Search results for: hand gesture classification
3585 Degree of Approximation of Functions Conjugate to Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means
Authors: Smita Sonker
Abstract:
Various investigators have determined the degree of approximation of conjugate signals (functions) of functions belonging to different classes Lipα, Lip(α,p), Lip(ξ(t),p), W(Lr,ξ(t), (β ≥ 0)) by matrix summability means, lower triangular matrix operator, product means (i.e. (C,1)(E,1), (C,1)(E,q), (E,q)(C,1) (N,p,q)(E,1), and (E,q)(N,pn) of their conjugate trigonometric Fourier series. In this paper, we shall determine the degree of approximation of 2π-periodic function conjugate functions of f belonging to the function classes Lipα and W(Lr; ξ(t); (β ≥ 0)) by (C1.T) -means of their conjugate trigonometric Fourier series. On the other hand, we shall review above-mentioned work in the light of Lenski.Keywords: signals, trigonometric fourier approximation, class W(L^r, \xi(t), conjugate fourier series
Procedia PDF Downloads 3953584 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 4083583 Carbon Footprint of Educational Establishments: The Case of the University of Alicante
Authors: Maria R. Mula-Molina, Juan A. Ferriz-Papi
Abstract:
Environmental concerns are increasingly obtaining higher priority in sustainability agenda of educational establishments. This is important not only for its environmental performance in its own right as an organization, but also to present a model for its students. On the other hand, universities play an important role on research and innovative solutions for measuring, analyzing and reducing environmental impacts for different activities. The assessment and decision-making process during the activity of educational establishments is linked to the application of robust indicators. In this way, the carbon footprint is a developing indicator for sustainability that helps understand the direct impact on climate change. But it is not easy to implement. There is a large amount of considering factors involved that increases its complexity, such as different uses at the same time (research, lecturing, administration), different users (students, staff) or different levels of activity (lecturing, exam or holidays periods). The aim of this research is to develop a simplified methodology for calculating and comparing carbon emissions per user at university campus considering two main aspects for carbon accountings: Building operations and transport. Different methodologies applied in other Spanish university campuses are analyzed and compared to obtain a final proposal to be developed in this type of establishments. First, building operation calculation considers the different uses and energy sources consumed. Second, for transport calculation, the different users and working hours are calculated separately, as well as their origin and traveling preferences. For every transport, a different conversion factor is used depending on carbon emissions produced. The final result is obtained as an average of carbon emissions produced per user. A case study is applied to the University of Alicante campus in San Vicente del Raspeig (Spain), where the carbon footprint is calculated. While the building operation consumptions are known per building and month, it does not happen with transport. Only one survey about the habit of transport for users was developed in 2009/2010, so no evolution of results can be shown in this case. Besides, building operations are not split per use, as building services are not monitored separately. These results are analyzed in depth considering all factors and limitations. Besides, they are compared to other estimations in other campuses. Finally, the application of the presented methodology is also studied. The recommendations concluded in this study try to enhance carbon emission monitoring and control. A Carbon Action Plan is then a primary solution to be developed. On the other hand, the application developed in the University of Alicante campus cannot only further enhance the methodology itself, but also render the adoption by other educational establishments more readily possible and yet with a considerable degree of flexibility to cater for their specific requirements.Keywords: building operations, built environment, carbon footprint, climate change, transport
Procedia PDF Downloads 2943582 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 1453581 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast
Authors: Sher Muhammad, Mirza Muhammad Waqar
Abstract:
It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.79 to 24.85 degree in latitude and 66.91 to 66.97 degree in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image preprocessing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end-member extraction. Well-distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (white mangroves) and Avicennia Germinans (black mangroves) have been observed throughout the study area.Keywords: mangrove, hyperspectral, hyperion, SAM, SFF, SID
Procedia PDF Downloads 3613580 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques
Authors: Abegunde Linda, Adedeji Oluwatayo, Tope-Ajayi Opeyemi
Abstract:
Maize constitutes a major agrarian production for use by the vast population but despite its economic importance, it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physic-chemical variations in soil properties over space using a Geographic Information System (GIS) framework. Physic-chemical parameters of importance selected include slope, landuse, and physical and chemical properties of the soil. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.Keywords: AHP, GIS, MCE, suitability, Zea mays
Procedia PDF Downloads 3953579 Grammatical and Lexical Cohesion in the Japan’s Prime Minister Shinzo Abe’s Speech Text ‘Nihon wa Modottekimashita’
Authors: Nadya Inda Syartanti
Abstract:
This research aims to identify, classify, and analyze descriptively the aspects of grammatical and lexical cohesion in the speech text of Japan’s Prime Minister Shinzo Abe entitled Nihon wa Modotte kimashita delivered in Washington DC, the United States on February 23, 2013, as a research data source. The method used is qualitative research, which uses descriptions through words that are applied by analyzing aspects of grammatical and lexical cohesion proposed by Halliday and Hasan (1976). The aspects of grammatical cohesion consist of references (personal, demonstrative, interrogative pronouns), substitution, ellipsis, and conjunction. In contrast, lexical cohesion consists of reiteration (repetition, synonym, antonym, hyponym, meronym) and collocation. Data classification is based on the 6 aspects of the cohesion. Through some aspects of cohesion, this research tries to find out the frequency of using grammatical and lexical cohesion in Shinzo Abe's speech text entitled Nihon wa Modotte kimashita. The results of this research are expected to help overcome the difficulty of understanding speech texts in Japanese. Therefore, this research can be a reference for learners, researchers, and anyone who is interested in the field of discourse analysis.Keywords: cohesion, grammatical cohesion, lexical cohesion, speech text, Shinzo Abe
Procedia PDF Downloads 1603578 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 1883577 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.Keywords: Iot, activity recognition, automatic classification, unconstrained environment
Procedia PDF Downloads 2223576 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater
Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz
Abstract:
Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.Keywords: adsorption, biochar, modified cellulose, corn stalks
Procedia PDF Downloads 1803575 Determining the Threshold for Protective Effects of Aerobic Exercise on Aortic Structure in a Mouse Model of Marfan Syndrome Associated Aortic Aneurysm
Authors: Christine P. Gibson, Ramona Alex, Michael Farney, Johana Vallejo-Elias, Mitra Esfandiarei
Abstract:
Aortic aneurysm is the leading cause of death in Marfan syndrome (MFS), a connective tissue disorder caused by mutations in fibrillin-1 gene (FBN1). MFS aneurysm is characterized by weakening of the aortic wall due to elastin fibers fragmentation and disorganization. The above-average height and distinct physical features make young adults with MFS desirable candidates for competitive sports; but little is known about the exercise limit at which they will be at risk for aortic rupture. On the other hand, aerobic cardiovascular exercise has been shown to have protective effects on the heart and aorta. We have previously reported that mild aerobic exercise can delay the formation of aortic aneurysm in a mouse model of MFS. In this study, we aimed to investigate the effects of various levels of exercise intensity on the progression of aortic aneurysm in the mouse model. Starting at 4 weeks of age, we subjected control and MFS mice to different levels of exercise intensity (8m/min, 10m/min, 15m/min, and 20m/min, corresponding to 55%, 65%, 75%, and 85% of VO2 max, respectively) on a treadmill for 30 minutes per day, five days a week for the duration of the study. At 24 weeks of age, aortic tissue were isolated and subjected to structural and functional studies using histology and wire myography in order to evaluate the effects of different exercise routines on elastin fragmentation and organization and aortic wall elasticity/stiffness. Our data shows that exercise training at the intensity levels between 55%-75% significantly reduces elastin fragmentation and disorganization, with less recovery observed in 85% MFS group. The reversibility of elasticity was also significantly restored in MFS mice subjected to 55%-75% intensity; however, the recovery was less pronounced in MFS mice subjected to 85% intensity. Furthermore, our data shows that smooth muscle cells (SMCs) contractilion in response to vasoconstrictor agent phenylephrine (100nM) is significantly reduced in MFS aorta (54.84 ± 1.63 mN/mm2) as compared to control (95.85 ± 3.04 mN/mm2). At 55% of intensity, exercise did not rescue SMCs contraction (63.45 ± 1.70 mN/mm2), while at higher intensity levels, SMCs contraction in response to phenylephrine was restored to levels similar to control aorta [65% (81.88 ± 4.57 mN/mm2), 75% (86.22 ± 3.84 mN/mm2), and 85% (83.91 ± 5.42 mN/mm2)]. This study provides the first time evidence that high intensity exercise (e.g. 85%) may not provide the most beneficial effects on aortic function (vasoconstriction) and structure (elastin fragmentation, aortic wall elasticity) during the progression of aortic aneurysm in MFS mice. On the other hand, based on our observations, medium intensity exercise (e.g. 65%) seems to provide the utmost protective effects on aortic structure and function in MFS mice. These findings provide new insights into the potential capacity, in which MFS patients could participate in various aerobic exercise routines, especially in young adults affected by cardiovascular complications particularly aortic aneurysm. This work was funded by Midwestern University Research Fund.Keywords: aerobic exercise, aortic aneurysm, aortic wall elasticity, elastin fragmentation, Marfan syndrome
Procedia PDF Downloads 3803574 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping
Procedia PDF Downloads 4063573 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine
Procedia PDF Downloads 3063572 The Behavior of Steel, Copper, and Aluminum vis-à-vis the Corrosion in an Aqueous Medium
Authors: Harche Rima, Laoufi Nadia Aicha
Abstract:
The present work consists of studying the behavior of steel, copper, and aluminum vis-à-vis the corrosion in an aqueous medium in the presence of the antifreeze COOLELF MDX -26°C. For this, we have studied the influence of the temperature and the different concentrations of the antifreeze on the corrosion of these three metals, this will last for two months by the polarization method and weight loss. In the end, we investigated the samples with the optic microscope to know their surface state. The aim of this work is the protection of contraptions. The use of antifreeze in ordinary water has a high efficiency against steel corrosion, as demonstrated by electrochemical tests (potential monitoring as a function of time and tracing polarization curves). The inhibition rate is greater than 99% for different volume concentrations, ranging from 40% to 60%. The speeds are in turn low in the order of 10-4 mm/year. On the other hand, the addition of antifreeze to ordinary water increases the corrosion potential of steel by more than 400 mV.Keywords: corrosion and prevention, steel, copper, aluminum, corrosion inhibitor, anti-cooling
Procedia PDF Downloads 483571 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure
Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer
Abstract:
The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition
Procedia PDF Downloads 1073570 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 1933569 Effects of Eggs Storage Period and Layer Hen Age on Eggs Hatchability and Weight of Broilers of Breed Ross
Authors: Alipanah Masoud, Sheihkei Iman
Abstract:
One day old chicken quality has great deal of contributions in increasing daily weight gain as well as economical productivity of broilers production. On the other hand, eggs are kept in different times in layer hens flocks and subsequently are transported to incubation units. In order to evaluate effects of two factors layer hen age and storage period of eggs on one day old broilers weight gain during feeding, eggs for layer hen gathered on 32 weeks old (young hen) and 74 weeks old (older ones) were used. Storage period for samples was set as 1 and 9 days. Data were analysed in completely randomized design in four replicates by software SAS. Results indicated that one day old broiler chickens from young had less weight gain, although they exhibited higher weight gain during next weeks. At the same time, there was no difference between chickens from eggs stored for nine days and those from stored for one day.Keywords: egg, chicken, hatchability, layer
Procedia PDF Downloads 4183568 Water Detection in Aerial Images Using Fuzzy Sets
Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho
Abstract:
This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.Keywords: aerial images, fuzzy clustering, image processing, pattern recognition
Procedia PDF Downloads 4803567 Developing Sustainable Tourism Practices in Communities Adjacent to Mines: An Exploratory Study in South Africa
Authors: Felicite Ann Fairer-Wessels
Abstract:
There has always been a disparity between mining and tourism mainly due to the socio-economic and environmental impacts of mines on both the adjacent resident communities and the areas taken up by the mining operation. Although heritage mining tourism has been actively and successfully pursued and developed in the UK, largely Wales, and Scandinavian countries, the debate whether active mining and tourism can have a mutually beneficial relationship remains imminent. This pilot study explores the relationship between the ‘to be developed’ future Nokeng Mine and its adjacent community, the rural community of Moloto, will be investigated in terms of whether sustainable tourism and livelihood activities can potentially be developed with the support of the mine. Concepts such as social entrepreneur, corporate social responsibility, sustainable development and triple bottom line are discussed. Within the South African context as a mineral rich developing country, the government has a statutory obligation to empower disenfranchised communities through social and labour plans and policies. All South African mines must preside over a Social and Labour Plan according to the Mineral and Petroleum Resources Development Act, No 28 of 2002. The ‘social’ component refers to the ‘social upliftment’ of communities within or adjacent to any mine; whereas the ‘labour’ component refers to the mine workers sourced from the specific community. A qualitative methodology is followed using the case study as research instrument for the Nokeng Mine and Moloto community with interviews and focus group discussions. The target population comprised of the Moloto Tribal Council members (8 in-depth interviews), the Moloto community members (17: focus groups); and the Nokeng Mine representatives (4 in-depth interviews). In this pilot study two disparate ‘worlds’ are potentially linked: on the one hand, the mine as social entrepreneur that is searching for feasible and sustainable ideas; and on the other hand, the community adjacent to the mine, with potentially sustainable tourism entrepreneurs that can tap into the resources of the mine should their ideas be feasible to build their businesses. Being an exploratory study the findings are limited but indicate that the possible success of tourism and sustainable livelihood activities lies in the fact that both the Mine and Community are keen to work together – the mine in terms of obtaining labour and profit; and the community in terms of improved and sustainable social and economic conditions; with both parties realizing the importance to mitigate negative environmental impacts. In conclusion, a relationship of trust is imperative between a mine and a community before a long term liaison is possible. However whether tourism is a viable solution for the community to engage in is debatable. The community could initially rather pursue the sustainable livelihoods approach and focus on life-supporting activities such as building, gardening, etc. that once established could feed into possible sustainable tourism activities.Keywords: community development, mining tourism, sustainability, South Africa
Procedia PDF Downloads 3013566 Assessment of Noise Pollution in the City of Biskra, Algeria
Authors: Tallal Abdel Karim Bouzir, Nourdinne Zemmouri, Djihed Berkouk
Abstract:
In this research, a quantitative assessment of the urban sound environment of the city of Biskra, Algeria, was conducted. To determine the quality of the soundscape based on in-situ measurement, using a Landtek SL5868P sound level meter in 47 points, which have been identified to represent the whole city. The result shows that the urban noise level varies from 55.3 dB to 75.8 dB during the weekdays and from 51.7 dB to 74.3 dB during the weekend. On the other hand, we can also note that 70.20% of the results of the weekday measurements and 55.30% of the results of the weekend measurements have levels of sound intensity that exceed the levels allowed by Algerian law and the recommendations of the World Health Organization. These very high urban noise levels affect the quality of life, the acoustic comfort and may even pose multiple risks to people's health.Keywords: road traffic, noise pollution, sound intensity, public health
Procedia PDF Downloads 2653565 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 2013564 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper
Authors: Ahmed S. Afifi, Ahmed Magdy
Abstract:
Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster
Procedia PDF Downloads 1023563 Classifying Facial Expressions Based on a Motion Local Appearance Approach
Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez
Abstract:
This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach
Procedia PDF Downloads 4103562 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review
Authors: Meghana Shankara, Priyadarshini Natarajan
Abstract:
Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracyKeywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes
Procedia PDF Downloads 2693561 Integration of Corporate Social Responsibility Criteria in Employee Variable Remuneration Plans
Authors: Jian Wu
Abstract:
Since a few years, some French companies have integrated CRS (corporate social responsibility) criteria in their variable remuneration plans to ‘restore a good working atmosphere’ and ‘preserve the natural environment’. These CSR criteria are based on concerns on environment protection, social aspects, and corporate governance. In June 2012, a report on this practice has been made jointly by ORSE (which means Observatory on CSR in French) and PricewaterhouseCoopers. Facing this initiative from the business world, we need to examine whether it has a real economic utility. We adopt a theoretical approach for our study. First, we examine the debate between the ‘orthodox’ point of view in economics and the CSR school of thought. The classical economic model asserts that in a capitalist economy, exists a certain ‘invisible hand’ which helps to resolve all problems. When companies seek to maximize their profits, they are also fulfilling, de facto, their duties towards society. As a result, the only social responsibility that firms should have is profit-searching while respecting the minimum legal requirement. However, the CSR school considers that, as long as the economy system is not perfect, there is no ‘invisible hand’ which can arrange all in a good order. This means that we cannot count on any ‘divine force’ which makes corporations responsible regarding to society. Something more needs to be done in addition to firms’ economic and legal obligations. Then, we reply on some financial theories and empirical evident to examine the sound foundation of CSR. Three theories developed in corporate governance can be used. Stakeholder theory tells us that corporations owe a duty to all of their stakeholders including stockholders, employees, clients, suppliers, government, environment, and society. Social contract theory tells us that there are some tacit ‘social contracts’ between a company and society itself. A firm has to respect these contracts if it does not want to be punished in the form of fine, resource constraints, or bad reputation. Legitime theory tells us that corporations have to ‘legitimize’ their actions toward society if they want to continue to operate in good conditions. As regards empirical results, we present a literature review on the relationship between the CSR performance and the financial performance of a firm. We note that, due to difficulties in defining these performances, this relationship remains still ambiguous despite numerous research works realized in the field. Finally, we are curious to know whether the integration of CSR criteria in variable remuneration plans – which is practiced so far in big companies – should be extended to other ones. After investigation, we note that two groups of firms have the greatest need. The first one involves industrial sectors whose activities have a direct impact on the environment, such as petroleum and transport companies. The second one involves companies which are under pressures in terms of return to deal with international competition.Keywords: corporate social responsibility, corporate governance, variable remuneration, stakeholder theory
Procedia PDF Downloads 1853560 Clean Technology: Hype or Need to Have
Authors: Dirk V. H. K. Franco
Abstract:
For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.Keywords: clean technologies, catastrophic, climate, possible solutions
Procedia PDF Downloads 4983559 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 1433558 Historical Landscape Affects Present Tree Density in Paddy Field
Authors: Ha T. Pham, Shuichi Miyagawa
Abstract:
Ongoing landscape transformation is one of the major causes behind disappearance of traditional landscapes, and lead to species and resource loss. Tree in paddy fields in the northeast of Thailand is one of those traditional landscapes. Using three different historical time layers, we acknowledged the severe deforestation and rapid urbanization happened in the region. Despite the general thinking of decline in tree density as consequences, the heterogeneous trend of changes in total tree density in three studied landscapes denied the hypothesis that number of trees in paddy field depend on the length of land use practice. On the other hand, due to selection of planting new trees on levees, existence of trees in paddy field are now rely on their values for human use. Besides, changes in land use and landscape structure had a significant impact on decision of which tree density level is considered as suitable for the landscape.Keywords: aerial photographs, land use change, traditional landscape, tree in paddy fields
Procedia PDF Downloads 4163557 The Cultural Shift in Pre-owned Fashion as Sustainable Consumerism in Vietnam
Authors: Lam Hong Lan
Abstract:
The textile industry is said to be the second-largest polluter, responsible for 92 million tonnes of waste annually. There is an urgent need to practice the circular economy to increase the use and reuse around the world. By its nature, the pre-owned fashion business is considered part of the circular economy as it helps to eliminate waste and circulate products. Second-hand clothes and accessories used to be associated with a ‘cheap image’ that carried ‘old energy’ in Vietnam. This perception has been shifted, especially amongst the younger generation. Vietnamese consumer is spending more on products and services that increase self-esteem. The same consumer is moving away from a collectivist social identity towards a ‘me, not we’ outlook as they look for a way to express their individual identity. And pre-owned fashion is one of their solutions as it values money, can create a unique personal style for the wearer and links with sustainability. The design of this study is based on the second-hand shopping motivation theory. A semi-structured online survey with 100 consumers from one pre-owned clothing community and one pre-owned e-commerce site in Vietnam. The findings show that in contrast with Vietnamese older consumers (55+yo) who, in the previous study, generally associated pre-owned fashion with ‘low-cost’, ‘cheap image’ that carried ‘old energy’, young customers (20-30 yo) were actively promoted their pre-owned fashion items to the public via outlet’s social platforms and their social media. This cultural shift comes from the impact of global and local discourse around sustainable fashion and the growth of digital platforms in the pre-owned fashion business in the last five years, which has generally supported wider interest in pre-owned fashion in Vietnam. It can be summarised in three areas: (1) global and local celebrity influencers. A number of celebrities have been photographed wearing vintage items in music videos, photoshoots or at red carpet events. (2) E-commerce and intermediaries. International e-commerce sites – e.g., Vinted, TheRealReal – and/or local apps – e.g., Re.Loved – can influence attitudes and behaviors towards pre-owned consumption. (3) Eco-awareness. The increased online coverage of climate change and environmental pollution has encouraged customers to adopt a more eco-friendly approach to their wardrobes. While sustainable biomaterials and designs are still navigating their way into sustainability, sustainable consumerism via pre-owned fashion seems to be an immediate solution to lengthen the clothes lifecycle. This study has found that young consumers are primarily seeking value for money and/or a unique personal style from pre-owned/vintage fashion while using these purchases to promote their own “eco-awareness” via their social media networks. This is a good indication for fashion designers to keep in mind in their design process and for fashion enterprises in their business model’s choice to not overproduce fashion items.Keywords: cultural shift, pre-owned fashion, sustainable consumption, sustainable fashion.
Procedia PDF Downloads 833556 Subfamilial Relationships within Solanaceae as Inferred from atpB-rbcL Intergenic Spacer
Authors: Syeda Qamarunnisa, Ishrat Jamil, Abid Azhar, Zabta K. Shinwari, Syed Irtifaq Ali
Abstract:
A phylogenetic analysis of family Solanaceae was conducted using sequence data from the chloroplast intergenic atpB-rbcL spacer. Sequence data was generated from 17 species representing 09 out of 14 genera of Solanaceae from Pakistan. Cladogram was constructed using maximum parsimony method and results indicate that Solanaceae is mainly divided into two subfamilies; Solanoideae and Cestroideae. Four major clades within Solanoideae represent tribes; Physaleae, Capsiceae, Datureae and Solaneae are supported by high bootstrap value and the relationships among them are not corroborating with the previous studies. The findings established that subfamily Cestroideae comprised of three genera; Cestrum, Lycium, and Nicotiana with high bootstrap support. Position of Nicotiana inferred with atpB-rbcL sequence is congruent with traditional classification, which placed the taxa in Cestroideae. In the current study Lycium unexpectedly nested with Nicotiana with 100% bootstrap support and identified as a member of tribe Nicotianeae. Expanded sampling of other genera from Pakistan could be valuable towards improving our understanding of intrafamilial relationships within Solanaceae.Keywords: systematics, solanaceae, phylogenetics, intergenic spacer, tribes
Procedia PDF Downloads 466