Search results for: deep networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4583

Search results for: deep networks

2333 Impact of Neuron with Two Dendrites in Heart Behavior

Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue

Abstract:

Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.

Keywords: neural networks, neuron, dendrites, heart behavior, ECG

Procedia PDF Downloads 90
2332 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment

Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref

Abstract:

In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.

Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment

Procedia PDF Downloads 188
2331 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 100
2330 Football Chants in Israel: Persistent Values and Changing Trends

Authors: Ilan Tamir

Abstract:

Fans’ chants in sports stadium have, over the years, become an integral part of the spectator experience. While chants add color, atmosphere, and a demonstration of fans’ support for their team, chants also play a significant role in defining fans’ perceptions of their team’s identity and its differentiation from other teams. An analysis of football chants may therefore shed light on fans’ deep-seated worldviews of their own role, their team, the sport in general, and even life itself. This study, based on an analysis of Israeli football chants over years, identifies key changing and stable perceptions of football fans. Overall 94 chants collected, over a period of five decades. After a pilot study, the chants organized in two groups (one covering 1970-1999 and the other 2000-2016). The chants analyzed through qualitative content analysis in order to understand fans values as a reflection of the society. Findings point to several values that have remained stable over years, including fans’ attitudes toward their team and its rivals, and their attitude toward God. On the other hand, recently emerging phenomena such as radicalization of hatred toward the commercialization of sport reflect social and cultural changes, both in and outside the world of sport.

Keywords: sport, fans, chants, soccer

Procedia PDF Downloads 169
2329 Fungal Cellulase/Xylanase Complex and Their Industrial Applications

Authors: L. Kutateldze, T. Urushadze, R. Khvedelidze, N. Zakariashvili, I. Khokhashvili, T. Sadunishvili

Abstract:

Microbial cellulase/xylanase have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Representatives of the genera Aspergillus, Penicillium and Trichoderma are outstanding by relatively high activities of these enzymes. Among the producers were revealed thermophilic strains, representatives of the genus Aspergillus-Aspergillus terreus, Aspergillus versicolor, Aspergillus wentii, also strains of Sporotrichum pulverulentum and Chaetomium thermophile. As a result of optimization of cultivation media and conditions, activities of enzymes produced by the strains have been increased by 4 -189 %. Two strains, active producers of cellulase/xylanase – Penicillium canescence E2 (mesophile) and Aspergillus versicolor Z17 (thermophile) were chosen for further studies. Cellulase/xylanase enzyme preparations from two different genera of microscopic fungi Penicillium canescence E2 and Aspergillus versicolor Z 17 were obtained with activities 220 U/g /1200 U/g and 125 U/g /940 U/g, correspondingly. Main technical characteristics were as follows: the highest enzyme activities were obtained for mesophilic strain Penicillium canescence E2 at 45-500C, while almost the same enzyme activities were fixed for the thermophilic strain Aspergillus versicolor Z 17 at temperature 60-65°C, exceeding the temperature optimum of the mesophile by 150C. Optimum pH of action of the studied cellulase/xylanases from mesophileic and thermophilic strains were similar and equaled to 4.5-5.0 It has been shown that cellulase/xylanase technical preparations from selected strains of Penicillium canescence E2 and Aspergillus versicolor Z17 hydrolyzed cellulose of untreated wheat straw to reducible sugars by 46-52%, and to glucose by 22-27%. However the thermophilic enzyme preparations from the thermophilic A.versicolor strains conducted the process at 600C higher by 100C as compared to mesophlic analogue. Rate of hydrolyses of the pretreated substrate by the same enzyme preparations to reducible sugars and glucose conducted at optimum for their action 60 and 500C was 52-61% and 29-33%, correspondingly. Thus, maximum yield of glucose and reducible sugars form untreated and pretreated wheat straw was achieved at higher temperature (600C) by enzyme preparations from thermophilic strain, which gives advantage for their industrial application.

Keywords: cellulase/xylanase, cellulose hydrolysis, microscopic fungi, thermophilic strain

Procedia PDF Downloads 293
2328 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 77
2327 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 114
2326 Participatory Culture and Value Perception Amongst the Korean and Chinese Drama International Fandom

Authors: Patricia P. M. C. Lourenco, Javier Bringué Sala, Anaisa D. A. de Sena

Abstract:

Almost everyone in Dramaland knows the names of big Korean stars that grace their computer screens on a roll through social media and video streaming platforms that enable awareness of Korean dramas and lifestyle at a click. A surface culture instilled with notions of belonging has redefined the meaning of friendship and challenged deep inner values. Not everyone, however, knows Chinese Dramas or their stars, which is a consequence of Dramaland's focus on Korean dramas and promoting the Korean experience. Despite a parity in terms of production quality, star power, scripts and compelling visual settings, Chinese Dramas have been playing catch up to their famous counterparts. While they might have a strong competitive soft power for international drama fans, the soft power of Korean dramas is imbued with substantial societal values that they want to share with others. Those values are portrayed in an artistic way that connects with audiences who experience loneliness in the non-virtual world contrary to the way Chinese Dramas are perceived.

Keywords: Chinese dramas, fandom, Korean dramas, participatory culture, value perception, soft power, surface culture

Procedia PDF Downloads 172
2325 Partial M-Sequence Code Families Applied in Spectral Amplitude Coding Fiber-Optic Code-Division Multiple-Access Networks

Authors: Shin-Pin Tseng

Abstract:

Nowadays, numerous spectral amplitude coding (SAC) fiber-optic code-division-multiple-access (FO-CDMA) techniques were appealing due to their capable of providing moderate security and relieving the effects of multiuser interference (MUI). Nonetheless, the performance of the previous network is degraded due to fixed in-phase cross-correlation (IPCC) value. Based on the above problems, a new SAC FO-CDMA network using partial M-sequence (PMS) code is presented in this study. Because the proposed PMS code is originated from M-sequence code, the system using the PMS code could effectively suppress the effects of MUI. In addition, two-code keying (TCK) scheme can applied in the proposed SAC FO-CDMA network and enhance the whole network performance. According to the consideration of system flexibility, simple optical encoders/decoders (codecs) using fiber Bragg gratings (FBGs) were also developed. First, we constructed a diagram of the SAC FO-CDMA network, including (N/2-1) optical transmitters, (N/2-1) optical receivers, and one N×N star coupler for broadcasting transmitted optical signals to arrive at the input port of each optical receiver. Note that the parameter N for the PMS code was the code length. In addition, the proposed SAC network was using superluminescent diodes (SLDs) as light sources, which then can save a lot of system cost compared with the other FO-CDMA methods. For the design of each optical transmitter, it is composed of an SLD, one optical switch, and two optical encoders according to assigned PMS codewords. On the other hand, each optical receivers includes a 1 × 2 splitter, two optical decoders, and one balanced photodiode for mitigating the effect of MUI. In order to simplify the next analysis, the some assumptions were used. First, the unipolarized SLD has flat power spectral density (PSD). Second, the received optical power at the input port of each optical receiver is the same. Third, all photodiodes in the proposed network have the same electrical properties. Fourth, transmitting '1' and '0' has an equal probability. Subsequently, by taking the factors of phase‐induced intensity noise (PIIN) and thermal noise, the corresponding performance was displayed and compared with the performance of the previous SAC FO-CDMA networks. From the numerical result, it shows that the proposed network improved about 25% performance than that using other codes at BER=10-9. This is because the effect of PIIN was effectively mitigated and the received power was enhanced by two times. As a result, the SAC FO-CDMA network using PMS codes has an opportunity to apply in applications of the next-generation optical network.

Keywords: spectral amplitude coding, SAC, fiber-optic code-division multiple-access, FO-CDMA, partial M-sequence, PMS code, fiber Bragg grating, FBG

Procedia PDF Downloads 390
2324 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks

Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba

Abstract:

The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.

Keywords: authentication, long term evolution, security, vehicle-to-everything

Procedia PDF Downloads 169
2323 Strengthening of Reinforced Concrete Beams Using Steel Plates

Authors: Ghusen al-Kafri, Mohammed Ali Abdallah Elsageer, Ahmed Mohamed Hadya Alsdaai, Abdeimanam Salhien Salih Khalifa

Abstract:

In this paper, external reinforcement to enhance a reinforced concrete structure performance has been done using externally bonded steel plate. This technique has been reported effective in enhancing the strength of reinforced concrete beam, a study to determine the effectiveness of steel plate as an external reinforcement was carried out. A total of two groups of beams and one group content five beams, each 750 mm long, 150 mm wide, and 150 mm deep were cast, strengthened and tested till failure under two point loads. One beam was act as a control beam without strengthening and other four beams were strengthened with steel plate at a different arrangement. Other group beams were strengthened with steel plate in shear zone and also strengthened at bottom as first group. The behaviours of the strengthened beams were studied through their load-deflection characteristic upon bending, cracking and mode of failure. The results confirmed that all steel plate arrangements enhanced the strength of the reinforced concrete beam, the positioning of the steel plate affect the moment carrying capacity of the beam.

Keywords: beams, bending, beflection, steel plates

Procedia PDF Downloads 420
2322 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix

Procedia PDF Downloads 147
2321 A Topological Approach for Motion Track Discrimination

Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson

Abstract:

Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.

Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis

Procedia PDF Downloads 117
2320 Helping the Helper: Impact of Teaching Assistantship Program among Psychology Alumni

Authors: Clarissa Delariarte

Abstract:

With the aim of helping the poorest of the poor achieve quality education, Psychology students supported and served as teacher assistants to its Early Childhood Education Center in two barangays since the program began in 1999. Making use of qualitative approach, the impact of the program to 29 alumni who served as teacher assistants between 2000-2014 was assessed. Results show that the impact to the alumni is in cognitive as well as social-emotional in terms of feelings of deep satisfaction and sense of volunteerism which is being carried out in their respective workspaces. They also expressed positive feelings of inspiration, gratefulness and happiness. A wider perspective in life, being confident, creative and resourceful was also articulated as concrete impacts. It is concluded that the program had an impact on helping the helper and is a concrete manifestation of the academe being successful in its commitment of forming individuals into becoming integrated and compassionate in the service of the Church and Society. It implies that more opportunities of helping others be provided to students since, in the final analysis, is actually an opportunity of helping the helper be of better service to others.

Keywords: applied psychology, life skill, qualitative research, quality education

Procedia PDF Downloads 188
2319 A Survey on Linear Time Invariant Multivariable Positive Real Systems

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.

Keywords: real rational matrix transfer functions, positive realness property, strictly positive realness property, Hermitian form asymptotic property, pole-zero properties

Procedia PDF Downloads 280
2318 A Succinct Method for Allocation of Reactive Power Loss in Deregulated Scenario

Authors: J. S. Savier

Abstract:

Real power is the component power which is converted into useful energy whereas reactive power is the component of power which cannot be converted to useful energy but it is required for the magnetization of various electrical machineries. If the reactive power is compensated at the consumer end, the need for reactive power flow from generators to the load can be avoided and hence the overall power loss can be reduced. In this scenario, this paper presents a succinct method called JSS method for allocation of reactive power losses to consumers connected to radial distribution networks in a deregulated environment. The proposed method has the advantage that no assumptions are made while deriving the reactive power loss allocation method.

Keywords: deregulation, reactive power loss allocation, radial distribution systems, succinct method

Procedia PDF Downloads 380
2317 Financial Investment of a Wine Cavein Greece

Authors: Stamataki Erofili Nellie, Benardos Andreas

Abstract:

Winemaking and aging in Greece has been performed so far in special facilities, designed either as above ground or shallow underground buildings. The latter are well-known in Santorini as “canaves,” dating back to the 1700s. Canaves were mainly used for wine storage and aging, although occasionally, they included a winepress to complete there the whole wine production. On the other hand, wine caves are subterranean caves of the same use as canaves in the wine manufacturing industry, but they are excavated at a much greater depth of more than 53 meters or 175 feet. Whereas canaves or a typical wine cellar is around 10 feet deep, with is equivalent to almost 3 meters. This paper discusses the advantages and the disadvantages of creating a wine cave for the vinification of a winery in Greece and the financial investment or risk that has to be taken. The data presented and analysed are given from wineries in Greece and especially from those located in Santorini island. The estimation of the cost for the excavation of the model selected as a wine cave will be compared with the financial budget of the existing premises and facilities above ground in Greek wineries. In order to show whether it is viable for a greek winery to invest in a wine cave.

Keywords: underground space use, subterranean winery, wine cave, underground winery, greece

Procedia PDF Downloads 182
2316 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning

Authors: Arun Sanjel, Greg Speegle

Abstract:

Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.

Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC

Procedia PDF Downloads 115
2315 Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry

Authors: Rudi Kurniawan Arief

Abstract:

Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes.

Keywords: press die, metal stamping, QDC system, single minute exchange die, manufacturing cost saving, SMED

Procedia PDF Downloads 173
2314 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection

Authors: Mahshid Arabi

Abstract:

With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.

Keywords: data protection, digital technologies, information security, modern management

Procedia PDF Downloads 41
2313 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis

Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su

Abstract:

The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.

Keywords: dataset, GTTM, local boundary, neural network

Procedia PDF Downloads 152
2312 A Simple Colorimetric Assay for Paraquat Detection Using Negatively Charged Silver Nanopaticles

Authors: Weena Siangphro, Orawon Chailapakul, Kriangsak Songsrirote

Abstract:

A simple, rapid, sensitive, and economical method based on colorimetry for the determination of paraquat, a widely used herbicide, was developed. Citrate-coated silver nanoparticles (AgNPs) were synthesized as colorimetric probe. The mechanism of the assay is related to aggregation of negatively charged AgNPs induced by positively-charged paraquat resulting from coulombic attraction which causes the color change from deep greenish yellow to pale yellow upon the concentrations of paraquat. Silica gel was exploited as paraquat adsorbent for purification and pre-concentration prior to the direct determination with negatively charged AgNPs without elution step required. The validity of the proposed approach was evaluated by spiking standard paraquat in water and plant samples. Recoveries of paraquat in water samples were 93.6-95.4%, while those in plant samples were 86.6-89.5% by using the optimized extraction procedure. The absorbance of AgNPs at 400 nm was linearly related to the concentration of paraquat over the range of 0.05-50 mg/L with detection limits of 0.05 ppm for water samples, and 0.10 ppm for plant samples.

Keywords: colorimetric assay, paraquat, silica gel, silver nanoparticles

Procedia PDF Downloads 240
2311 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City

Authors: Khadija Raissi, Bechir Ben Gouissem

Abstract:

In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.

Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3

Procedia PDF Downloads 302
2310 Breeding Biology of Priacanthus hamrur (Forsskal) off Mangalore Coast, Karnataka, India

Authors: H. N. Anjanayappa, S. Benakappa, A. T. Ramachandra Naik, P. Nayana, D. P. Rajesh

Abstract:

Fishes of the family Priacanthidae, popularly called big eye or bulls eye. Priacanthus hamrur is an important deep-water inhabitant of great commercial value. High percentage of landings of Priancanthids used as raw material for surimi, sausage and other fishery by-products. Presently, it has great demand in Singapore Thailand, Taiwan, Hong Kong and other countries. For the maturation studies, samples were collected from commercial landing centre, Mangalore. Studies on reproductive biology showed that Priacanthus hamrur spawns twice in a year, the spawning season extending from March to May and October to November. Based on the percentage occurrence of mature fishes in various size group it was inferred that male attained maturity at smaller size than female. This study will enable us to understand the spawning periodicity, cyclic morphological changes in male, female gonads and also it helps to improve stock size by enforcing fishing ban in particular season by assessing spawning periodicity.

Keywords: breeding biology, Mangalore, morphological changes, Priacanthus hamrur

Procedia PDF Downloads 298
2309 Deep Learning-Based Channel Estimation for Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System

Authors: Getaneh Berie Tarekegn

Abstract:

Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.

Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles

Procedia PDF Downloads 121
2308 A Study on Numerical Modelling of Rigid Pavement: Temperature and Thickness Effect

Authors: Amin Chegenizadeh, Mahdi Keramatikerman, Hamid Nikraz

Abstract:

Pavement engineering plays a significant role to develop cost effective and efficient highway and road networks. In general, pavement regarding structure is categorized in two core group namely flexible and rigid pavements. There are various benefits in application of rigid pavement. For instance, they have a longer life and lower maintenance costs in compare with the flexible pavement. In rigid pavement designs, temperature and thickness are two effective parameters that could widely affect the total cost of the project. In this study, a numerical modeling using Kenpave-Kenslab was performed to investigate the effect of these two important parameters in the rigid pavement.   

Keywords: rigid pavement, Kenpave, Kenslab, thickness, temperature

Procedia PDF Downloads 377
2307 Improving Junior Doctor Induction Through the Use of Simple In-House Mobile Application

Authors: Dmitriy Chernov, Maria Karavassilis, Suhyoun Youn, Amna Izhar, Devasenan Devendra

Abstract:

Introduction and Background: A well-structured and comprehensive departmental induction improves patient safety and job satisfaction amongst doctors. The aims of our Project were as follows: 1. Assess the perceived preparedness of junior doctors starting their rotation in Acute Medicine at Watford General Hospital. 2. Develop a supplemental Induction Guide and Pocket reference in the form of an iOS mobile application. 3. To collect feedback after implementing the mobile application following a trial period of 8 weeks with a small cohort of junior doctors. Materials and Methods: A questionnaire was distributed to all new junior trainees starting in the department of Acute Medicine to assess their experience of current induction. A mobile Induction application was developed and trialled over a period of 8 weeks, distributed in addition to the existing didactic induction session. After the trial period, the same questionnaire was distributed to assess improvement in induction experience. Analytics data were collected with users’ consent to gauge user engagement and identify areas of improvement of the application. A feedback survey about the app was also distributed. Results: A total of 32 doctors used the application during the 8-week trial period. The application was accessed 7259 times in total, with the average user spending a cumulative of 37 minutes 22 seconds on the app. The most used section was Clinical Guidelines, accessed 1490 times. The App Feedback survey revealed positive reviews: 100% of participants (n=15/15) responded that the app improved their overall induction experience compared to other placements; 93% (n=14/15) responded that the app improved overall efficiency in completing daily ward jobs compared to previous rotations; and 93% (n=14/15) responded that the app improved patient safety overall. In the Pre-App and Post-App Induction Surveys, participants reported: a 48% improvement in awareness of practical aspects of the job; a 26% improvement of awareness on locating pathways and clinical guidelines; a 40% reduction of feelings of overwhelmingness. Conclusions and recommendations: This study demonstrates the importance of technology in Medical Education and Clinical Induction. The mobile application average engagement time equates to over 20 cumulative hours of on-the-job training delivered to each user, within an 8-week period. The most used and referred to section was clinical guidelines. This shows that there is high demand for an accessible pocket guide for this type of material. This simple mobile application resulted in a significant improvement in feedback about induction in our Department of Acute Medicine, and will likely impact workplace satisfaction. Limitations of the application include: post-app surveys had a small number of participants; the app is currently only available for iPhone users; some useful sections are nested deep within the app, lacks deep search functionality across all sections; lacks real time user feedback; and requires regular review and updates. Future steps for the app include: developing a web app, with an admin dashboard to simplify uploading and editing content; a comprehensive search functionality; and a user feedback and peer ratings system.

Keywords: mobile app, doctor induction, medical education, acute medicine

Procedia PDF Downloads 90
2306 Smart Structures for Cost Effective Cultural Heritage Preservation

Authors: Tamara Trček Pečak, Andrej Mohar, Denis Trček

Abstract:

This article investigates the latest technological means, which deploy smart structures that are based on (advanced) wireless sensors technologies and ubiquitous computing in general in order to support the above mentioned decision making. Based on two years of in-field research experiences it gives their analysis for these kinds of purposes and provides appropriate architectures and architectural solutions. Moreover, the directions for future research are stated, because these technologies are currently the most promising ones to enable cost-effective preservation of cultural heritage not only in uncontrolled places, but also in general.

Keywords: smart structures, wireless sensors, sensors networks, green computing, cultural heritage preservation, monitoring, cost effectiveness

Procedia PDF Downloads 450
2305 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 193
2304 Machine Learning Based Gender Identification of Authors of Entry Programs

Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee

Abstract:

Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.

Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning

Procedia PDF Downloads 325