cultural, social and academic challenges for the Irish HE sector, both at institutional and individual lecturer level. Notwithstanding the challenge to the Irish HE sector, the difficulties that incoming students face needs to be acknowledged and addressed. For students who have never left their home country before the transition can be daunting even if they have not learned the customs and ways of the new country. In 2013, Ireland’s National Forum for the Advancement of Teaching and Learning in Higher Education invited submissions from interested parties to design and implement digital supports aimed at assisting students transitioning into or exiting higher education. Five colleges—the Institute of Technology, Tralee; University College Cork, Institute of Technology, Carlow; Cork Institute of Technology and Waterford Institute of Technology—collectively known as the Southern Cluster, were granted funding to research and develop digital objects to support international students' transition into the Irish higher education system. One of the key fundamentals of this project was its strong commitment to incorporating the student voice to help inform the design of the digital objects. The primary research method used to ascertain student views was the circulation of an online questionnaire using SurveyMonkey to existing international students in each of the five participant colleges. The questionnaire sought to examine the experiences and opinions of the students in relation to three main aspects of their living and studying in Ireland (hence the name of the project LiveAndLearnInIreland) (1) the academic environment (2) the social aspects of living in Ireland and (3) the practical aspects of living in Ireland. The response to the survey (n=573), revealed a number of sometimes surprising issues and themes for the digital objects to address. The research, therefore, offers insight into the types of concerns that any college, whether in Ireland or further afield, needs to take into consideration, if it is to genuinely assist what can be a difficult transition for the international student. That said, while there are a number of themes that emerged that have international implications there are other themes that have a particular resonance for the Irish HE sector.Keywords: international, transition, support, inclusion
Procedia PDF Downloads 21711445 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 4911444 AI-Powered Personalized Teacher Training for Enhancing Language Teaching Competence
Authors: Ororho Maureen Ekpelezie
Abstract:
This study investigates language educators' perceptions and experiences regarding AI-driven personalized teacher training modules in Awka South, Anambra State, Nigeria. Utilizing a stratified random sampling technique, 25 schools across various educational levels were selected to ensure a representative sample. A total of 1000 questionnaires were distributed among language teachers in these schools, focusing on assessing their perceptions and experiences related to AI-driven personalized teacher training. With an impressive response rate of 99.1%, the study garnered valuable insights into language teachers' attitudes towards AI-driven personalized teacher training and its effectiveness in enhancing language teaching competence. The quantitative analysis revealed predominantly positive perceptions towards AI-driven personalized training modules, indicating their efficacy in addressing individual learning needs. However, challenges were identified in the long-term retention and transfer of AI-enhanced skills, underscoring the necessity for further refinement of personalized training approaches. Recommendations stemming from these findings emphasize the need for continued refinement of training methodologies and the development of tailored professional development programs to alleviate educators' concerns. Overall, this research enriches discussions on the integration of AI technology in teacher training and professional development, with the aim of bolstering language teaching competence and effectiveness in educational settings.Keywords: language teacher training, AI-driven personalized learning, professional development, language teaching competence, personalized teacher training
Procedia PDF Downloads 4111443 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 9311442 The School Based Support Program: An Evaluation of a Comprehensive School Reform Initiative in the State of Qatar
Authors: Abdullah Abu-Tineh, Youmen Chaaban
Abstract:
This study examines the development of a professional development (PD) model for teacher growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge and skills of both school leadership and teachers in an attempt to improve student learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents findings from an evaluation of this PD program. Based on an adaptation of Guskey’s evaluation of PD models, 100 teachers at the participating schools were selected for classroom observations and 40 took part in in-depth interviews to examine changed classroom practices. The impact of the PD program on student learning was also examined. Teachers’ practices and their students’ achievement in English, Arabic, mathematics and science were measured at the beginning and at the end of the intervention.Keywords: initiative, professional development, school based support Program (SBSP), school reform
Procedia PDF Downloads 496