Search results for: carbon nanotubes network
5526 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 845525 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire
Authors: Asal Pournaghshband
Abstract:
This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.Keywords: axial restraint, catenary action, cellular beam, fire, numerical modeling, stainless steel, transit temperature
Procedia PDF Downloads 835524 Multi-Modal Feature Fusion Network for Speaker Recognition Task
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.Keywords: feature fusion, memory network, multimodal input, speaker recognition
Procedia PDF Downloads 395523 Decoding Digital Culture: A Semiotic Analysis of Social Media Representation in ‘The Social Network'
Authors: Nathan Junell S. Arjona, Al-Noor O. Guinal, Marc Leugin V. Logronio, Jean Clark L. Naga
Abstract:
This study looks at how digital culture is shown in David Fincher's movie "The Social Network." It uses a mix of methods from different theories, including Saussurean semiotics, Castells' Network Society theory, and Jenkins' ideas on digital culture. The research focuses on three important scenes from the film, analyzing them in a clear three-step process. This reveals how movies tell stories about the rise of technology. By using a detailed approach, the study shows that digital platforms connect people but can also create gaps in their experiences. The main findings highlight how the film portrays social networks as important cultural systems. It uncovers the power struggles and identities shaped by technology. The research explains how movies help us understand changes in digital culture, challenging old ways of thinking about technology. This analysis connects film studies, digital sociology, and cultural theory, providing a solid way to understand how technology is represented in modern media. By exploring how technology is turned into cultural stories, the study offers important insights into the changing world of digital culture.Keywords: digital culture, media, social media representation, digital identity
Procedia PDF Downloads 35522 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning
Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis
Abstract:
Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.Keywords: space syntax, economic activities, multilevel model, Chinese city
Procedia PDF Downloads 1255521 Experimental Investigation of Damaged Reinforced Concrete Beams Repaired with Carbon Fibre Reinforced Polymer (CFRP) Strip under Impact Loading
Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams
Abstract:
Many buildings and bridges are damaged due to impact loading, explosions, terrorist attacks and wars. Most of the damaged structures members such as beams, columns and slabs are not totally failed and it can be repaired. Nowadays, carbon fibre reinforced polymer CFRP has been wildly used in strengthening and retrofitting the structures members. CFRP can rector the load carrying capacity of the damaged structures members to make them serviceable. An experimental investigation was conducted to investigate the impact behaviour of the damaged beams repaired with CFRP. The tested beams had different degrees of damage and near surface mounted technique NSM was used to install the CFRP. A heavy drop weight impact test machine was used to conduct the experimental work. The study investigated the impact strength, stiffness, cracks and deflection of the CFRP repaired beams. The results show that CFRP significantly increased the impact resistance of the damaged beams. CFRP increased the damaged beams stiffness and reduced the deflection. The results showed that the NSM technique is more effective in repairing beams and preventing the debonding of the CFRP.Keywords: damaged, concrete, impact, repaired
Procedia PDF Downloads 3465520 Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability
Authors: Yu Song, Yuefei Jin
Abstract:
Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found.Keywords: feeder bus, route optimization, link growth probability, the graph theory
Procedia PDF Downloads 785519 A Crystal Plasticity Approach to Model Dynamic Strain Aging
Authors: Burak Bal, Demircan Canadinc
Abstract:
Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity.Keywords: crystal plasticity, dynamic strain aging, Hadfield steel, negative strain rate sensitivity
Procedia PDF Downloads 2605518 Virtualization and Visualization Based Driver Configuration in Operating System
Authors: Pavan Shah
Abstract:
In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.Keywords: virtualization, visualization, network driver, operating system
Procedia PDF Downloads 1345517 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model
Authors: Kalyani Kulkarni, Bharat Chaudhari
Abstract:
This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the quality of service (QoS) of primary users (PU), a novel method is proposed for the resource allocation of secondary users (SU). In this paper, we propose the unique utility function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the cognitive radio network (CRN) and to minimize the interference scenario. The utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. The existence of Nash equilibrium is for the postulated game is established.Keywords: cognitive networks, game theory, Nash equilibrium, resource allocation
Procedia PDF Downloads 4815516 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g
Authors: Amandeep Singh Dhaliwal
Abstract:
Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.Keywords: DCF, IEEE, PCF, WLAN
Procedia PDF Downloads 4265515 Mechanical Behavior of a Pipe Subject to Buckling
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study, we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: finite element analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 2175514 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network
Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Ismail Saritas, Selma Tasdemir
Abstract:
Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modeled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the system developed, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.Keywords: artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.
Procedia PDF Downloads 3855513 Anomaly Detection Based on System Log Data
Authors: M. Kamel, A. Hoayek, M. Batton-Hubert
Abstract:
With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.Keywords: logs, anomaly detection, ML, scoring, NLP
Procedia PDF Downloads 965512 Buckling a Reservoir Composite Provided with Notches
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: Finite Element Analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 3595511 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 1615510 A Global Business Network Built on Hive: Two Use Cases: Buying and Selling of Products and Services and Carrying Out of Social Impact Projects
Authors: Gheyzer Villegas, Edgardo Cedeño, Veruska Mata, Edmundo Chauran
Abstract:
One of the most significant changes that occurred in global commerce was the emergence of cryptocurrencies and blockchain technology. There is still much debate about the adoption of the economic model based on crypto assets, and myriad international projects and initiatives are being carried out to try and explore the potential that this new field offers. The Hive blockchain is a prime example of this, featuring two use cases: of how trade based on its native currencies can give successful results in the exchange of goods and services and in the financing of social impact projects. Its decentralized management model and visionary administration of its development fund have become a key part of its success.Keywords: Hive, business, network, blockchain
Procedia PDF Downloads 695509 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN
Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu
Abstract:
Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network
Procedia PDF Downloads 1465508 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 2365507 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks
Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh
Abstract:
In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.Keywords: aggregation, estimation, queuing, wireless sensor network
Procedia PDF Downloads 1875506 An Application of Graph Theory to The Electrical Circuit Using Matrix Method
Authors: Samai'la Abdullahi
Abstract:
A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table
Procedia PDF Downloads 5645505 An Advanced Automated Brain Tumor Diagnostics Approach
Authors: Berkan Ural, Arif Eser, Sinan Apaydin
Abstract:
Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition
Procedia PDF Downloads 4205504 Nighttime Dehaze - Enhancement
Authors: Harshan Baskar, Anirudh S. Chakravarthy, Prateek Garg, Divyam Goel, Abhijith S. Raj, Kshitij Kumar, Lakshya, Ravichandra Parvatham, V. Sushant, Bijay Kumar Rout
Abstract:
In this paper, we introduce a new computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a new benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a new network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve SSIM of 0.8962 and PSNR of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task, particularly for autonomous navigation applications, and we hope that our work will open up new frontiers in research. Our dataset and code will be made publicly available upon acceptance of our paper.Keywords: dehazing, image enhancement, nighttime, computer vision
Procedia PDF Downloads 1595503 An Investigation on Hybrid Composite Drive Shaft for Automotive Industry
Authors: Gizem Arslan Özgen, Kutay Yücetürk, Metin Tanoğlu, Engin Aktaş
Abstract:
Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA).Keywords: composite propeller shaft, hybridization, epoxy matrix, static torque transmission capability, torsional buckling strength, fundamental natural bending frequency.
Procedia PDF Downloads 2715502 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network
Authors: Kamyar Fakhr, Roozbeh Salmani
Abstract:
Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.Keywords: biometric system, convolutional neural network, cyber-attack, secure
Procedia PDF Downloads 2205501 Internal and External Influences on the Firm Objective
Authors: A. Briseno, A, Zorrilla
Abstract:
Firms are increasingly responding to social and environmental claims from society. Practices oriented to attend issues such as poverty, work equality, or renewable energy, are being implemented more frequently by firms to address impacts on sustainability. However, questions remain on how the responses of firms vary across industries and regions between the social and the economic objectives. Using concepts from organizational theory and social network theory, this paper aims to create a theoretical framework that explains the internal and external influences that make a firm establish its objective. The framework explains why firms might have a different objective orientation in terms of its economic and social prioritization.Keywords: organizational identity, social network theory, firm objective, value maximization, social responsibility
Procedia PDF Downloads 3115500 Cyber-Social Networks in Preventing Terrorism: Topological Scope
Authors: Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov, Nikolay Kinash, Olga Berestneva, Svetlana Nikitina, Fabio Casati, Alessandro Visconti, Tommaso Saporito
Abstract:
It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world.Keywords: complex network platform, counterterrorism, information sharing topology, social bots
Procedia PDF Downloads 1655499 Accelerating Sustainable Urban Transition Through Green Technology Innovation and Clean Energy to Achieve Net Zero Emissions
Authors: Emma Serwaa Obobisa
Abstract:
Urbanization has become the focus for challenging goals relating to environmental performance, such as carbon neutrality. Green technological innovation and clean energy are considered the prominent factors in reducing emissions and achieving sustainable cities. Through the application of a fixed effect model, generalized method of moments, and quantile-on-quantile regression, this study explores the role of green technology innovation and clean energy in accelerating the sustainable urban transition towards net zero emissions in developing countries while controlling for nonrenewable energy consumption, and economic growth. The long-run results show that green technology innovation and renewable energy consumption reduce CO₂ emissions from urban residential buildings. In contrast, economic growth and nonrenewable energy consumption increase CO₂ emissions. This study proposes a consistent technique for encouraging green technological innovation and renewable energy projects in developing countries where the role of innovation in achieving carbon neutrality is still understudied.Keywords: green technology innovation, renewable energy, urbanization, net zero emissions
Procedia PDF Downloads 365498 Analytic Network Process in Location Selection and Its Application to a Real Life Problem
Authors: Eylem Koç, Hasan Arda Burhan
Abstract:
Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection
Procedia PDF Downloads 4715497 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)
Procedia PDF Downloads 221