Search results for: Composite drive shaft
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2888

Search results for: Composite drive shaft

638 Experimental Investigation and Analysis of Wear Parameters on Al/Sic/Gr: Metal Matrix Hybrid Composite by Taguchi Method

Authors: Rachit Marwaha, Rahul Dev Gupta, Vivek Jain, Krishan Kant Sharma

Abstract:

Metal matrix hybrid composites (MMHCs) are now gaining their usage in aerospace, automotive and other industries because of their inherent properties like high strength to weight ratio, hardness and wear resistance, good creep behaviour, light weight, design flexibility and low wear rate etc. Al alloy base matrix reinforced with silicon carbide (10%) and graphite (5%) particles was fabricated by stir casting process. The wear and frictional properties of metal matrix hybrid composites were studied by performing dry sliding wear test using pin on disc wear test apparatus. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L9 Orthogonal array was selected for analysis of data. Investigation to find the influence of applied load, sliding speed and track diameter on wear rate as well as coefficient of friction during wearing process was carried out using ANOVA. Objective of the model was chosen as smaller the better characteristics to analyse the dry sliding wear resistance. Results show that track diameter has highest influence followed by load and sliding speed.

Keywords: Taguchi method, orthogonal array, ANOVA, metal matrix hybrid composites

Procedia PDF Downloads 311
637 Climate Change and Health in Policies

Authors: Corinne Kowalski, Lea de Jong, Rainer Sauerborn, Niamh Herlihy, Anneliese Depoux, Jale Tosun

Abstract:

Climate change is considered one of the biggest threats to human health of the 21st century. The link between climate change and health has received relatively little attention in the media, in research and in policy-making. A long term and broad overview of how health is represented in the legislation on climate change is missing in the legislative literature. It is unknown if or how the argument for health is referred in legal clauses addressing climate change, in national and European legislation. Integrating scientific based evidence into policies regarding the impacts of climate change on health could be a key step to inciting the political and societal changes necessary to decelerate global warming. This may also drive the implementation of new strategies to mitigate the consequences on health systems. To provide an overview of this issue, we are analyzing the Global Climate Legislation Database provided by the Grantham Research Institute on Climate Change and the Environment. This institution was established in 2008 at the London School of Economics and Political Science. The database consists of (updated as of 1st January 2015) legislations on climate change in 99 countries around the world. This tool offers relevant information about the state of climate related policies. We will use the database to systematically analyze the 829 identified legislations to identify how health is represented as a relevant aspect of climate change legislation. We are conducting explorative research of national and supranational legislations and anticipate health to be addressed in various forms. The goal is to highlight how often, in what specific terms, which aspects of health or health risks of climate change are mentioned in various legislations. The position and recurrence of the mention of health is also of importance. Data will be extracted with complete quotation of the sentence which mentions health, which will allow for second qualitative stage to analyze which aspects of health are represented and in what context. This study is part of an interdisciplinary project called 4CHealth that confronts results of the research done on scientific, political and press literature to better understand how the knowledge on climate change and health circulates within those different fields and whether and how it is translated to real world change.

Keywords: climate change, explorative research, health, policies

Procedia PDF Downloads 340
636 Nutritional Composition of Crackers Produced from Blend of Sprouted Pigeon Pea (Cajanus cajan), Unripe Plantain (Musa parasidiaca), and Brewers’ Spent Grain Flour and Blood Glucose Level of Diabetic Rats Fed the Biscuit

Authors: Nneka N. Uchegbu, Charles N. Ishiwu

Abstract:

The nutritional composition and hypoglycaemic effect of crackers produced from a blend of sprouted pigeon pea, unripe plantain, and brewers’ spent grain and fed to Alloxan induced diabetic rat was investigated. Crackers were produced from different blends of sprouted pigeon pea, unripe plantain and brewers’ spent grain. The crackers were evaluated for proximate composition, amino acid profile and antinutritional factors. Blood glucose levels of normal and diabetic rats fed with the control sample and different formulations of cracker were measured. The protein content of the samples were significantly different (p < 0.05) from each other with sample A having the lowest value and sample B with the highest value. The values obtained showed that the samples contained most of the amino acids that are found in plant proteins. The levels of antinutritional factor determined were generally low. Administration of the formulated cracker meals led to a significant reduction in the fasting blood glucose level in the diabetic rats. The present study concluded that consumption of crackers produced from this composite flour can be recommended for the diabetics and those who are sceptical about the disease.

Keywords: crackers, diabetics rat, sprouted pigeon pea, unripe plantain and brewers’ spent grain

Procedia PDF Downloads 418
635 Caspase-11 and AIM2 Inflammasome are Involved in Smoking-Induced COPD and Lung Adenocarcinoma

Authors: Chiara Colarusso, Michela Terlizzi, Aldo Pinto, Rosalinda Sorrentino

Abstract:

Cigarette smoking is the main cause and the most common risk factor for both COPD and lung cancer. In our previous studies, we proved that caspase-11 in mice and its human analogue, caspase-4, are involved in lung carcinogenesis and that AIM2 inflammasome might play a pro-cancerous role in lung cancer. Therefore, the aim of this study was to investigate potential crosstalk between COPD and lung cancer, focusing on AIM2 and caspase-11-dependent inflammasome signaling pathway. To mimic COPD, we took advantage of an experimental first-hand smoking mouse model and, to confirm what was observed in mice, we used human samples of lung adenocarcinoma patients stratified according to the smoking and COPD status. We demonstrated that smoke exposure led to emphysema-like features, bronchial tone impairment, and release of IL-1-like cytokines (IL-1α, IL-1β, IL-33, IL-18) in a caspase-1 independent manner in C57Bl/6N. Rather, a dysfunctional caspase-11 in smoke-exposed 129Sv mice was associated to lower bronchial inflammation, collagen deposition, and IL-1-like inflammation. In addition, for the first time, we found that AIM2 inflammasome is involved in lung inflammation in smoking and COPD, in that its expression was higher in smoke-exposed C57Bl/6N compared to 129Sv smoking mice, who instead did not show any alteration of AIM2 in both macrophages and dendritic cells. Moreover, we found that AIM2 expression in the cancerous tissue, albeit higher than non-cancerous tissue, was not statistically different according to the COPD and smoking status. Instead, the higher expression of AIM2 in non-cancerous tissue of smoker COPD patients than smokers who did not have COPD was correlated to a higher hazard ratio of poor survival rate than patients who presented lower levels of AIM2. In conclusion, our data highlight that caspase-11 in mice is associated to smoke-induced lung latent inflammation which could drive the establishment of lung cancer, and that AIM2 inflammasome plays a role at the crosstalk between smoking/COPD and lung adenocarcinoma in that its higher presence is correlated to lower survival rate of smoker COPD adenocarcinoma.

Keywords: COPD, inflammasome, lung cancer, lung inflammation, smoke

Procedia PDF Downloads 135
634 Effect of Transit-Oriented Development on Air Quality in Neighborhoods of Delhi

Authors: Smriti Bhatnagar

Abstract:

This study aims to find if the Transit-oriented planning and development approach benefit the quality of air in neighborhoods of New Delhi. Two methodologies, namely the land use regression analysis and the Transit-oriented development index analysis, are being used to explore this relationship. Land Use Regression Analysis makes use of urban form characteristics as obtained for 33 neighborhoods in Delhi. These comprise road lengths, land use areas, population and household densities, number of amenities and distance between amenities. Regressions are run to establish the relationship between urban form variables and air quality parameters (dependent variables). For the Transit-oriented development index analysis, the Transit-oriented Development index is developed as a composite index comprising 29 urban form indicators. This index is developed by assigning weights to each of the 29 urban form data points. Regressions are run to establish the relationship between the Transit-oriented development index and air quality parameters. The thesis finds that elements of Transit-oriented development if incorporated in planning approach, have a positive effect on air quality. Roads suited for non-motorized transport, well connected civic amenities in neighbourhoods, for instance, have a directly proportional relationship with air quality. Transit-oriented development index, however, is not found to have a consistent relationship with air quality parameters. The reason could this, however, be in the way that the index has been constructed.

Keywords: air quality, land use regression, mixed-use planning, transit-oriented development index, New Delhi

Procedia PDF Downloads 247
633 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 190
632 Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements

Authors: M. Linek

Abstract:

This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements.

Keywords: scanning electron microscope, computed tomography, cement concrete, airfield pavements

Procedia PDF Downloads 316
631 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection

Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs

Abstract:

Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.

Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance

Procedia PDF Downloads 89
630 High Responsivity of Zirconium boride/Chromium Alloy Heterostructure for Deep and Near UV Photodetector

Authors: Sanjida Akter, Ambali Alade Odebowale, Andrey E. Miroshnichenko, Haroldo T. Hattori

Abstract:

Photodetectors (PDs) play a pivotal role in optoelectronics and optical devices, serving as fundamental components that convert light signals into electrical signals. As the field progresses, the integration of advanced materials with unique optical properties has become a focal point, paving the way for the innovation of novel PDs. This study delves into the exploration of a cutting-edge photodetector designed for deep and near ultraviolet (UV) applications. The photodetector is constructed with a composite of Zirconium Boride (ZrB2) and Chromium (Cr) alloy, deposited onto a 6H nitrogen-doped silicon carbide substrate. The determination of the optimal alloy thickness is achieved through Finite-Difference Time-Domain (FDTD) simulation, and the synthesis of the alloy is accomplished using radio frequency (RF) sputtering. Remarkably, the resulting photodetector exhibits an exceptional responsivity of 3.5 A/W under an applied voltage of -2 V, at wavelengths of 405 nm and 280 nm. This heterostructure not only exemplifies high performance but also provides a versatile platform for the development of near UV photodetectors capable of operating effectively in challenging conditions, such as environments characterized by high power and elevated temperatures. This study contributes to the expanding landscape of photodetector technology, offering a promising avenue for the advancement of optoelectronic devices in demanding applications.

Keywords: responsivity, silicon carbide, ultraviolet photodetector, zirconium boride

Procedia PDF Downloads 33
629 Application to Molecular Electronics of Thin Layers of Organic Materials

Authors: M. I. Benamrani, H. Benamrani

Abstract:

In the research to replace silicon and other thin-film semiconductor technologies and to develop long-term technology that is environmentally friendly, low-cost, and abundant, there is growing interest today given to organic materials. Our objective is to prepare polymeric layers containing metal particles deposited on a surface of semiconductor material which can have better electrical properties and which could be applied in the fields of nanotechnology as an alternative to the existing processes involved in the design of electronic circuits. This work consists in the development of composite materials by complexation and electroreduction of copper in a film of poly (pyrrole benzoic acid). The deposition of the polymer film on a monocrystalline silicon substrate is made by electrochemical oxidation in an organic medium. The incorporation of copper particles into the polymer is achieved by dipping the electrode in a solution of copper sulphate to complex the cupric ions, followed by electroreduction in an aqueous solution to precipitate the copper. In order to prepare the monocrystalline silicon substrate as an electrode for electrodeposition, an in-depth study on its surface state was carried out using photoacoustic spectroscopy. An analysis of the optical properties using this technique on the effect of pickling using a chemical solution was carried out. Transmission-photoacoustic and impedance spectroscopic techniques give results in agreement with those of photoacoustic spectroscopy.

Keywords: photoacoustic, spectroscopy, copper sulphate, chemical solution

Procedia PDF Downloads 66
628 Phenotypic and Genotypic Diagnosis of Gaucher Disease in Algeria

Authors: S. Hallal, Z. Chami, A. Hadji-Lehtihet, S. Sokhal-Boudella, A. Berhoune, L. Yargui

Abstract:

Gaucher disease is the most common lysosomal storage in our population, it is due to a deficiency of β –glucosidase acid. The enzyme deficiency causes a pathological accumulation of undegraded substrate in lysosomes. This metabolic overload is responsible for a multisystemic disease with hepatosplenomegaly, anemia, thrombocytopenia, and bone involvement. Neurological involvement is rare. The laboratory diagnosis of Gaucher disease consists of phenotypic diagnosis by determining the enzymatic activity of β - glucosidase by fluorimetric method, a study by genotypic diagnosis in the GBA gene, limiting the search recurrent mutations (N370S, L444P, 84 GG); PCR followed by an enzymatic digestion. Abnormal profiles were verified by sequencing. Monitoring of treated patients is provided by the determination of chitotriosidase. Our experience spaning a period of 6 years (2007-2014) has enabled us to diagnose 78 patients out of a total of 328 requests from the various departments of pediatrics, internal medicine, neurology. Genotypic diagnosis focused on the entire family of 9 children treated at pediatric CHU Mustapha, which help define the clinical form; or 5 of them had type III disease, carrying the L444P mutation in the homozygous state. Three others were composite (N370/L444P) (N370S/other unintended mutation in our study), and only in one family no recurrent mutation has been found. This molecular study permits screening of heterozygous essential for genetic counseling.

Keywords: Gaucher disease, mutations, N370S, L444P

Procedia PDF Downloads 381
627 The Effect of Honeycomb Core Thickness on the Repeated Low-Velocity Impact Behavior of Sandwich Beams

Authors: S. H. Abo Sabah, A. B. H. Kueh, M. A. Megat Johari, T. A. Majid

Abstract:

In a recent study, a new bio-inspired honeycomb sandwich beam (BHSB) mimicking the head configuration of the woodpecker was developed. The beam consists of two carbon/epoxy composite face sheets, aluminum honeycomb core, and rubber core to enhance the repeated low-velocity impact resistance of sandwich structures. This paper aims to numerically enhance the repeated low-velocity impact resistance of the BHSB via optimizing the aluminum honeycomb core thickness. The beam was investigated employing three core thicknesses: 20 mm, 25 mm, and 30 mm at three impact energy levels (13.5 J, 15.55 J, 21.43 J). The results revealed that increasing the thickness of the aluminum honeycomb core to a certain level enhances the sandwich beam stiffness. The beam with the 25 mm honeycomb core thickness was the only beam that can sustain five repeated impacts achieving the highest impact resistance efficiency index, especially at high energy levels. Furthermore, the bottom face sheet of this beam developed the lowest stresses indicating that this thickness has a relatively better performance during impact events since it allowed minimal stress to reach the bottom face sheet. Overall, increasing the aluminum core thickness will increase the height of its cells subjecting it to buckling phenomenon. Therefore, this study suggests that the optimal thickness of the aluminum honeycomb core should be 65 % of the overall thickness of the sandwich beam to have the best impact resistance.

Keywords: sandwich beams, core thickness, impact behavior, finite element analysis, modeling

Procedia PDF Downloads 136
626 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete

Procedia PDF Downloads 188
625 Phytoremediation of Arsenic-Contaminated Soil and Recovery of Valuable Arsenic Products

Authors: Valentine C. Eze, Adam P. Harvey

Abstract:

Contamination of groundwater and soil by heavy metals and metalloids through anthropogenic activities and natural occurrence poses serious environmental challenges globally. A possible solution to this problem is through phytoremediation of the contaminants using hyper-accumulating plants. Conventional phytoremediation treats the contaminated hyper-accumulator biomass as a waste stream which adds no value to the heavy metal(loid)s decontamination process. This study investigates strategies for remediation of soil contaminated with arsenic and the extractive chemical routes for recovery of arsenic and phosphorus from the hyper-accumulator biomass. Pteris cretica ferns species were investigated for their uptake of arsenic from soil containing 200 ± 3ppm of arsenic. The Pteris cretica ferns were shown to be capable of hyper-accumulation of arsenic, with maximum accumulations of about 4427 ± 79mg to 4875 ± 96mg of As per kg of the dry ferns. The arsenic in the Pteris cretica fronds was extracted into various solvents, with extraction efficiencies of 94.3 ± 2.1% for ethanol-water (1:1 v/v), 81.5 ± 3.2% for 1:1(v/v) methanol-water, and 70.8 ± 2.9% for water alone. The recovery efficiency of arsenic from the molybdic acid complex process 90.8 ± 5.3%. Phosphorus was also recovered from the molybdic acid complex process at 95.1 ± 4.6% efficiency. Quantitative precipitation of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ occurred in the treatment of the aqueous solutions of arsenic and phosphorus after stripping at pH of 8 – 10. The amounts of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ obtained were 96 ± 7.2% for arsenic and 94 ± 3.4% for phosphorus. The arsenic nanoparticles produced from the Mg₃(AsO₄)₂ recovered from the biomass have the average particles diameter of 45.5 ± 11.3nm. A two-stage reduction process – a first step pre-reduction of As(V) to As(III) with L-cysteine, followed by NaBH₄ reduction of the As(III) to As(0), was required to produced arsenic nanoparticles from the Mg₃(AsO₄)₂. The arsenic nanoparticles obtained are potentially valuable for medical applications, while the Mg₃(AsO₄)₂ could be used as an insecticide. The phosphorus contents of the Pteris cretica biomass was recovered as phosphomolybdic acid complex and converted to Mg₃(PO₄)₂, which could be useful in productions of fertilizer. Recovery of these valuable products from phytoremediation biomass would incentivize and drive commercial industries’ participation in remediation of contaminated lands.

Keywords: phytoremediation, Pteris cretica, hyper-accumulator, solvent extraction, molybdic acid process, arsenic nanoparticles

Procedia PDF Downloads 295
624 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data

Authors: Adrian Priceputu, Elena Mihaela Stan

Abstract:

Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.

Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations

Procedia PDF Downloads 18
623 Solution-Processed Threshold Switching Selectors Based on Highly Flexible, Transparent and Scratchable Silver Nanowires Conductive Films

Authors: Peiyuan Guan, Tao Wan, Dewei Chu

Abstract:

With the flash memory approaching its physical limit, the emerging resistive random-access memory (RRAM) has been considered as one of the most promising candidates for the next-generation non-volatile memory. One selector-one resistor configuration has shown the most promising way to resolve the crosstalk issue without affecting the scalability and high-density integration of the RRAM array. By comparison with other candidates of selectors (such as diodes and nonlinear devices), threshold switching selectors dominated by formation/spontaneous rupture of fragile conductive filaments have been proved to possess low voltages, high selectivity, and ultra-low current leakage. However, the flexibility and transparency of selectors are barely mentioned. Therefore, it is a matter of urgency to develop a selector with highly flexible and transparent properties to assist the application of RRAM for a diversity of memory devices. In this work, threshold switching selectors were designed using a facilely solution-processed fabrication on AgNWs@PDMS composite films, which show high flexibility, transparency and scratch resistance. As-fabricated threshold switching selectors also have revealed relatively high selectivity (~107), low operating voltages (Vth < 1 V) and good switching performance.

Keywords: flexible and transparent, resistive random-access memory, silver nanowires, threshold switching selector

Procedia PDF Downloads 112
622 Effect of Access to Finance on Innovation and Productivity of SMEs in Nigeria: Evidence from the World Bank Enterprise Survey

Authors: Abidemi C. Adegboye, Samuel Iweriebor

Abstract:

The primary link between financial institutions and economic performance is the provision of resources by these institutions to businesses in order to drive enterprise expansion, sustainability, and development. In this study, the role of access to finance in driving innovations and productivity in Nigerian SMEs is investigated using the World Bank Enterprise Survey (ES) dataset. Innovation is defined based on the ES analysis using five compositions including product, method, organisational, use of foreign-licensed technology, and spending on R&D. The study considers finance in terms of source in meeting investment needs and in terms of access. Moreover, finance access is categorized as external and internal to a firm with each having different implications. The research methodology adopted a survey analysis based on the 2014 World Bank Enterprise Survey of 19 states in Nigeria. The survey comprised over 10,000 manufacturing and services firms, both at the small scale and medium scale levels. The logit estimation technique is used to estimate the relationships in the study. The results from the empirical analysis show that in general, access to finance drives SME innovation in Nigeria. In particular, ease of accessing bank loans and credit is shown to be the strongest positive force in driving all types of innovation among SMEs in Nigeria. In the same vein, the type of finance source for investment matters in terms of how it affects innovation: it is shown that both internal and external sources improve investment in product, process, and organisational innovation, but only external financing has effect on R&D spending and use of foreign licensed technology. Overall spending on R&D is only driven by access to external finance by the SMEs. For productivity, the results show that while structure of financing investment improves productivity, increased access to finance may actually lead to productivity decline among SMEs in Nigeria. There is a need for the financial system to evolve structures to increase fund availability to SMEs in Nigeria, especially for the purpose of innovation investment.

Keywords: access to finance, financing investment, innovation, productivity, SMEs

Procedia PDF Downloads 331
621 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 526
620 Occupant Behaviour Change in Post-Pandemic Australia

Authors: Yan Zhang, Felix Kin Peng Hui, Colin Duffield, Caroline X. Gao

Abstract:

In post-pandemic Australia, it is unclear how building occupant have changed their behaviour in their interaction with buildings and other occupants. This research provides information on occupant behaviour change compared to before the pandemic and examines the predictors for those behaviour changes. This paper analyses survey responses from 2298 building occupants in Melbourne to investigate occupant behaviour change and determinants for those changes one year after the pandemic in Australia. The behaviour changes were grouped into three categories based on respiratory infection routes: (1) fomite: hand-shaking and hand hygiene behaviours; (2) airborne: individual interventions to indoor air quality such as face masking, window openings for occupants working in naturally ventilated space; (3) droplets: social distancing, reducing working hours in the workplace. The survey shows that the pandemic has significantly changed occupants' behaviour in all three categories compared to before the pandemic. The changes are significantly associated with occupants' perceived indoor air quality, indoor environmental cleanliness, and occupant density, demonstrating their growing awareness of respiratory infection risk that influences their health behaviours. The two most significant factors identified from multivariate regressions to drive the behaviour change include occupant risk perception of respiratory infections at the workplace and their observed co-worker's behaviour change. Based on the survey results, the paper provides adjusted estimates for related occupant behaviour parameters. The study also discusses alternatives for managing window operations in naturally ventilated buildings to improve occupant satisfaction. This paper could help Building Managers, and Building Designers understand occupant behaviour change to improve building operations and new building design to enhance occupant experience. Also, building energy modellers and risk assessors may use the findings to adjust occupant behaviour-related parameters to improve the models. The findings contribute to the knowledge of Human-Building Interaction.

Keywords: human-building interaction, risk perception, occupant behaviour, IAQ, COVID-19

Procedia PDF Downloads 49
619 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel

Authors: Soroush Momeni

Abstract:

Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.

Keywords: PVD coatings, sliding wear, hardness, tool steel

Procedia PDF Downloads 264
618 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS

Authors: V. Sulakatko, F. U. Vogdt, I. Lill

Abstract:

Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.

Keywords: activity-based cost estimating, cost estimation, ETICS, life cycle costing

Procedia PDF Downloads 275
617 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: speed, feed, depth of cut, roughness, cutting force, flank wear

Procedia PDF Downloads 264
616 Strengthening Islamic Banking Customer Behavioral Intention through Value and Commitment

Authors: Mornay Roberts-Lombard

Abstract:

Consumers’ perceptions of value are crucial to ensuring their future commitment and behavioral intentions. As a result, service providers, such as Islamic banks, must provide their customers with products and services that are regarded as valuable, stimulating, collaborative, and competent. Therefore, the value provided to customers must meet or surpass their expectations, which can drive customers’ commitment (affective and calculative) and eventually favorably impact their future behavioral intentions. Consequently, Islamic banks in South Africa, as a growing African market, need to obtain a better understanding of the variables that impact Islamic banking customers’ value perceptions and how these impact their future behavioral intentions. Furthermore, it is necessary to investigate how customers’ perceived value perceptions impact their affective and calculative commitment and how the latter impact their future behavioral intentions. The purpose of this study is to bridge these gaps in knowledge, as the competitiveness of the Islamic banking industry in South Africa requires a deeper understanding of the aforementioned relationships. The study was exploratory and quantitative in nature, and data was collected from 250 Islamic banking customers using self-administered questionnaires. These banking customers resided in the Gauteng province of South Africa. Exploratory factor analysis, Pearson’s coefficient analysis, and multiple regression analysis were applied to measure the proposed hypotheses developed for the study. This research will aid Islamic banks in the country in potentially strengthening customers’ future commitment (affective and calculative) and positively impact their future behavioral intentions. The findings of the study established that service quality has a significant and positive impact on perceived value. Moreover, it was determined that perceived value has a favorable and considerable impact on affective and calculative commitment, while calculative commitment has a beneficial impact on behavioral intention. The research informs Islamic banks of the importance of service engagement in driving customer perceived value, which stimulates the future affective and calculative commitment of Islamic bank customers in an emerging market context. Finally, the study proposes guidelines for Islamic banks to develop an enhanced understanding of the factors that impact the perceived value-commitment-behavioral intention link in a competitive Islamic banking market in South Africa.

Keywords: perceived value, affective commitment, calculative commitment, behavioural intention

Procedia PDF Downloads 53
615 Impact of Financial Inclusion on Gender Inequality: An Empirical Examination

Authors: Sumanta Kumar Saha, Jie Qin

Abstract:

This study analyzes the impact of financial inclusion on gender inequality in 126 countries belonging to different income groups during the 2005–2019 period. Due to its positive influence on poverty alleviation, economic growth, women empowerment, and income inequality reduction, financial inclusion may help reduce gender equality. This study constructs a novel composite financial inclusion index and applies both fixed-effect panel estimation and instrumental variable approach to examine the impact of financial inclusion on gender inequality. The results indicate that financial inclusion can reduce gender inequality in developing and low- and lower-middle-income countries, but not in higher-income countries. The impact is not always immediate. Past financial inclusion initiatives have a significant influence on future gender inequality. Financial inclusion is also significant if the poverty level is high and women's access to financial services is low compared to men. When the poverty level is low, or women have equal access to financial services, financial inclusion does not significantly affect gender inequality. The study finds that compulsory education and improvement in institutional quality promote gender equality in developing countries apart from financial inclusion. The study proposes that lower-income countries use financial inclusion initiatives to improve gender equality. Other countries need to focus on other aspects such as promoting educational support and institutional quality improvements to achieve gender equality.

Keywords: financial inclusion, gender inequality, institutional quality, women empowerment

Procedia PDF Downloads 110
614 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications

Authors: Khurram Munir, Cuie Wen, Yuncang Li

Abstract:

Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.

Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion

Procedia PDF Downloads 138
613 Stability Characteristics of Angle Ply Bi-Stable Laminates by Considering the Effect of Resin Layers

Authors: Masih Moore, Saeed Ziaei-Rad

Abstract:

In this study, the stability characteristics of a bi-stable composite plate with different asymmetric composition are considered. The interest in bi-stable structures comes from their ability that these structures can have two different stable equilibrium configurations to define a discrete set of stable shapes. The structures can easily change the first stable shape to the second one by a simple snap action. The main purpose of the current research is to consider the effect of including resin layers on the stability characteristics of bi-stable laminates. To this end and In order to determine the magnitude of the loads that are responsible for snap through and snap back phenomena between two stable shapes of the laminate, a non-linear finite element method (FEM) is utilized. An experimental investigation was also carried out to study the critical loads that caused snapping between two different stable shapes. Several specimens were manufactured from T300/5208 graphite-epoxy with [0/90]T, [-30/60]T, [-20/70]T asymmetric stacking sequence. In order to create an accurate finite element model, different thickness of resin layers created during the manufacturing process of the laminate was measured and taken into account. The geometry of each lamina and the resin layers was characterized by optical microscopy from different locations of the laminates thickness. The exact thickness of each lamina and the resin layer in all specimens with [0/90]T,[-30/60]T, [-20/70]T stacking sequence were determined by using image processing technique.

Keywords: bi-stable laminates, finite element method, graphite-epoxy plate, snap behavior

Procedia PDF Downloads 225
612 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace EthylenE-propylene-Diene Monomer Rubber

Authors: Sibel Dikmen Kucuk, Yusuf Guner

Abstract:

In recent years, petroleum-based polymers began to be limited due to the effects on the human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of the use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic-based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal, and aging analyses. The aged surfaces were visually scrutinized, and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose could be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, color change or staining.

Keywords: EPDM, lignin, green materials, biodegradable fillers

Procedia PDF Downloads 104
611 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey

Procedia PDF Downloads 90
610 Effects of Magnetization Patterns on Characteristics of Permanent Magnet Linear Synchronous Generator for Wave Energy Converter Applications

Authors: Sung-Won Seo, Jang-Young Choi

Abstract:

The rare earth magnets used in synchronous generators offer many advantages, including high efficiency, greatly reduced the size, and weight. The permanent magnet linear synchronous generator (PMLSG) allows for direct drive without the need for a mechanical device. Therefore, the PMLSG is well suited to translational applications, such as wave energy converters and free piston energy converters. This manuscript compares the effects of different magnetization patterns on the characteristics of double-sided PMLSGs in slotless stator structures. The Halbach array has a higher flux density in air-gap than the Vertical array, and the advantages of its performance and efficiency are widely known. To verify the advantage of Halbach array, we apply a finite element method (FEM) and analytical method. In general, a FEM and an analytical method are used in the electromagnetic analysis for determining model characteristics, and the FEM is preferable to magnetic field analysis. However, the FEM is often slow and inflexible. On the other hand, the analytical method requires little time and produces accurate analysis of the magnetic field. Therefore, the flux density in air-gap and the Back-EMF can be obtained by FEM. In addition, the results from the analytical method correspond well with the FEM results. The model of the Halbach array reveals less copper loss than the model of the Vertical array, because of the Halbach array’s high output power density. The model of the Vertical array is lower core loss than the model of Halbach array, because of the lower flux density in air-gap. Therefore, the current density in the Vertical model is higher for identical power output. The completed manuscript will include the magnetic field characteristics and structural features of both models, comparing various results, and specific comparative analysis will be presented for the determination of the best model for application in a wave energy converting system.

Keywords: wave energy converter, permanent magnet linear synchronous generator, finite element method, analytical method

Procedia PDF Downloads 279
609 Determinants of Carbon-Certified Small-Scale Agroforestry Adoption In Rural Mount Kenyan

Authors: Emmanuel Benjamin, Matthias Blum

Abstract:

Purpose – We address smallholder farmers’ restricted possibilities to adopt sustainable technologies which have direct and indirect benefits. Smallholders often face little asset endowment due to small farm size und insecure property rights, therefore experiencing constraints in adopting agricultural innovation. A program involving payments for ecosystem services (PES) benefits poor smallholder farmers in developing countries in many ways and has been suggested as a means of easing smallholder farmers’ financial constraints. PES may also provide additional mainstay which can eventually result in more favorable credit contract terms due to the availability of collateral substitute. Results of this study may help to understand the barriers, motives and incentives for smallholders’ participation in PES and help in designing a strategy to foster participation in beneficial programs. Design/methodology/approach – This paper uses a random utility model and a logistic regression approach to investigate factors that influence agroforestry adoption. We investigate non-monetary factors, such as information spillover, that influence the decision to adopt such conservation strategies. We collected original data from non-government-run agroforestry mitigation programs with PES that have been implemented in the Mount Kenya region. Preliminary Findings – We find that spread of information, existing networks and peer involvement in such programs drive participation. Conversely, participation by smallholders does not seem to be influenced by education, land or asset endowment. Contrary to some existing literature, we found weak evidence for a positive correlation between the adoption of agroforestry with PES and age of smallholder, e.g., one increases with the other, in the Mount Kenyan region. Research implications – Poverty alleviation policies for developing countries should target social capital to increase the adoption rate of modern technologies amongst smallholders.

Keywords: agriculture innovation, agroforestry adoption, smallholders, payment for ecosystem services, Sub-Saharan Africa

Procedia PDF Downloads 356