Search results for: higher order thinking skills
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25777

Search results for: higher order thinking skills

3277 Evidence on the Nature and Extent of Fall in Oil Prices on the Financial Performance of Listed Companies: A Ratio Analysis Case Study of the Insurance Sector in the UAE

Authors: Pallavi Kishore, Mariam Aslam

Abstract:

The sharp decline in oil prices that started in 2014 affected most economies in the world either positively or negatively. In some economies, particularly the oil exporting countries, the effects were felt immediately. The Gulf Cooperation Council’s (GCC henceforth) countries are oil and gas-dependent with the largest oil reserves in the world. UAE (United Arab Emirates) has been striving to diversify away from oil and expects higher non-oil growth in 2018. These two factors, falling oil prices and the economy strategizing away from oil dependence, make a compelling case to study the financial performance of various sectors in the economy. Among other sectors, the insurance sector is widely recognized as an important indicator of the health of the economy. An expanding population, surge in construction and infrastructure, increased life expectancy, greater expenditure on automobiles and other luxury goods translate to a booming insurance sector. A slow-down of the insurance sector, on the other hand, may indicate a general slow-down in the economy. Therefore, a study on the insurance sector will help understand the general nature of the current economy. This study involves calculations and comparisons of ratios pre and post the fall in oil prices in the insurance sector in the UAE. A sample of 33 companies listed on the official stock exchanges of UAE-Dubai Financial Market and Abu Dhabi Stock Exchange were collected and empirical analysis employed to study the financial performance pre and post fall in oil prices. Ratios were calculated in 5 categories: Profitability, Liquidity, Leverage, Efficiency, and Investment. The means pre- and post-fall are compared to conclude that the profitability ratios including ROSF (Return on Shareholder Funds), ROCE (Return on Capital Employed) and NPM (Net Profit Margin) have all taken a hit. Parametric tests, including paired t-test, concludes that while the fall in profitability ratios is statistically significant, the other ratios have been quite stable in the period. The efficiency, liquidity, gearing and investment ratios have not been severely affected by the fall in oil prices. This may be due to the implementation of stronger regulatory policies and is a testimony to the diversification into the non-oil economy. The regulatory authorities can use the findings of this study to ensure transparency in revealing financial information to the public and employ policies that will help further the health of the economy. The study will also help understand which areas within the sector could benefit from more regulations.

Keywords: UAE, insurance sector, ratio analysis, oil price, profitability, liquidity, gearing, investment, efficiency

Procedia PDF Downloads 247
3276 Optimizing Pavement Construction Procedures in the Southern Desert of Libya

Authors: Khlifa El Atrash, Gabriel Assaf

Abstract:

Libya uses a volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot, arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. However, the quality of some roads was below a satisfactory level. This paper examines the factors that contribute to low quality of road performance in Libya. To evaluate these factors, a questionnaire survey and a laboratory comparative study were performed for a few mixes under-represented of temperature and traffic load. In laboratory, rutting test conducted on two different asphalt mixture, these mixes included, an asphalt concrete mix using local aggregate and asphalt binder B(60/70) at the optimum Marshall asphalt content, another mixes designed using Superpave design procedure with the same materials and performance asphalt binder grade PG (70-10). In the survey, the questionnaire was distributed to 55 engineers and specialists in this field. The interview was conducted to a few others, and the factors that were leading to poor performance of asphalt roads were listed as; 1) Owner Experience and technical staff 2) Asphalt characteristics 3) Updating and development of Asphalt Mix Design methods 4) Lack of data collection by authorization Agency 5) Construction and compaction process 6) Mentoring and controlling mixing procedure. Considering and improving these factors will play an important role to improve the pavement performances, longer service life, and lower maintenance costs. This research summarized some recommendations for making asphalt mixtures used in hot, dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids, and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance.

Keywords: volumetric analysis, pavement performances, hot climate, traffic load, pavement temperature, asphalt mixture, environment, design and construction

Procedia PDF Downloads 274
3275 Objective Assessment of the Evolution of Microplastic Contamination in Sediments from a Vast Coastal Area

Authors: Vanessa Morgado, Ricardo Bettencourt da Silva, Carla Palma

Abstract:

The environmental pollution by microplastics is well recognized. Microplastics were already detected in various matrices from distinct environmental compartments worldwide, some from remote areas. Various methodologies and techniques have been used to determine microplastic in such matrices, for instance, sediment samples from the ocean bottom. In order to determine microplastics in a sediment matrix, the sample is typically sieved through a 5 mm mesh, digested to remove the organic matter, and density separated to isolate microplastics from the denser part of the sediment. The physical analysis of microplastic consists of visual analysis under a stereomicroscope to determine particle size, colour, and shape. The chemical analysis is performed by an infrared spectrometer coupled to a microscope (micro-FTIR), allowing to the identification of the chemical composition of microplastic, i.e., the type of polymer. Creating legislation and policies to control and manage (micro)plastic pollution is essential to protect the environment, namely the coastal areas. The regulation is defined from the known relevance and trends of the pollution type. This work discusses the assessment of contamination trends of a 700 km² oceanic area affected by contamination heterogeneity, sampling representativeness, and the uncertainty of the analysis of collected samples. The methodology developed consists of objectively identifying meaningful variations of microplastic contamination by the Monte Carlo simulation of all uncertainty sources. This work allowed us to unequivocally conclude that the contamination level of the studied area did not vary significantly between two consecutive years (2018 and 2019) and that PET microplastics are the major type of polymer. The comparison of contamination levels was performed for a 99% confidence level. The developed know-how is crucial for the objective and binding determination of microplastic contamination in relevant environmental compartments.

Keywords: measurement uncertainty, micro-ATR-FTIR, microplastics, ocean contamination, sampling uncertainty

Procedia PDF Downloads 92
3274 Cricket Injury Surveillence by Mobile Application Technology on Smartphones

Authors: Najeebullah Soomro, Habib Noorbhai, Mariam Soomro, Ross Sanders

Abstract:

The demands on cricketers are increasing with more matches being played in a shorter period of time with a greater intensity. A ten year report on injury incidence for Australian elite cricketers between the 2000- 2011 seasons revealed an injury incidence rate of 17.4%.1. In the 2009–10 season, 24 % of Australian fast bowlers missed matches through injury. 1 Injury rates are even higher in junior cricketers with an injury incidence of 25% or 2.9 injuries per 100 player hours reported. 2 Traditionally, injury surveillance has relied on the use of paper based forms or complex computer software. 3,4 This makes injury reporting laborious for the staff involved. The purpose of this presentation is to describe a smartphone based mobile application as a means of improving injury surveillance in cricket. Methods: The researchers developed CricPredict mobile App for the Android platforms, the world’s most widely used smartphone platform. It uses Qt SDK (Software Development Kit) as IDE (Integrated Development Environment). C++ was used as the programming language with the Qt framework, which provides us with cross-platform abilities that will allow this app to be ported to other operating systems (iOS, Mac, Windows) in the future. The wireframes (graphic user interface) were developed using Justinmind Prototyper Pro Edition Version (Ver. 6.1.0). CricPredict enables recording of injury and training status conveniently and immediately. When an injury is reported automated follow-up questions include site of injury, nature of injury, mechanism of injury, initial treatment, referral and action taken after injury. Direct communication with the player then enables assessment of severity and diagnosis. CricPredict also allows the coach to maintain and track each player’s attendance at matches and training session. Workload data can also be recorded by either the player or coach by recording the number of balls bowled or played in a day. This is helpful in formulating injury rates and time lost due to injuries. All the data are stored at a secured password protected data server. Outcomes and Significance: Use of CricPredit offers a simple, user friendly tool for the coaching or medical staff associated with teams to predict, record and report injuries. This system will assist teams to capture injury data with ease thus allowing better understanding of injuries associated with cricket and potentially optimize the performance of such cricketers.

Keywords: injury, cricket, surveillance, smartphones, mobile

Procedia PDF Downloads 459
3273 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete

Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar

Abstract:

Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.

Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index

Procedia PDF Downloads 322
3272 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 26
3271 Triplex Detection of Pistacia vera, Arachis hypogaea and Pisum sativum in Processed Food Products Using Probe Based PCR

Authors: Ergün Şakalar, Şeyma Özçirak Ergün, Emrah Yalazi̇, Emine Altinkaya, Cengiz Ataşoğlu

Abstract:

In recent years, food allergies which cause serious health problems affect to public health around the world. Foodstuffs which contain allergens are either intentionally used as ingredients or are encased as contaminant in food products. The prevalence of clinical allergy to peanuts and nuts is estimated at about 0.4%-1.1% of the adult population, representing the allergy to pistachio the 7% of the cases of tree nut causing allergic reactions. In order to protect public health and enforce the legislation, methods for sensitive analysis of pistachio and peanut contents in food are required. Pea, pistachio and peanut are used together, to reduce the cost in food production such as baklava, snack foods.DNA technology-based methods in food analysis are well-established and well-roundedtools for species differentiation, allergen detection. Especially, the probe-based TaqMan real-time PCR assay can amplify target DNA with efficiency, specificity, and sensitivity.In this study, pistachio, peanut and pea were finely ground and three separate series of triplet mixtures containing 0.1, 1, 10, 100, 1000, 10,000 and 100,000 mg kg-1 of each sample were prepared for each series, to a final weight of 100 g. DNA from reference samples and industrial products was successfully extracted with the GIDAGEN® Multi-Fast DNA Isolation Kit. TaqMan probes were designed for triplex determination of ITS, Ara h 3 and pea lectin genes which are specific regions for identification pistachio, peanut and pea, respectively.The real-time PCR as quantitative detected pistachio, peanut and pea in these mixtures down to the lowest investigated level of 0.1, 0.1 and 1 mg kg-1, respectively. Also, the methods reported here are capable of detecting of as little as 0.001% level of peanut DNA, 0,000001% level of pistachio DNA and 0.000001% level of pea DNA. We accomplish that the quantitative triplex real-time PCR method developed in this study canbe applied to detect pistachio, peanut and peatraces for three allergens at once in commercial food products.

Keywords: allergens, DNA, real-time PCR, TaqMan probe

Procedia PDF Downloads 257
3270 Method for Auto-Calibrate Projector and Color-Depth Systems for Spatial Augmented Reality Applications

Authors: R. Estrada, A. Henriquez, R. Becerra, C. Laguna

Abstract:

Spatial Augmented Reality is a variation of Augmented Reality where the Head-Mounted Display is not required. This variation of Augmented Reality is useful in cases where the need for a Head-Mounted Display itself is a limitation. To achieve this, Spatial Augmented Reality techniques substitute the technological elements of Augmented Reality; the virtual world is projected onto a physical surface. To create an interactive spatial augmented experience, the application must be aware of the spatial relations that exist between its core elements. In this case, the core elements are referred to as a projection system and an input system, and the process to achieve this spatial awareness is called system calibration. The Spatial Augmented Reality system is considered calibrated if the projected virtual world scale is similar to the real-world scale, meaning that a virtual object will maintain its perceived dimensions when projected to the real world. Also, the input system is calibrated if the application knows the relative position of a point in the projection plane and the RGB-depth sensor origin point. Any kind of projection technology can be used, light-based projectors, close-range projectors, and screens, as long as it complies with the defined constraints; the method was tested on different configurations. The proposed procedure does not rely on a physical marker, minimizing the human intervention on the process. The tests are made using a Kinect V2 as an input sensor and several projection devices. In order to test the method, the constraints defined were applied to a variety of physical configurations; once the method was executed, some variables were obtained to measure the method performance. It was demonstrated that the method obtained can solve different arrangements, giving the user a wide range of setup possibilities.

Keywords: color depth sensor, human computer interface, interactive surface, spatial augmented reality

Procedia PDF Downloads 124
3269 Some Quality Parameters of Selected Maize Hybrids from Serbia for the Production of Starch, Bioethanol and Animal Feed

Authors: Marija Milašinović-Šeremešić, Valentina Semenčenko, Milica Radosavljević, Dušanka Terzić, Ljiljana Mojović, Ljubica Dokić

Abstract:

Maize (Zea mays L.) is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. The main goal of the present study was to investigate a suitability of selected maize hybrids of different genetic background produced in Maize Research Institute ‘Zemun Polje’, Belgrade, Serbia, for starch, bioethanol and animal feed production. All the hybrids are commercial and their detailed characterization is important for the expansion of their different uses. The starches were isolated by using a 100-g laboratory maize wet-milling procedure. Hydrolysis experiments were done in two steps (liquefaction with Termamyl SC, and saccharification with SAN Extra L). Starch hydrolysates obtained by the two-step hydrolysis of the corn flour starch were subjected to fermentation by S. cerevisiae var. ellipsoideus under semi-anaerobic conditions. The digestibility based on enzymatic solubility was performed by the Aufréré method. All investigated ZP maize hybrids had very different physical characteristics and chemical composition which could allow various possibilities of their use. The amount of hard (vitreous) and soft (floury) endosperm in kernel is considered one of the most important parameters that can influence the starch and bioethanol yields. Hybrids with a lower test weight and density and a greater proportion of soft endosperm fraction had a higher yield, recovery and purity of starch. Among the chemical composition parameters only starch content significantly affected the starch yield. Starch yields of studied maize hybrids ranged from 58.8% in ZP 633 to 69.0% in ZP 808. The lowest bioethanol yield of 7.25% w/w was obtained for hybrid ZP 611k and the highest by hybrid ZP 434 (8.96% w/w). A very significant correlation was determined between kernel starch content and the bioethanol yield, as well as volumetric productivity (48h) (r=0.66). Obtained results showed that the NDF, ADF and ADL contents in the whole maize plant of the observed ZP maize hybrids varied from 40.0% to 60.1%, 18.6% to 32.1%, and 1.4% to 3.1%, respectively. The difference in the digestibility of the dry matter of the whole plant among hybrids (ZP 735 and ZP 560) amounted to 18.1%. Moreover, the differences in the contents of the lignocelluloses fraction affected the differences in dry matter digestibility. From the results it can be concluded that genetic background of the selected maize hybrids plays an important part in estimation of the technological value of maize hybrids for various purposes. Obtained results are of an exceptional importance for the breeding programs and selection of potentially most suitable maize hybrids for starch, bioethanol and animal feed production.

Keywords: bioethanol, biomass quality, maize, starch

Procedia PDF Downloads 222
3268 Nonlinear Internal Waves in Rotating Ocean

Authors: L. A. Ostrovsky, Yu. A. Stepanyants

Abstract:

Effect of Earth rotation on nonlinear waves is a practically important and theoretically challenging problem of fluid mechanics and geophysics. Whereas the large-scale, geostrophic processes such as Rossby waves are a classical object of oceanic and atmospheric physics, rotation effects on mesoscale waves are not well studied. In particular, the Coriolis force can radically modify the behavior of nonlinear internal gravity waves in the ocean having spatial scales of 1-10 kilometers and time durations of few hours. In the last decade, such a non-trivial behavior was observed more than once. Similar effects are possible for magnetic sound in the ionosphere. Here we outline the main physical peculiarities in the behavior of nonlinear internal waves due to the rotation effect and present some results of our recent studies. The consideration is based on the fourth-order equation derived by one of the authors as a rotation-modified Korteweg–de Vries (rKdV) equation which includes two types of dispersion: one is responsible for the finiteness of depth as in the classical KdV equation; another is due to the Coriolis effect. This equation is, in general, non-integrable; moreover, under the conditions typical of oceanic waves (positive dispersion parameter), it does not allow solitary solutions at all. In the opposite case (negative dispersion) which is possible for, e.g., magnetic sound, solitary solutions do exist and can form complex bound states (multisoliton). Another non-trivial properties of nonlinear internal waves with rotation include, to name a few, the ‘terminal’ damping of the initial KdV soliton disappearing in a finite time due to radiation losses caused by Earth’s rotation, and eventual transformation of a KdV soliton into a wave packet (an envelope soliton). The new results to be discussed refer to the interaction of a soliton with a long background wave. It is shown, in particular, that in this case internal solitons can exist since the radiation losses are compensated by energy pumping from the background wave. Finally, the relevant oceanic observations of rotation effect on internal waves are briefly described.

Keywords: Earth rotation, internal waves, nonlinear waves, solitons

Procedia PDF Downloads 676
3267 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification

Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.

Keywords: antibiotic resistance, Streptococci, respiratory infections, diagnostic test

Procedia PDF Downloads 130
3266 Planning a Haemodialysis Process by Minimum Time Control of Hybrid Systems with Sliding Motion

Authors: Radoslaw Pytlak, Damian Suski

Abstract:

The aim of the paper is to provide a computational tool for planning a haemodialysis process. It is shown that optimization methods can be used to obtain the most effective treatment focused on removing both urea and phosphorus during the process. In order to achieve that, the IV–compartment model of phosphorus kinetics is applied. This kinetics model takes into account a rebound phenomenon that can occur during haemodialysis and results in a hybrid model of the process. Furthermore, vector fields associated with the model equations are such that it is very likely that using the most intuitive objective functions in the planning problem could lead to solutions which include sliding motions. Therefore, building computational tools for solving the problem of planning a haemodialysis process has required constructing numerical algorithms for solving optimal control problems with hybrid systems. The paper concentrates on minimum time control of hybrid systems since this control objective is the most suitable for the haemodialysis process considered in the paper. The presented approach to optimal control problems with hybrid systems is different from the others in several aspects. First of all, it is assumed that a hybrid system can exhibit sliding modes. Secondly, the system’s motion on the switching surface is described by index 2 differential–algebraic equations, and that guarantees accurate tracking of the sliding motion surface. Thirdly, the gradients of the problem’s functionals are evaluated with the help of adjoint equations. The adjoint equations presented in the paper take into account sliding motion and exhibit jump conditions at transition times. The optimality conditions in the form of the weak maximum principle for optimal control problems with hybrid systems exhibiting sliding modes and with piecewise constant controls are stated. The presented sensitivity analysis can be used to construct globally convergent algorithms for solving considered problems. The paper presents numerical results of solving the haemodialysis planning problem.

Keywords: haemodialysis planning process, hybrid systems, optimal control, sliding motion

Procedia PDF Downloads 195
3265 Experiences and Perspectives of Jewish Heritage Conservation and Promotion in Oradea and Timişoara, Western Romania

Authors: Andrea Corsale

Abstract:

The historical and geographical regions of Banat and Crişana in Western Romania have long been characterized by a high degree of ethnic diversity. However, this traditionally complex cultural, linguistic, and religious mosaic has undergone a progressive simplification during the past century due to deportations, emigration, and assimilation, and both regions now have a large Romanian-speaking majority population. This contribution focuses on Jewish heritage in the two largest cities of these two regions, Timişoara (Banat) and Oradea (Crişana). The two cities shared some historical events but also went through different experiences, despite their relative geographic proximity. The Jewish community of Timişoara survived the Holocaust basically intact, an almost unique case in Central-Eastern Europe, but largely left the city after the war. Instead, the Jewish community of Oradea was almost completely deported and killed in Auschwitz, and a renewed post-war community gradually emigrated abroad in the following decades. The two Jewish communities are now very small in size but inherited a vast tangible and intangible heritage (synagogues, cemeteries, community buildings, characteristic architecture, memories, local traditions, and histories), partially restored and recovered in recent years. The author’s fieldwork shows that local Jewish stakeholders are aware of the potential of this heritage in terms of cultural and economic benefits, but significant weaknesses and concerns exist, as the small dimension of these communities, and their financial constraints, challenge their future role in the eventual promotion and management of this heritage, which is now basically in the hands of the non-Jewish public and private stakeholders. Projects, experiences, and views related to Jewish heritage conservation and promotion in these two contexts will be portrayed and analysed in order to contribute to a broader discussion on representations and narratives of minority heritage within cultural tourism development dynamics.

Keywords: Jewish heritage, ethnic minorities, heritage tourism, Romania

Procedia PDF Downloads 110
3264 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads

Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo

Abstract:

Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.

Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads

Procedia PDF Downloads 246
3263 Aero-Hydrodynamic Model for a Floating Offshore Wind Turbine

Authors: Beatrice Fenu, Francesco Niosi, Giovanni Bracco, Giuliana Mattiazzo

Abstract:

In recent years, Europe has seen a great development of renewable energy, in a perspective of reducing polluting emissions and transitioning to cleaner forms of energy, as established by the European Green New Deal. Wind energy has come to cover almost 15% of European electricity needs andis constantly growing. In particular, far-offshore wind turbines are attractive from the point of view of exploiting high-speed winds and high wind availability. Considering offshore wind turbine siting that combines the resources analysis, the bathymetry, environmental regulations, and maritime traffic and considering the waves influence in the stability of the platform, the hydrodynamic characteristics of the platform become fundamental for the evaluation of the performances of the turbine, especially for the pitch motion. Many platform's geometries have been studied and used in the last few years. Their concept is based upon different considerations as hydrostatic stability, material, cost and mooring system. A new method to reach a high-performances substructure for different kinds of wind turbines is proposed. The system that considers substructure, mooring, and wind turbine is implemented in Orcaflex, and the simulations are performed considering several sea states and wind speeds. An external dynamic library is implemented for the turbine control system. The study shows the comparison among different substructures and the new concepts developed. In order to validate the model, CFD simulations will be performed by mean of STAR CCM+, and a comparison between rigid and elastic body for what concerns blades and tower will be carried out. A global model will be built to predict the productivity of the floating turbine according to siting, resources, substructure, and mooring. The Levelized Cost of Electricity (LCOE) of the system is estimated, giving a complete overview about the advantages of floating offshore wind turbine plants. Different case studies will be presented.

Keywords: aero-hydrodynamic model, computational fluid dynamics, floating offshore wind, siting, verification, and validation

Procedia PDF Downloads 215
3262 A Low-Cost of Foot Plantar Shoes for Gait Analysis

Authors: Zulkifli Ahmad, Mohd Razlan Azizan, Nasrul Hadi Johari

Abstract:

This paper presents a study on development and conducting of a wearable sensor system for gait analysis measurement. For validation, the method of plantar surface measurement by force plate was prepared. In general gait analysis, force plate generally represents a studies about barefoot in whole steps and do not allow analysis of repeating movement step in normal walking and running. The measurements that were usually perform do not represent the whole daily plantar pressures in the shoe insole and only obtain the ground reaction force. The force plate measurement is usually limited a few step and it is done indoor and obtaining coupling information from both feet during walking is not easily obtained. Nowadays, in order to measure pressure for a large number of steps and obtain pressure in each insole part, it could be done by placing sensors within an insole. With this method, it will provide a method for determine the plantar pressures while standing, walking or running of a shoe wearing subject. Inserting pressure sensors in the insole will provide specific information and therefore the point of the sensor placement will result in obtaining the critical part under the insole. In the wearable shoe sensor project, the device consists left and right shoe insole with ten FSR. Arduino Mega was used as a micro-controller that read the analog input from FSR. The analog inputs were transmitted via bluetooth data transmission that gains the force data in real time on smartphone. Blueterm software which is an android application was used as an interface to read the FSR reading on the shoe wearing subject. The subject consist of two healthy men with different age and weight doing test while standing, walking (1.5 m/s), jogging (5 m/s) and running (9 m/s) on treadmill. The data obtain will be saved on the android device and for making an analysis and comparison graph.

Keywords: gait analysis, plantar pressure, force plate, earable sensor

Procedia PDF Downloads 454
3261 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival

Procedia PDF Downloads 341
3260 Characterization of Dota-Girentuximab Conjugates for Radioimmunotherapy

Authors: Tais Basaco, Stefanie Pektor, Josue A. Moreno, Matthias Miederer, Andreas Türler

Abstract:

Radiopharmaceuticals based in monoclonal anti-body (mAb) via chemical linkers have become a potential tool in nuclear medicine because of their specificity and the large variability and availability of therapeutic radiometals. It is important to identify the conjugation sites and number of attached chelator to mAb to obtain radioimmunoconjugates with required immunoreactivity and radiostability. Girentuximab antibody (G250) is a potential candidate for radioimmunotherapy of clear cell carcinomas (RCCs) because it is reactive with CAIX antigen, a transmembrane glycoprotein overexpressed on the cell surface of most ( > 90%) (RCCs). G250 was conjugated with the bifunctional chelating agent DOTA (1,4,7,10-Tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid) via a benzyl-thiocyano group as a linker (p-SCN-Bn-DOTA). DOTA-G250 conjugates were analyzed by size exclusion chromatography (SE-HPLC) and by electrophoresis (SDS-PAGE). The potential site-specific conjugation was identified by liquid chromatography–mass spectrometry (LC/MS-MS) and the number of linkers per molecule of mAb was calculated using the molecular weight (MW) measured by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The average number obtained in the conjugates in non-reduced conditions was between 8-10 molecules of DOTA per molecule of mAb. The average number obtained in the conjugates in reduced conditions was between 1-2 and 3-4 molecules of DOTA per molecule of mAb in the light chain (LC) and heavy chain (HC) respectively. Potential DOTA modification sites of the chelator were identified in lysine residues. The biological activity of the conjugates was evaluated by flow cytometry (FACS) using CAIX negative (SKRC-18) and CAIX positive (SKRC-52). The DOTA-G250 conjugates were labelled with 177Lu with a radiochemical yield > 95% reaching specific activities of 12 MBq/µg. The stability in vitro of different types of radioconstructs was analyzed in human serum albumin (HSA). The radiostability of 177Lu-DOTA-G250 at high specific activity was increased by addition of sodium ascorbate after the labelling. The immunoreactivity was evaluated in vitro and in vivo. Binding to CAIX positive cells (SK-RC-52) at different specific activities was higher for conjugates with less DOTA content. Protein dose was optimized in mice with subcutaneously growing SK-RC-52 tumors using different amounts of 177Lu- DOTA-G250.

Keywords: mass spectrometry, monoclonal antibody, radiopharmaceuticals, radioimmunotheray, renal cancer

Procedia PDF Downloads 309
3259 Tourist Behavior Towards Blockchain-Based Payments

Authors: A. Šapkauskienė, A. Mačerinskienė, R. Andrulienė, R. Bruzgė, S. Masteika, K. Driaunys

Abstract:

The COVID-19 pandemic has affected not only world markets and economies but also the daily lives of customers and their payment habits. The pandemic has accelerated the digital transformation, so the role of technology will become even more important post-COVID. Although the popularity of cryptocurrencies has reached unprecedented heights, there are still obstacles, such as a lack of consumer experience and distrust of these technologies, so exploring the role of cryptocurrency and blockchain in the context of international travel becomes extremely important. Research on tourists’ intentions to use cryptocurrencies for payment purposes is limited due to the small number of research studies. To fill this research gap, an exploratory study based on the analysis of survey data was conducted. The purpose of the research is to explore how the behavior of tourists has changed making their financial transactions when paying for the tourism services in order to determine the intention to pay in cryptocurrencies. Behavioral intention can be examined as a dependent variable that is useful for the study of the acceptance of blockchain as cutting-edge technology. Therefore, this study examines the intention of travelers to use cryptocurrencies in electronic payments for tourism services. Several studies have shown that the intention to accept payments in a cryptocurrency is affected by the perceived usefulness of these payments and the perceived ease of use. The findings deepen our understanding of the readiness of service users to apply for blockchain-based payment in the tourism sector. The tourism industry has to focus not only on the technology but on consumers who can use cryptocurrencies, creating new possibilities and increasing business competitiveness. Based on research results, suggestions are made to guide future research on the use of cryptocurrencies by tourists in the tourism industry. Therefore, in line with the rapid expansion of virtual currency users, market capitalization, and payment in cryptographic currencies, it is necessary to explore the possibilities of implementing a blockchain-based system aiming to promote the use of services in the tourism sector as the most affected by the pandemic.

Keywords: behavioral intention, blockchain-based payment, cryptocurrency, tourism

Procedia PDF Downloads 106
3258 The Representation of Migrants in the UK and Saudi Arabia Press: A Cross-Linguistic Discourse Analysis Study

Authors: Eman Alatawi

Abstract:

The world is currently experiencing an upsurge in the number of international migrants, which has reached 281 million worldwide; in particular, both the UK and Saudi Arabia have recently been faced with an unprecedented number of immigrants. As a result, the media in these two countries is constantly posting news about the issue, and newspapers, in particular, play a vital role in shaping the public’s view of immigration issues. Because the media is an influential tool in society, it has the ability to construct a specific image of migrants and influence public opinion concerning immigrant groups. However, most of the existing studies have addressed the plight of migrants in the UK, Europe, and the US, and few have considered the Middle East; specifically, there is a pressing need for studies that focus on the press in Saudi Arabia, which is one of the main countries that is experiencing immigration at a tremendous rate. This paper employs critical discourse analysis (CDA) to examine the depiction of migrants in the British and Saudi Arabian media in order to explore the involvement of three linguistic features in the media’s representation of migrant-related topics. These linguistic features are the names, metaphors, and collocations that the press in the UK and in Saudi Arabia uses to describe migrants; the impact of these depictions is also considered. This comparative study could create a better understanding of how the Saudi Arabian press presents the topic of migrants and immigration, which will assist in extending the understanding of migration discourses beyond an Anglo-centric viewpoint. The main finding of this study was that both British and Saudi Arabian newspapers tended to represent migrants’ issues by painting migrants in a negative light through the use of negative references or names, metaphors, and collocations; furthermore, the media’s negative stereotyping of migrants was found to be consistent, which could have an influence on the public’s opinion of these minority groups. Such observations show that the issue is not as simple as individuals, press systems, or political affiliations.

Keywords: representation, migrants, the UK press, Saudi Arabia press, cross-linguistic, discourse analysis

Procedia PDF Downloads 81
3257 An Analysis on Aid for Migrants: A Descriptive Analysis on Official Development Assistance During the Migration Crisis

Authors: Elena Masi, Adolfo Morrone

Abstract:

Migration has recently become a mainstream development sector and is currently at the forefront in institutional and civil society context. However, no consensus exists on how the link between migration and development operates, that is how development is related to migration and how migration can promote development. On one hand, Official Development Assistance is recognized to be one of the levers to development. On the other hand, the debate is focusing on what should be the scope of aid programs targeting migrants groups and in general the migration process. This paper provides a descriptive analysis on how development aid for migration was allocated in the recent past, focusing on the actions that were funded and implemented by the international donor community. In the absence of an internationally shared methodology for defining the boundaries of development aid on migration, the analysis based on lexical hypotheses on the title or on the short description of initiatives funded by several Organization for Economic Co-operation and Development (OECD) countries. Moreover, the research describes and quantifies aid flows for each country according to different criteria. The terms migrant and refugee are used to identify the projects in accordance with the most internationally agreed definitions and only actions in countries of transit or of origin are considered eligible, thus excluding the amount sustained for refugees in donor countries. The results show that the percentage of projects targeting migrants, in terms of amount, has followed a growing trend from 2009 to 2016 in several European countries, and is positively correlated with the flows of migrants. Distinguishing between programs targeting migrants and programs targeting refugees, some specific national features emerge more clearly. A focus is devoted to actions targeting the root causes of migration, showing an inter-sectoral approach in international aid allocation. The analysis gives some tentative solutions to the lack of consensus on language on migration and development aid, and emphasizes the need to internationally agree on a criterion for identifying programs targeting both migrants and refugees, to make action more transparent and in order to develop effective strategies at the global level.

Keywords: migration, official development assistance, ODA, refugees, time series

Procedia PDF Downloads 133
3256 Evaluation of Occupational Doses in Interventional Radiology

Authors: Fernando Antonio Bacchim Neto, Allan Felipe Fattori Alves, Maria Eugênia Dela Rosa, Regina Moura, Diana Rodrigues De Pina

Abstract:

Interventional Radiology is the radiology modality that provides the highest dose values to medical staff. Recent researches show that personal dosimeters may underestimate dose values in interventional physicians, especially in extremities (hands and feet) and eye lens. The aim of this work was to study radiation exposure levels of medical staff in different interventional radiology procedures and estimate the annual maximum numbers of procedures (AMN) that each physician could perform without exceed the annual limits of dose established by normative. For this purpose LiF:Mg,Ti (TLD-100) dosimeters were positioned in different body regions of the interventional physician (eye lens, thyroid, chest, gonads, hand and foot) above the radiological protection vests as lead apron and thyroid shield. Attenuation values for lead protection vests were based on international guidelines. Based on these data were chosen as 90% attenuation of the lead vests and 60% attenuation of the protective glasses. 25 procedures were evaluated: 10 diagnostics, 10 angioplasty, and 5-aneurysm treatment. The AMN of diagnostic procedures was 641 for the primary interventional radiologist and 930 for the assisting interventional radiologist. For the angioplasty procedures, the AMN for primary interventional radiologist was 445 and for assisting interventional radiologist was 1202. As for the procedures of aneurism treatment, the AMN for the primary interventional radiologist was 113 and for the assisting interventional radiologist were 215. All AMN were limited by the eye lens doses already considering the use of protective glasses. In all categories evaluated, the higher dose values are found in gonads and in the lower regions of professionals, both for the primary interventionist and for the assisting, but the eyes lens dose limits are smaller than these regions. Additional protections as mobile barriers, which can be positioned between the interventionist and the patient, can decrease the exposures in the eye lens, providing a greater protection for the medical staff. The alternation of professionals to perform each type of procedure can reduce the dose values received by them over a period. The analysis of dose profiles proposed in this work showed that personal dosimeters positioned in chest might underestimate dose values in other body parts of the interventional physician, especially in extremities and eye lens. As each body region of the interventionist is subject to different levels of exposure, dose distribution in each region provides a better approach to what actions are necessary to ensure the radiological protection of medical staff.

Keywords: interventional radiology, radiation protection, occupationally exposed individual, hemodynamic

Procedia PDF Downloads 394
3255 Renovate to nZEB of an Existing Building in the Mediterranean Area: Analysis of the Use of Renewable Energy Sources for the HVAC System

Authors: M. Baratieri, M. Beccali, S. Corradino, B. Di Pietra, C. La Grassa, F. Monteleone, G. Morosinotto, G. Puglisi

Abstract:

The energy renovation of existing buildings represents an important opportunity to increase the decarbonization and the sustainability of urban environments. In this context, the work carried out has the objective of demonstrating the technical and economic feasibility of an energy renovate of a public building destined for offices located on the island of Lampedusa in the Mediterranean Sea. By applying the Italian transpositions of European Directives 2010/31/EU and 2009/28/EC, the building has been renovated from the current energy requirements of 111.7 kWh/m² to 16.4 kWh/m². The result achieved classifies the building as nZEB (nearly Zero Energy Building) according to the Italian national definition. The analysis was carried out using in parallel a quasi-stationary software, normally used in the professional field, and a dynamic simulation model often used in the academic world. The proposed interventions cover the components of the building’s envelope, the heating-cooling system and the supply of energy from renewable sources. In these latter points, the analysis has focused more on assessing two aspects that affect the supply of renewable energy. The first concerns the use of advanced logic control systems for air conditioning units in order to increase photovoltaic self-consumption. With these adjustments, a considerable increase in photovoltaic self-consumption and a decrease in the electricity exported to the Island's electricity grid have been obtained. The second point concerned the evaluation of the building's energy classification considering the real efficiency of the heating-cooling plant. Normally the energy plants have lower operational efficiency than the designed one due to multiple reasons; the decrease in the energy classification of the building for this factor has been quantified. This study represents an important example for the evaluation of the best interventions for the energy renovation of buildings in the Mediterranean Climate and a good description of the correct methodology to evaluate the resulting improvements.

Keywords: heat pumps, HVAC systems, nZEB renovation, renewable energy sources

Procedia PDF Downloads 453
3254 Modeling of Cf-252 and PuBe Neutron Sources by Monte Carlo Method in Order to Develop Innovative BNCT Therapy

Authors: Marta Błażkiewicz, Adam Konefał

Abstract:

Currently, boron-neutron therapy is carried out mainly with the use of a neutron beam generated in research nuclear reactors. This fact limits the possibility of realization of a BNCT in centers distant from the above-mentioned reactors. Moreover, the number of active nuclear reactors in operation in the world is decreasing due to the limited lifetime of their operation and the lack of new installations. Therefore, the possibilities of carrying out boron-neutron therapy based on the neutron beam from the experimental reactor are shrinking. However, the use of nuclear power reactors for BNCT purposes is impossible due to the infrastructure not intended for radiotherapy. Therefore, a serious challenge is to find ways to perform boron-neutron therapy based on neutrons generated outside the research nuclear reactor. This work meets this challenge. Its goal is to develop a BNCT technique based on commonly available neutron sources such as Cf-252 and PuBe, which will enable the above-mentioned therapy in medical centers unrelated to nuclear research reactors. Advances in the field of neutron source fabrication make it possible to achieve strong neutron fluxes. The current stage of research focuses on the development of virtual models of the above-mentioned sources using the Monte Carlo simulation method. In this study, the GEANT4 tool was used, including the model for simulating neutron-matter interactions - High Precision Neutron. Models of neutron sources were developed on the basis of experimental verification based on the activation detectors method with the use of indium foil and the cadmium differentiation method allowing to separate the indium activation contribution from thermal and resonance neutrons. Due to the large number of factors affecting the result of the verification experiment, the 10% discrepancy between the simulation and experiment results was accepted.

Keywords: BNCT, virtual models, neutron sources, monte carlo, GEANT4, neutron activation detectors, gamma spectroscopy

Procedia PDF Downloads 187
3253 A Remote Sensing Approach to Estimate the Paleo-Discharge of the Lost Saraswati River of North-West India

Authors: Zafar Beg, Kumar Gaurav

Abstract:

The lost Saraswati is described as a large perennial river which was 'lost' in the desert towards the end of the Indus-Saraswati civilisation. It has been proposed earlier that the lost Saraswati flowed in the Sutlej-Yamuna interfluve, parallel to the present day Indus River. It is believed that one of the earliest known ancient civilizations, the 'Indus-Saraswati civilization' prospered along the course of the Saraswati River. The demise of the Indus civilization is considered to be due to desiccation of the river. Today in the Sutlej-Yamuna interfluve, we observe an ephemeral river, known as Ghaggar. It is believed that along with the Ghaggar River, two other Himalayan Rivers Sutlej and Yamuna were tributaries of the lost Saraswati and made a significant contribution to its discharge. Presence of a large number of archaeological sites and the occurrence of thick fluvial sand bodies in the subsurface in the Sutlej-Yamuna interfluve has been used to suggest that the Saraswati River was a large perennial river. Further, the wider course of about 4-7 km recognized from satellite imagery of Ghaggar-Hakra belt in between Suratgarh and Anupgarh strengthens this hypothesis. Here we develop a methodology to estimate the paleo discharge and paleo width of the lost Saraswati River. In doing so, we rely on the hypothesis which suggests that the ancient Saraswati River used to carry the combined flow or some part of the Yamuna, Sutlej and Ghaggar catchments. We first established a regime relationship between the drainage area-channel width and catchment area-discharge of 29 different rivers presently flowing on the Himalayan Foreland from Indus in the west to the Brahmaputra in the East. We found the width and discharge of all the Himalayan rivers scale in a similar way when they are plotted against their corresponding catchment area. Using these regime curves, we calculate the width and discharge of paleochannels originating from the Sutlej, Yamuna and Ghaggar rivers by measuring their corresponding catchment area from satellite images. Finally, we add the discharge and width obtained from each of the individual catchments to estimate the paleo width and paleo discharge respectively of the Saraswati River. Our regime curves provide a first-order estimate of the paleo discharge of the lost Saraswati.

Keywords: Indus civilization, palaeochannel, regime curve, Saraswati River

Procedia PDF Downloads 179
3252 Islam, Gender and Education in Contemporary Georgia: The Example of Kvemo Kartli

Authors: N. Gelovani, D. Ismailov, S. Bochorishvili

Abstract:

Religious minorities of Georgia include Muslims. Their composition is sufficiently miscellaneous, enclosing both ethnical viewpoint and belonging to the inner Islamic denomination. A majority of Muslims represent Azerbaijanis, who chiefly live in Kvemo Kartli (Bolnisi, Gardabani, Dmanisi, Tetri Tskaro, Marneuli and Tsalka). The catalyst for researchers of Islamic History is the geopolitical interests of Georgia, centuries-old contacts with the Islamic world, the not entirely trivial portion of Islam confessor population, the increasing influence of the Islamic factor in current religious-political processes in the world, the elevating procedure of Muslim religious self-consciousness in the Post-Soviet states, significant challenges of international terrorism, and perspectives of rapid globalization. The rise in the level of religious identity of Muslim citizens of Georgia (first of all of those who are not ethnic Georgians) is noticeable. New mosques have been constructed and, sometimes, even young people are being sent to the religious educational institutions of Muslim countries to gain a higher Islamic education. At a time when gender studies are substantive, the goal of which is to eliminate gender-based discrimination and violence in societies, it is essential in Georgia to conduct researches around the concrete problem – Islamic tradition, woman and education in Georgia. A woman’s right to education is an important indicator of women’s general status in a society. The appropriate resources, innovative analysis of Georgian ethnological materials, and surveying of the population (quantitative and qualitative research reports, working papers), condition the success of these researches. In the presented work, interrelation matters of Islam, gender and education in contemporary Georgia by the example of the Azerbaijani population in Kvemo Kartli during period 1992-2016 are studied. We researched the history of Muslim religious education centers in Tbilisi and Kvemo Kartli (Bolnisi, Gardabani, Dmanisi, Tetri Tskaro, Marneuli and Tsalka) in 1992-2016, on the one hand, and the results of sociological interrogation, on the other. As a result of our investigation, we found that Azeri women in the Kvemo Kartli (Georgia) region mostly receive their education in Georgia and Azerbaijan. Educational and Cultural Institutions are inaccessible for most Azeri women. The main reasons are the absence of educational and religious institutions at their places of residence and state policies towards Georgia’s Muslims. 

Keywords: Islam, gender, Georgia, education

Procedia PDF Downloads 229
3251 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation

Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma

Abstract:

The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.

Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation

Procedia PDF Downloads 509
3250 Phytoremediation Potential of Enhanced Tobacco BAC F3 in Soil Contaminated with Heavy Metals

Authors: Violina Angelova

Abstract:

A comparative study has been carried out into the impact of organic meliorants on the uptake of heavy metals, micro and macroelements and the phytoremediation potential of enhanced tobacco BAC F3. The soil used as part of this experiment was sampled from the vicinity of the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The pot experiment carried out consisted of a randomized, complete block design containing nine treatments and three replications (27 pots). The treatments consisted of a control (with no organic meliorants) and compost and vermicompost meliorants (added at 5%, 10%, 15%, and 30%, and recalculated based on their dry soil weight). Upon reaching commercial ripeness, the tobacco plants were gathered. Heavy metals, micro and macroelement contents in roots, stems, and leaves of tobacco were analyzed by the method of the microwave mineralization. To determine the elements in the samples, inductively coupled emission spectrometry (Jobin Yvon Emission - JY 38 S, France) was used. The distribution of the heavy metals, micro, and macroelements in the organs of the enhanced tobacco has a selective character and depended above all on the parts of the plants and the element that was examined. Pb, Zn, Cu, Fe, Mn, P and Mg distribution in tobacco decreases in the following order: roots > leaves > stems, and for Cd, K, and Ca - leaves > roots > stems. The high concentration of Cd in the leaves and the high translocation factor indicate the possibility of enhanced tobacco to be used in phytoextraction. Tested organic amendments significantly influenced the uptake of heavy metals, micro and macroelements by the roots, stems, and leaves of tobacco. A correlation was found between the quantity of the mobile forms and the uptake of Pb, Zn, and Cd by the enhanced tobacco. The compost and vermicompost treatments significantly reduced heavy metals concentration in leaves and increased uptake of K, Ca and Mg. The 30% compost and 30% vermicompost treatments led to the maximal reduction of heavy metals in enhanced tobacco BAC F3. The addition of compost and vermicompost further reduces the ability to digest the heavy metals in the leaves, and phytoremediation potential of enhanced tobacco BAC F3. Acknowledgment: The financial support by the Bulgarian National Science Fund Project DFNI Н04/9 is greatly appreciated.

Keywords: heavy metals, micro and macroelements, enhanced tobacco BAC F3, phytoremediation, organic meliorants

Procedia PDF Downloads 158
3249 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps

Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe

Abstract:

Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.

Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion

Procedia PDF Downloads 168
3248 Artificial Intelligence Impact on Strategic Stability

Authors: Darius Jakimavicius

Abstract:

Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.

Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop

Procedia PDF Downloads 43