Search results for: power production performance
903 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis
Authors: Yao Cheng, Weihua Zhang
Abstract:
Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution
Procedia PDF Downloads 374902 Maintenance Wrench Time Improvement Project
Authors: Awadh O. Al-Anazi
Abstract:
As part of the organizational needs toward successful maintaining activities, a proper management system need to be put in place, ensuring the effectiveness of maintenance activities. The management system shall clearly describes the process of identifying, prioritizing, planning, scheduling, execution, and providing valuable feedback for all maintenance activities. Completion and accuracy of the system with proper implementation shall provide the organization with a strong platform for effective maintenance activities that are resulted in efficient outcomes toward business success. The purpose of this research was to introduce a practical tool for measuring the maintenance efficiency level within Saudi organizations. A comprehensive study was launched across many maintenance professionals throughout Saudi leading organizations. The study covered five main categories: work process, identification, planning and scheduling, execution, and performance monitoring. Each category was evaluated across many dimensions to determine its current effectiveness through a five-level scale from 'process is not there' to 'mature implementation'. Wide participation was received, responses were analyzed, and the study was concluded by highlighting major gaps and improvement opportunities within Saudi organizations. One effective implementation of the efficiency enhancement efforts was deployed in Saudi Kayan (one of Sabic affiliates). Below details describes the project outcomes: SK overall maintenance wrench time was measured at 20% (on average) from the total daily working time. The assessment indicates the appearance of several organizational gaps, such as a high amount of reactive work, poor coordination and teamwork, Unclear roles and responsibilities, as well as underutilization of resources. Multidiscipline team was assigned to design and implement an appropriate work process that is capable to govern the execution process, improve the maintenance workforce efficiency, and maximize wrench time (targeting > 50%). The enhanced work process was introduced through brainstorming and wide benchmarking, incorporated with a proper change management plan and leadership sponsorship. The project was completed in 2018. Achieved Results: SK WT was improved to 50%, which resulted in 1) reducing the Average Notification completion time. 2) reducing maintenance expenses on OT and manpower support (3.6 MSAR Actual Saving from Budget within 6 months).Keywords: efficiency, enhancement, maintenance, work force, wrench time
Procedia PDF Downloads 146901 Impact of Interventions on Brain Functional Connectivity in Young Male Basketball Players: A Comparative Study
Authors: Mohammad Khazaei, Reza Rostami, Hassan Gharayagh Zandi, Ruhollah Basatnia, Mahboubeh Ghayour Najafabadi
Abstract:
Introduction: This study delves into the influence of diverse interventions on brain functional connectivity among young male basketball players. Given the significance of understanding how interventions affect cognitive functions in athletes, particularly in the context of basketball, this research contributes to the growing body of knowledge in sports neuroscience. Methods: Three distinct groups were selected for comprehensive investigation: the Motivational Interview Group, Placebo Consumption Group, and Ritalin Consumption Group. The study involved assessing brain functional connectivity using various frequency bands (Delta, Theta, Alpha, Beta1, Beta2, Gamma, and Total Band) before and after the interventions. The participants were subjected to specific interventions corresponding to their assigned groups. Results: The findings revealed substantial differences in brain functional connectivity across the studied groups. The Motivational Interview Group exhibited optimal outcomes in PLI (Total Band) connectivity. The Placebo Consumption Group demonstrated a marked impact on PLV (Alpha) connectivity, and the Ritalin Consumption Group experienced a considerable enhancement in imCoh (Total Band) connectivity. Discussion: The observed variations in brain functional connectivity underscore the nuanced effects of different interventions on young male basketball players. The enhanced connectivity in specific frequency bands suggests potential cognitive and performance improvements. Notably, the Motivational Interview and Placebo Consumption groups displayed unique patterns, emphasizing the multifaceted nature of interventions. These findings contribute to the understanding of tailored interventions for optimizing cognitive functions in young male basketball players. Conclusion: This study provides valuable insights into the intricate relationship between interventions and brain functional connectivity in young male basketball players. Further research with expanded sample sizes and more sophisticated statistical analyses is recommended to corroborate and expand upon these initial findings. The implications of this study extend to the broader field of sports neuroscience, aiding in the development of targeted interventions for athletes in various disciplines.Keywords: electroencephalography, Ritalin, Placebo effect, motivational interview
Procedia PDF Downloads 64900 A Study of School Meals: How Cafeteria Culture Shapes the Eating Habits of Students
Authors: Jillian Correia, Ali Sakkal
Abstract:
Lunchtime can play a pivotal role in shaping student eating habits. Studies have previously indicated that eating a healthy meal during the school day can improve students’ well-being and academic performance, and potentially prevent childhood obesity. This study investigated the school lunch program in the United Kingdom in order to gain an understanding of the attitudes and beliefs surrounding school meals and the realities of student food patterns. Using a qualitative research methodology, this study was conducted in three primary and secondary school systems in London, United Kingdom. In depth interviews consisting of 14 headteachers, teachers, staff, and chefs and fieldwork observations of approximately 830 primary and secondary school students in the three schools’ cafeterias provided the data. The results of interview responses and fieldwork observation yielded the following set of themes: (a) school meals are publicly portrayed as healthful and nutritious, yet students’ eating habits do not align with this advertising, (b) the level of importance placed on school lunch varies widely among participants and generates inconsistent views concerning who is responsible (government, families, caterers, or schools) for students’ eating habits, (c) role models (i.e. teachers and chefs) present varying levels of interaction with students and conflicting approaches when monitoring students’ eating habits. The latter finding expanded upon Osowski, Göranzon, and Fjellström’s (2013) concept of teacher roles to formulate three education philosophies – the Removed Authority Role Model, the Accommodating Role Model, and the Social Educational Role Model – concluding that the Social Educational Role Model was the most effective at fostering an environment that encouraged healthy eating habits and positive behavior. For schools looking to cultivate strong relationships between students and teachers and facilitate healthier eating habits, these findings were used to construct three key recommendations: (1) elevate the lunch environment by encouraging proper dining etiquette, (2) get teachers eating at the table with students, and (3) shift the focus from monitoring behavior to a teacher-student dialogue centered on food awareness.Keywords: food culture, eating habits, school meals, student behavior, education, food patterns, lunchtime
Procedia PDF Downloads 264899 Shaping Work Engagement through Intra-Organizational Coopetition: Case Study of the University of Zielona Gora in Poland
Authors: Marta Moczulska
Abstract:
One of the most important aspects of human management in an organization is the work engagement. In spite of the different perspectives of engagement, it is possible to see that it is expressed in the activity of the individual involved in the performance of tasks, the functioning of the organization. At the same time is considered not only in behavioural but also cognitive and emotional dimensions. Previous studies were related to sources, predictors of engagement and determinants, including organizational ones. Attention was paid to the importance of needs (including belonging, success, development, sense of work), values (such as trust, honesty, respect, justice) or interpersonal relationships, especially with the supervisor. Taking them into account and theories related to human acting, behaviour in the organization, interactions, it was recognized that engagement can be shaped through cooperation and competition. It was assumed that to shape the work engagement, it is necessary to simultaneously cooperate and compete in order to reduce the weaknesses of each of these activities and strengthen the strengths. Combining cooperation and competition is defined as 'coopetition'. However, research conducted in this field is primarily concerned with relations between companies. Intra-organizational coopetition is mainly considered as competing organizational branches or units (cross-functional coopetition). Less attention is paid to competing groups or individuals. It is worth noting the ambiguity of the concepts of cooperation and rivalry. Taking into account the terms used and their meaning, different levels of cooperation and forms of competition can be distinguished. Thus, several types of intra-organizational coopetition can be identified. The article aims at defining the potential for work engagement through intra-organizational coopetition. The aim of research was to know how levels of cooperation in competition conditions influence engagement. It is assumed that rivalry (positive competition) between teams (the highest level of cooperation) is a type of coopetition that contributes to working engagement. Qualitative research will be carried out among students of the University of Zielona Gora, realizing various types of projects. The first research groups will be students working in groups on one project for three months. The second research group will be composed of students working in groups on several projects in the same period (three months). Work engagement will be determined using the UWES questionnaire. Levels of cooperation will be determined using the author's research tool. Due to the fact that the research is ongoing, results will be presented in the final paper.Keywords: competition, cooperation, intra-organizational coopetition, work engagement
Procedia PDF Downloads 145898 Evaluation of Buckwheat Genotypes to Different Planting Geometries and Fertility Levels in Northern Transition Zone of Karnataka
Authors: U. K. Hulihalli, Shantveerayya
Abstract:
Buckwheat (Fagopyrum esculentum Moench) is an annual crop belongs to family Poligonaceae. The cultivated buckwheat species are notable for their exceptional nutritive values. It is an important source of carbohydrates, fibre, macro, and microelements such as K, Ca, Mg, Na and Mn, Zn, Se, and Cu. It also contains rutin, flavonoids, riboflavin, pyridoxine and many amino acids which have beneficial effects on human health, including lowering both blood lipid and sugar levels. Rutin, quercetin and some other polyphenols are potent carcinogens against colon and other cancers. Buckwheat has significant nutritive value and plenty of uses. Cultivation of buckwheat in Sothern part of India is very meager. Hence, a study was planned with an objective to know the performance of buckwheat genotypes to different planting geometries and fertility levels. The field experiment was conducted at Main Agriculture Research Station, University of Agriculture Sciences, Dharwad, India, during 2017 Kharif. The experiment was laid-out in split-plot design with three replications having three planting geometries as main plots, two genotypes as sub plots and three fertility levels as sub-sub plot treatments. The soil of the experimental site was vertisol. The standard procedures are followed to record the observations. The planting geometry of 30*10 cm was recorded significantly higher seed yield (893 kg/ha⁻¹), stover yield (1507 kg ha⁻¹), clusters plant⁻¹ (7.4), seeds clusters⁻¹ (7.9) and 1000 seed weight (26.1 g) as compared to 40*10 cm and 20*10 cm planting geometries. Between the genotypes, significantly higher seed yield (943 kg ha⁻¹) and harvest index (45.1) was observed with genotype IC-79147 as compared to PRB-1 genotype (687 kg ha⁻¹ and 34.2, respectively). However, the genotype PRB-1 recorded significantly higher stover yield (1344 kg ha⁻¹) as compared to genotype IC-79147 (1173 kg ha⁻¹). The genotype IC-79147 was recorded significantly higher clusters plant⁻¹ (7.1), seeds clusters⁻¹ (7.9) and 1000 seed weight (24.5 g) as compared PRB-1 (5.4, 5.8 and 22.3 g, respectively). Among the fertility levels tried, the fertility level of 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (845 kg ha-1) and stover yield (1359 kg ha⁻¹) as compared to 40:20 NP kg ha-1 (808 and 1259 kg ha⁻¹ respectively) and 20:10 NP kg ha-1 (793 and 1144 kg ha⁻¹ respectively). Within the treatment combinations, IC 79147 genotype having 30*10 cm planting geometry with 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (1070 kg ha⁻¹), clusters plant⁻¹ (10.3), seeds clusters⁻¹ (9.9) and 1000 seed weight (27.3 g) compared to other treatment combinations.Keywords: buckwheat, planting geometry, genotypes, fertility levels
Procedia PDF Downloads 175897 Insights on Nitric Oxide Interaction with Phytohormones in Rice Root System Response to Metal Stress
Authors: Piacentini Diego, Della Rovere Federica, Fattorini Laura, Lanni Francesca, Cittadini Martina, Altamura Maria Maddalena, Falasca Giuseppina
Abstract:
Plants have evolved sophisticated mechanisms to cope with environmental cues. Changes in intracellular content and distribution of phytohormones, such as the auxin indole-3-acetic acid (IAA), have been involved in morphogenic adaptation to environmental stresses. In addition to phytohormones, plants can rely on a plethora of small signal molecules able to promptly sense and transduce the stress signals, resulting in morpho/physiological responses thanks also to their capacity to modulate the levels/distribution/reception of most hormones. Among these signaling molecules, nitrogen monoxide (nitric oxide – NO) is a critical component in several plant acclimation strategies to both biotic and abiotic stresses. Depending on its levels, NO increases plant adaptation by enhancing the enzymatic or non-enzymatic antioxidant systems or by acting as a direct scavenger of reactive oxygen/nitrogen (ROS/RNS) species produced during the stress. In addition, exogenous applications of NO-specific donor compounds showed the involvement of the signal molecule in auxin metabolism, transport, and signaling, under both physiological and stress conditions. However, the complex mechanisms underlying NO action in interacting with phytohormones, such as auxins, during metal stress responses are still poorly understood and need to be better investigated. Emphasis must be placed on the response of the root system since it is the first plant organ system to be exposed to metal soil pollution. The monocot Oryza sativa L. (rice) has been chosen given its importance as a stable food for some 4 billion people worldwide. In addition, increasing evidence has shown that rice is often grown in contaminated paddy soils with high levels of heavy metal cadmium (Cd) and metalloid arsenic (As). The facility through which these metals are taken up by rice roots and transported to the aerial organs up to the edible caryopses makes rice one of the most relevant sources of these pollutants for humans. This study aimed to evaluate if NO has a mitigatory activity in the roots of rice seedlings against Cd or As toxicity and to understand if this activity requires interactions with auxin. Our results show that exogenous treatments with the NO-donor SNP alleviate the stress induced by Cd, but not by As, in in-vitro-grown rice seedlings through increased intracellular root NO levels. The damages induced by the pollutants include root growth inhibition, root histological alterations and ROS (H2O2, O2●ˉ), and RNS (ONOOˉ) production. Also, SNP treatments mitigate both the root increase in root IAA levels and the IAA alteration in distribution monitored by the OsDR5::GUS system due to the toxic metal exposure. Notably, the SNP-induced mitigation of the IAA homeostasis altered by the pollutants does not involve changes in the expression of OsYUCCA1 and ASA2 IAA-biosynthetic genes. Taken together, the results highlight a mitigating role of NO in the rice root system, which is pollutant-specific, and involves the interaction of the signal molecule with both IAA and brassinosteroids at different (i.e., transport, levels, distribution) and multiple levels (i.e., transcriptional/post-translational levels). The research is supported by Progetti Ateneo Sapienza University of Rome, grant number: RG120172B773D1FFKeywords: arsenic, auxin, cadmium, nitric oxide, rice, root system
Procedia PDF Downloads 80896 Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System
Authors: Amaia Martinez Martinez, Martin Turek, Carlos Ventura, Jay Drew
Abstract:
This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions.Keywords: arch, discrete element model, seismic assessment, shake-table testing
Procedia PDF Downloads 206895 Biochemical and Antiviral Study of Peptides Isolated from Amaranthus hypochondriacus on Tomato Yellow Leaf Curl Virus Replication
Authors: José Silvestre Mendoza Figueroa, Anders Kvarnheden, Jesús Méndez Lozano, Edgar Antonio Rodríguez Negrete, Manuel Soriano García
Abstract:
Agroindustrial plants such as cereals and pseudo cereals offer a substantial source of biomacromolecules, as they contain large amounts per tissue-gram of proteins, polysaccharides and lipids in comparison with other plants. In particular, Amaranthus hypochondriacus seeds have high levels of proteins in comparison with other cereal and pseudo cereal species, which makes the plant a good source of bioactive molecules such as peptides. Geminiviruses are one principal class of pathogens that causes important economic losses in crops, affecting directly the development and production of the plant. One such virus is the Tomato yellow leaf curl virus (TYLCV), which affects mainly Solanacea family plants such as tomato species. The symptoms of the disease are curling of leaves, chlorosis, dwarfing and floral abortion. The aim of this work was to get peptides derived from enzymatic hydrolysis of globulins and albumins from amaranth seeds with specific recognition of the replication origin in the TYLCV genome, and to test the antiviral activity on host plants with the idea to generate a direct control of this viral infection. Globulins and albumins from amaranth were extracted, the fraction was enzymatically digested with papain, and the aromatic peptides fraction was selected for further purification. Six peptides were tested against the replication origin (OR) using affinity assays, surface resonance plasmon and fluorescent titration, and two of these peptides showed high affinity values to the replication origin of the virus, dissociation constant values were calculated and showed specific interaction between the peptide Ampep1 and the OR. An in vitro replication test of the total TYLCV DNA was performed, in which the peptide AmPep1 was added in different concentrations to the system reaction, which resulted in a decrease of viral DNA synthesis when the peptide concentration increased. Also, we showed that the peptide can decrease the complementary DNA chain of the virus in Nicotiana benthamiana leaves, confirming that the peptide binds to the OR and that its expected mechanism of action is to decrease the replication rate of the viral genome. In an infection assay, N. benthamiana plants were agroinfected with TYLCV-Israel and TYLCV-Guasave. After confirming systemic infection, the peptide was infiltrated in new infected leaves, and the plants treated with the peptide showed a decrease of virus symptoms and viral titer. In order to confirm the antiviral activity in a commercial crop, tomato plants were infected with TYLCV. After confirming systemic infection, plants were infiltrated with peptide solution as above, and the symptom development was monitored 21 days after treatment, showing that tomato plants treated with peptides had lower symptom rates and viral titer. The peptide was also tested against other begomovirus such as Pepper huasteco yellow vein virus (PHYVV-Guasave), showing a decrease of symptoms in N. benthamiana infected plants. The model of direct biochemical control of TYLCV infection shown in this work can be extrapolated to other begomovirus infections, and the methods reported here can be used for design of antiviral agrochemicals for other plant virus infections.Keywords: agrochemical screening, antiviral, begomovirus, geminivirus, peptides, plasmon, TYLCV
Procedia PDF Downloads 277894 Exploring Stakeholders’ Perceptions of the Implementation of the Door-to-Door Vaccination Campaign for the Oral Polio Vaccine (NOPV2) In Uganda: A Qualitative Study
Authors: Elizabeth B. Katana, Brenda N. Simbwa, Josephine Namayanja, Bob O. Amodan, Edirisa J. Nsubuga, Eva A. O. Laker
Abstract:
Background: Understanding stakeholders’ perceptions towards the implementation of a mass vaccination campaign is important to ensure the design of better strategies to address challenges. We explored stakeholders’ perceptions of the implementation of a nationwide door-to-door mass vaccination campaign for the oral polio vaccine (nOPV2) in Uganda for the two rounds that occurred in January and November 2022. Methods: A qualitative study was conducted among stakeholders who participated in the campaign implementation from 8 districts in Uganda using random sampling. We conducted 46 In-depth interviews lasting 30 – 40 minutes with 6 national/central supervisors, 12 district, 14 sub-county, and 14 parish-level supervisors. Stakeholders were asked about their experiences in the campaign implementation, including challenges faced and their opinions of the campaign impact and use of the door-to-door strategy. Data were analyzed thematically in line with the major campaign activities. Results: Most of the stakeholders were primarily concerned about poor planning, inadequate training of vaccination teams, community resistance including schools, challenges with recruitment and teaming of vaccinators, poor and delayed payments, lack of logistics and motivation for vaccination teams, the timing of the activities and implementing amidst COVID-19 and Ebola. The stakeholders believed that the first round was not well planned and implemented, while the second round was leveraged in their previous experiences. On the other hand, some positive experiences were noted with regard to communication, advocacy and mobilization, vaccine delivery and distribution, district readiness assessments, and cold chain management. Conclusion: This study identified many challenges that were faced in the implementation of the door-to-door mass campaign for nOPV2 in Uganda. This study identified that more needs to be done to improve door-to-door mass campaigns with a focus on motivating the implementers. These findings highlight the need for conducting performance reviews, improved planning, especially routine updates and verification of target populations and training in microplanning, and adequate mapping of community resistance to inform the implementation of future mass campaigns.Keywords: mass polio vaccination campaigns, door-to-door strategy, stakeholders' perceptions, implementation challenges
Procedia PDF Downloads 70893 Temperamental Determinants of Eye-Hand Coordination Formation in the Special Aerial Gymnastics Instruments (SAGI)
Authors: Zdzisław Kobos, Robert Jędrys, Zbigniew Wochyński
Abstract:
Motor activity and good health are sine qua non determinants of a proper practice of the profession, especially aviation. Therefore, candidates to the aviation are selected according their psychomotor ability by both specialist medical commissions. Moreover, they must past an examination of the physical fitness. During the studies in the air force academy, eye-hand coordination is formed in two stages. The future aircraft pilots besides all-purpose physical education must practice specialist training on SAGI. Training includes: looping, aerowheel, and gyroscope. Aim of the training on the above listed apparatuses is to form eye-hand coordination during the tasks in the air. Such coordination is necessary to perform various figures in the real flight. Therefore, during the education of the future pilots, determinants of the effective ways of this important parameter of the human body functioning are sought for. Several studies of the sport psychology indicate an important role of the temperament as a factor determining human behavior during the task performance and acquiring operating skills> Polish psychologist Jan Strelau refers to the basic, relatively constant personality features which manifest themselves in the formal characteristics of the human behavior. Temperament, being initially determined by the inborn physiological mechanisms, changes in the course of maturation and some environmental factors and concentrates on the energetic level and reaction characteristics in time. Objectives. This study aimed at seeking a relationship between temperamental features and eye-hand coordination formation during training on SAGI. Material and Methods: Group of 30 students of pilotage was examined in two situations. The first assessment of the eye-hand coordination level was carried out before the beginning of a 30-hour training on SAGI. The second assessment was carried out after training completion. Training lasted for 2 hours once a week. Temperament was evaluated with The Formal Characteristics of Behavior − Temperament Inventory (FCB-TI) developed by Bogdan Zawadzki and Jan Strelau. Eye-hand coordination was assessed with a computer version of the Warsaw System of Psychological Tests. Results: It was found that the training on SAGI increased the level of eye-hand coordination in the examined students. Conclusions: Higher level of the eye-hand coordination was obtained after completion of the training. Moreover, a relationship between eye-hand coordination level and selected temperamental features was statistically significant.Keywords: temperament, eye-hand coordination, pilot, SAGI
Procedia PDF Downloads 440892 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids
Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo
Abstract:
Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium
Procedia PDF Downloads 190891 Obese and Overweight Women and Public Health Issues in Hillah City, Iraq
Authors: Amean A. Yasir, Zainab Kh. A. Al-Mahdi Al-Amean
Abstract:
In both developed and developing countries, obesity among women is increasing, but in different patterns and at very different speeds. It may have a negative effect on health, leading to reduced life expectancy and/or increased health problems. This research studied the age distribution among obese women, the types of overweight and obesity, and the extent of the problem of overweight/obesity and the obesity etiological factors among women in Hillah city in central Iraq. A total of 322 overweight and obese women were included in the study, those women were randomly selected. The Body Mass Index was used as indicator for overweight/ obesity. The incidence of overweight/obesity among age groups were estimated, the etiology factors included genetic, environmental, genetic/environmental and endocrine disease. The overweight and obese women were screened for incidence of infection and/or diseases. The study found that the prevalence of 322 overweight and obese women in Hillah city in central Iraq was 19.25% and 80.78%, respectively. The obese women types were recorded based on BMI and WHO classification as class-1 obesity (29.81%), class-2 obesity (24.22%) and class-3 obesity (26.70%), the result was discrepancy non-significant, P value < 0.05. The incidence of overweight in women was high among those aged 20-29 years (90.32%), 6.45% aged 30-39 years old and 3.22% among ≥ 60 years old, while the incidence of obesity was 20.38% for those in the age group 20-29 years, 17.30% were 30-39 years, 23.84% were 40-49 years, 16.92% were 50-59 years group and 21.53% were ≥ 60 years age group. These results confirm that the age can be considered as a significant factor for obesity types (P value < 0.0001). The result also showed that the both genetic factors and environmental factors were responsible for incidents of overweight or obesity (84.78%) p value < 0.0001. The results also recorded cases of different repeated infections (skin infection, recurrent UTI and influenza), cancer, gallstones, high blood pressure, type 2 diabetes, and infertility. Weight stigma and bias generally refers to negative attitudes; Obesity can affect quality of life, and the results of this study recorded depression among overweight or obese women. This can lead to sexual problems, shame and guilt, social isolation and reduced work performance. Overweight and Obesity are real problems among women of all age groups and is associated with the risk of diseases and infection and negatively affects quality of life. This result warrants further studies into the prevalence of obesity among women in Hillah City in central Iraq and the immune response of obese women.Keywords: obesity, overweight, Iraq, body mass index
Procedia PDF Downloads 385890 The Use of Random Set Method in Reliability Analysis of Deep Excavations
Authors: Arefeh Arabaninezhad, Ali Fakher
Abstract:
Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty
Procedia PDF Downloads 268889 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 84888 Controlling Shape and Position of Silicon Micro-nanorolls Fabricated using Fine Bubbles during Anodization
Authors: Yodai Ashikubo, Toshiaki Suzuki, Satoshi Kouya, Mitsuya Motohashi
Abstract:
Functional microstructures such as wires, fins, needles, and rolls are currently being applied to variety of high-performance devices. Under these conditions, a roll structure (silicon micro-nanoroll) was formed on the surface of the silicon substrate via fine bubbles during anodization using an extremely diluted hydrofluoric acid (HF + H₂O). The as-formed roll had a microscale length and width of approximately 1 µm. The number of rolls was 3-10 times and the thickness of the film forming the rolls was about 10 nm. Thus, it is promising for applications as a distinct device material. These rolls functioned as capsules and/or pipelines. To date, number of rolls and roll length have been controlled by anodization conditions. In general, controlling the position and roll winding state is required for device applications. However, it has not been discussed. Grooves formed on silicon surface before anodization might be useful control the bubbles. In this study, we investigated the effect of the grooves on the position and shape of the roll. The surfaces of the silicon wafers were anodized. The starting material was p-type (100) single-crystalline silicon wafers. The resistivity of the wafer is 5-20 ∙ cm. Grooves were formed on the surface of the substrate before anodization using sandpaper and diamond pen. The average width and depth of the grooves were approximately 1 µm and 0.1 µm, respectively. The HF concentration {HF/ (HF + C₂H5OH + H₂O)} was 0.001 % by volume. The C2H5OH concentration {C₂H5OH/ (HF + C₂H5OH + H₂O)} was 70 %. A vertical single-tank cell and Pt cathode were used for anodization. The silicon roll was observed by field-emission scanning electron microscopy (FE-SEM; JSM-7100, JEOL). The atomic bonding state of the rolls was evaluated using X-ray photoelectron spectroscopy (XPS; ESCA-3400, Shimadzu). For straight groove, the rolls were formed along the groove. This indicates that the orientation of the rolls can be controlled by the grooves. For lattice-like groove, the rolls formed inside the lattice and along the long sides. In other words, the aspect ratio of the lattice is very important for the roll formation. In addition, many rolls were formed and winding states were not uniform when the lattice size is too large. On the other hand, no rolls were formed for small lattice. These results indicate that there is the optimal size of lattice for roll formation. In the future, we are planning on formation of rolls using groove formed by lithography technique instead of sandpaper and the pen. Furthermore, the rolls included nanoparticles will be formed for nanodevices.Keywords: silicon roll, anodization, fine bubble, microstructure
Procedia PDF Downloads 18887 Management of Permits and Regulatory Compliance Obligations for the East African Crude Oil Pipeline Project
Authors: Ezra Kavana
Abstract:
This article analyses the role those East African countries play in enforcing crude oil pipeline regulations. The paper finds that countries are more likely to have responsibility for enforcing these regulations if they have larger networks of gathering and transmission lines and if their citizens are more liberal and more pro-environment., Pipeline operations, transportation costs, new pipeline construction, and environmental effects are all heavily controlled. All facets of pipeline systems and the facilities connected to them are governed by statutory bodies. In order to support the project manager on such new pipeline projects, companies building and running these pipelines typically include personnel and consultants who specialize in these permitting processes. The primary permissions that can be necessary for pipelines carrying different commodities are mentioned in this paper. National, regional, and local municipalities each have their own permits. Through their right-of-way group, the contractor's project compliance leadership is typically directly responsible for obtaining those permits, which are typically obtained through government agencies. The whole list of local permits needed for a planned pipeline can only be found after a careful field investigation. A country's government regulates pipelines that are entirely within its borders. With a few exceptions, state regulations governing ratemaking and safety have been enacted to be consistent with regulatory requirements. Countries that produce a lot of energy are typically more involved in regulating pipelines than countries that produce little to no energy. To identify the proper regulatory authority, it is important to research the several government agencies that regulate pipeline transportation. Additionally, it's crucial that the scope determination of a planned project engage with a various external professional with experience in linear facilities or the company's pipeline construction and environmental professional to identify and obtain any necessary design clearances, permits, or approvals. These professionals can offer precise estimations of the costs and length of time needed to process necessary permits. Governments with a stronger energy sector, on the other hand, are less likely to take on control. However, the performance of the pipeline or national enforcement activities are unaffected significantly by whether a government has taken on control. Financial fines are the most efficient government enforcement instrument because they greatly reduce occurrences and property damage.Keywords: crude oil, pipeline, regulatory compliance, and construction permits
Procedia PDF Downloads 96886 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites
Authors: Jifeng Zhang , Yongpeng Lei
Abstract:
Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface
Procedia PDF Downloads 121885 Self-Assembled ZnFeAl Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts
Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja
Abstract:
Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) and is among the most frequently detected pharmaceuticals in environmental samples and among the most widespread drug in the world. Its concentration in the environment is reported to be between 10 and 160 ng L-1. In order to improve the abatement efficiency of this compound for water source prevention and reclamation, the development of innovative technologies is mandatory. AOPs (advanced oxidation processes) are known as highly efficient towards the oxidation of organic pollutants. Among the promising combined treatments, photo-Fenton processes using layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents the self-supported Fe, Mn or Ti on ZnFeAl LDHs obtained by co-precipitation followed by reconstruction method as novel efficient photo-catalysts for Fenton-like catalysis. Fe, Mn or Ti/ZnFeAl LDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively, by means of a lab-scale system consisting of a batch reactor equipped with an UV lamp (17 W). The present study presents comparatively the degradation of Ibuprofen in aqueous solution UV light irradiation using four different types of LDHs. The newly prepared Ti/ZnFeAl 4:1 catalyst results in the best degradation performance. After 60 minutes of light irradiation, the Ibuprofen removal efficiency reaches 95%. The slowest degradation of Ibuprofen solution occurs in case of Fe/ZnFeAl 4:1 LDH, (67% removal efficiency after 60 minutes of process). Evolution of Ibuprofen degradation during the photo Fenton process is also studied using Ti/ZnFeAl 2:1 and 4:1 LDHs in the presence and absence of H2O2. It is found that after 60 min the use of Ti/ZnFeAl 4:1 LDH in presence of 100 mg/L H2O2 leads to the fastest degradation of Ibuprofen molecule. After 120 min, both catalysts Ti/ZnFeAl 4:1 and 2:1 result in the same value of removal efficiency (98%). In the absence of H2O2, Ibuprofen degradation reaches only 73% removal efficiency after 120 min of degradation process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: layered double hydroxide, advanced oxidation process, micropollutant, heterogeneous Fenton
Procedia PDF Downloads 229884 Evaluation of Teaching Team Stress Factors in Two Engineering Education Programs
Authors: Kari Bjorn
Abstract:
Team learning has been studied and modeled as double loop model and its variations. Also, metacognition has been suggested as a concept to describe the nature of team learning to be more than a simple sum of individual learning of the team members. Team learning has a positive correlation with both individual motivation of its members, as well as the collective factors within the team. Team learning of previously very independent members of two teaching teams is analyzed. Applied Science Universities are training future professionals with ever more diversified and multidisciplinary skills. The size of the units of teaching and learning are increasingly larger for several reasons. First, multi-disciplinary skill development requires more active learning and richer learning environments and learning experiences. This occurs on students teams. Secondly, teaching of multidisciplinary skills requires a multidisciplinary and team-based teaching from the teachers as well. Team formation phases have been identifies and widely accepted. Team role stress has been analyzed in project teams. Projects typically have a well-defined goal and organization. This paper explores team stress of two teacher teams in a parallel running two course units in engineering education. The first is an Industrial Automation Technology and the second is Development of Medical Devices. The courses have a separate student group, and they are in different campuses. Both are run in parallel within 8 week time. Both of them are taught by a group of four teachers with several years of teaching experience, but individually. The team role stress scale items - the survey is done to both teaching groups at the beginning of the course and at the end of the course. The inventory of questions covers the factors of ambiguity, conflict, quantitative role overload and qualitative role overload. Some comparison to the study on project teams can be drawn. Team development stage of the two teaching groups is different. Relating the team role stress factors to the development stage of the group can reveal the potential of management actions to promote team building and to understand the maturity of functional and well-established teams. Mature teams indicate higher job satisfaction and deliver higher performance. Especially, teaching teams who deliver highly intangible results of learning outcome are sensitive to issues in the job satisfaction and team conflicts. Because team teaching is increasing, the paper provides a review of the relevant theories and initial comparative and longitudinal results of the team role stress factors applied to teaching teams.Keywords: engineering education, stress, team role, team teaching
Procedia PDF Downloads 225883 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics
Procedia PDF Downloads 82882 The Effectiveness of Blended Learning in Pre-Registration Nurse Education: A Mixed Methods Systematic Review and Met Analysis
Authors: Albert Amagyei, Julia Carroll, Amanda R. Amorim Adegboye, Laura Strumidlo, Rosie Kneafsey
Abstract:
Introduction: Classroom-based learning has persisted as the mainstream model of pre-registration nurse education. This model is often rigid, teacher-centered, and unable to support active learning and the practical learning needs of nursing students. Health Education England (HEE), a public body of the Department of Health and Social Care, hypothesises that blended learning (BL) programmes may address health system and nursing profession challenges, such as nursing shortages and lack of digital expertise, by exploring opportunities for providing predominantly online, remote-access study which may increase nursing student recruitment, offering alternate pathways to nursing other than the traditional classroom route. This study will provide evidence for blended learning strategies adopted in nursing education as well as examine nursing student learning experiences concerning the challenges and opportunities related to using blended learning within nursing education. Objective: This review will explore the challenges and opportunities of BL within pre-registration nurse education from the student's perspective. Methods: The search was completed within five databases. Eligible studies were appraised independently by four reviewers. The JBI-convergent segregated approach for mixed methods review was used to assess and synthesize the data. The study’s protocol has been registered with the International Register of Systematic Reviews with registration number// PROSPERO (CRD42023423532). Results: Twenty-seven (27) studies (21 quantitative and 6 qualitative) were included in the review. The study confirmed that BL positively impacts nursing students' learning outcomes, as demonstrated by the findings of the meta-analysis and meta-synthesis. Conclusion: The review compared BL to traditional learning, simulation, laboratory, and online learning on nursing students’ learning and programme outcomes as well as learning behaviour and experience. The results show that BL could effectively improve nursing students’ knowledge, academic achievement, critical skills, and clinical performance as well as enhance learner satisfaction and programme retention. The review findings outline that students’ background characteristics, BL design, and format significantly impact the success of the BL nursing programme.Keywords: nursing student, blended learning, pre-registration nurse education, online learning
Procedia PDF Downloads 50881 Navigating through Uncertainty: An Explorative Study of Managers’ Experiences in China-foreign Cooperative Higher Education
Abstract:
To drive practical interpretations and applications of various policies in building the transnational education joint-ventures, middle managers learn to navigate through uncertainties and ambiguities. However, the current literature views very little about those middle managers’ experiences, perceptions, and practices. This paper takes the empirical approach and aims to uncover the middle managers’ experiences by conducting interviews, campus visits, and document analysis. Following the qualitative research method approach, the researchers gathered information from a mixture of fourteen foreign and Chinese managers. Their perceptions of the China-foreign cooperation in higher education and their perceived roles have offered important, valuable insights to this group of people’s attitudes and management performances. The diverse cultural and demographic backgrounds contributed to the significance of the study. There are four key findings. One, middle managers’ immediate micro-contexts and individual attitudes are the top two influential factors in managers’ performances. Two, the foreign middle managers showed a stronger sense of self-identity in risk-taking. Three, the Chinese middle managers preferred to see difficulties as part of their assigned responsibilities. Four, middle managers in independent universities demonstrated a stronger sense of belonging and fewer frustrations than middle managers in secondary institutes. The researchers propose that training for managers in a transnational educational setting should consider these discoveries when select fitting topics and content. In particular, middle managers should be better prepared to anticipate their everyday jobs in the micro-environment; hence, information concerning sponsor organizations’ working culture is as essential as knowing the national and local regulations, and socio-culture. Different case studies can help the managers to recognize and celebrate the diversity in transnational education. Situational stories can help them to become aware of the diverse and wide range of work contexts so that they will not feel to be left alone when facing challenges without relevant previous experience or training. Though this research is a case study based in the Chinese transnational higher education setting, the implications could be relevant and comparable to other transnational higher education situations and help to continue expanding the potential applications in this field.Keywords: educational management, middle manager performance, transnational higher education
Procedia PDF Downloads 163880 Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field
Authors: Buruk Kitachew Wossenyeleh
Abstract:
Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model.Keywords: Ter Kamerenbos, groundwater modelling, WetSpass, climate change, well operation
Procedia PDF Downloads 152879 Teaching Behaviours of Effective Secondary Mathematics Teachers: A Study in Dhaka, Bangladesh
Authors: Asadullah Sheikh, Kerry Barnett, Paul Ayres
Abstract:
Despite significant progress in access, equity and public examination success, poor student performance in mathematics in secondary schools has become a major concern in Bangladesh. A substantial body of research has emphasised the important contribution of teaching practices to student achievement. However, this has not been investigated in Bangladesh. Therefore, the study sought to find out the effectiveness of mathematics teaching practices as a means of improving secondary school mathematics in Dhaka Municipality City (DMC) area, Bangladesh. The purpose of this study was twofold, first, to identify the 20 highest performing secondary schools in mathematics in DMC, and second, to investigate the teaching practices of mathematics teachers in these schools. A two-phase mixed method approach was adopted. In the first phase, secondary source data were obtained from the Board of Intermediate and Secondary Education (BISE), Dhaka and value-added measures used to identify the 20 highest performing secondary schools in mathematics. In the second phase, a concurrent mixed method design, where qualitative methods were embedded within a dominant quantitative approach was utilised. A purposive sampling strategy was used to select fifteen teachers from the 20 highest performing secondary schools. The main sources of data were classroom teaching observations, and teacher interviews. The data from teacher observations were analysed with descriptive and nonparametric statistics. The interview data were analysed qualitatively. The main findings showed teachers adopt a direct teaching approach which incorporates orientation, structuring, modelling, practice, questioning and teacher-student interaction that creates an individualistic learning environment. The variation in developmental levels of teaching skill indicate that teachers do not necessarily use the qualitative (i.e., focus, stage, quality and differentiation) aspects of teaching behaviours effectively. This is the first study to investigate teaching behaviours of effective secondary mathematics teachers within Dhaka, Bangladesh. It contributes in an international dimension to the field of educational effectiveness and raise questions about existing constructivist approaches. Further, it contributes to important insights about teaching behaviours that can be used to inform the development of evidence-based policy and practice on quality teaching in Bangladesh.Keywords: effective teaching, mathematics, secondary schools, student achievement, value-added measures
Procedia PDF Downloads 238878 Discovering Causal Structure from Observations: The Relationships between Technophile Attitude, Users Value and Use Intention of Mobility Management Travel App
Authors: Aliasghar Mehdizadeh Dastjerdi, Francisco Camara Pereira
Abstract:
The increasing complexity and demand of transport services strains transportation systems especially in urban areas with limited possibilities for building new infrastructure. The solution to this challenge requires changes of travel behavior. One of the proposed means to induce such change is multimodal travel apps. This paper describes a study of the intention to use a real-time multi-modal travel app aimed at motivating travel behavior change in the Greater Copenhagen Region (Denmark) toward promoting sustainable transport options. The proposed app is a multi-faceted smartphone app including both travel information and persuasive strategies such as health and environmental feedback, tailoring travel options, self-monitoring, tunneling users toward green behavior, social networking, nudging and gamification elements. The prospective for mobility management travel apps to stimulate sustainable mobility rests not only on the original and proper employment of the behavior change strategies, but also on explicitly anchoring it on established theoretical constructs from behavioral theories. The theoretical foundation is important because it positively and significantly influences the effectiveness of the system. However, there is a gap in current knowledge regarding the study of mobility-management travel app with support in behavioral theories, which should be explored further. This study addresses this gap by a social cognitive theory‐based examination. However, compare to conventional method in technology adoption research, this study adopts a reverse approach in which the associations between theoretical constructs are explored by Max-Min Hill-Climbing (MMHC) algorithm as a hybrid causal discovery method. A technology-use preference survey was designed to collect data. The survey elicited different groups of variables including (1) three groups of user’s motives for using the app including gain motives (e.g., saving travel time and cost), hedonic motives (e.g., enjoyment) and normative motives (e.g., less travel-related CO2 production), (2) technology-related self-concepts (i.e. technophile attitude) and (3) use Intention of the travel app. The questionnaire items led to the formulation of causal relationships discovery to learn the causal structure of the data. Causal relationships discovery from observational data is a critical challenge and it has applications in different research fields. The estimated causal structure shows that the two constructs of gain motives and technophilia have a causal effect on adoption intention. Likewise, there is a causal relationship from technophilia to both gain and hedonic motives. In line with the findings of the prior studies, it highlights the importance of functional value of the travel app as well as technology self-concept as two important variables for adoption intention. Furthermore, the results indicate the effect of technophile attitude on developing gain and hedonic motives. The causal structure shows hierarchical associations between the three groups of user’s motive. They can be explained by “frustration-regression” principle according to Alderfer's ERG (Existence, Relatedness and Growth) theory of needs meaning that a higher level need remains unfulfilled, a person may regress to lower level needs that appear easier to satisfy. To conclude, this study shows the capability of causal discovery methods to learn the causal structure of theoretical model, and accordingly interpret established associations.Keywords: travel app, behavior change, persuasive technology, travel information, causality
Procedia PDF Downloads 141877 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence
Authors: Hoora Beheshti Haradasht, Abooali Golzary
Abstract:
Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability
Procedia PDF Downloads 82876 Handling, Exporting and Archiving Automated Mineralogy Data Using TESCAN TIMA
Authors: Marek Dosbaba
Abstract:
Within the mining sector, SEM-based Automated Mineralogy (AM) has been the standard application for quickly and efficiently handling mineral processing tasks. Over the last decade, the trend has been to analyze larger numbers of samples, often with a higher level of detail. This has necessitated a shift from interactive sample analysis performed by an operator using a SEM, to an increased reliance on offline processing to analyze and report the data. In response to this trend, TESCAN TIMA Mineral Analyzer is designed to quickly create a virtual copy of the studied samples, thereby preserving all the necessary information. Depending on the selected data acquisition mode, TESCAN TIMA can perform hyperspectral mapping and save an X-ray spectrum for each pixel or segment, respectively. This approach allows the user to browse through elemental distribution maps of all elements detectable by means of energy dispersive spectroscopy. Re-evaluation of the existing data for the presence of previously unconsidered elements is possible without the need to repeat the analysis. Additional tiers of data such as a secondary electron or cathodoluminescence images can also be recorded. To take full advantage of these information-rich datasets, TIMA utilizes a new archiving tool introduced by TESCAN. The dataset size can be reduced for long-term storage and all information can be recovered on-demand in case of renewed interest. TESCAN TIMA is optimized for network storage of its datasets because of the larger data storage capacity of servers compared to local drives, which also allows multiple users to access the data remotely. This goes hand in hand with the support of remote control for the entire data acquisition process. TESCAN also brings a newly extended open-source data format that allows other applications to extract, process and report AM data. This offers the ability to link TIMA data to large databases feeding plant performance dashboards or geometallurgical models. The traditional tabular particle-by-particle or grain-by-grain export process is preserved and can be customized with scripts to include user-defined particle/grain properties.Keywords: Tescan, electron microscopy, mineralogy, SEM, automated mineralogy, database, TESCAN TIMA, open format, archiving, big data
Procedia PDF Downloads 109875 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 65874 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 125