Search results for: electrical equivalent circuit analogy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3522

Search results for: electrical equivalent circuit analogy

1302 H2/He and H2O/He Separation Experiments with Zeolite Membranes for Nuclear Fusion Applications

Authors: Rodrigo Antunes, Olga Borisevich, David Demange

Abstract:

In future nuclear fusion reactors, tritium self-sufficiency will be ensured by tritium (3H) production via reactions between the fusion neutrons and lithium. To favor tritium breeding, a neutron multiplier must also be used. Both tritium breeder and neutron multiplier will be placed in the so-called Breeding Blanket (BB). For the European Helium-Cooled Pebble Bed (HCPB) BB concept, the tritium production and neutron multiplication will be ensured by neutron bombardment of Li4SiO4 and Be pebbles, respectively. The produced tritium is extracted from the pebbles by purging them with large flows of He (~ 104 Nm3h-1), doped with small amounts of H2 (~ 0.1 vol%) to promote tritium extraction via isotopic exchange (producing HT). Due to the presence of oxygen in the pebbles, production of tritiated water is unavoidable. Therefore, the purging gas downstream of the BB will be composed by Q2/Q2O/He (Q = 1H, 2H, 3H), with Q2/Q2O down to ppm levels, which must be further processed for tritium recovery. A two-stage continuous approach, where zeolite membranes (ZMs) are followed by a catalytic membrane reactor (CMR), has been recently proposed to fulfil this task. The tritium recovery from Q2/Q2O/He is ensured by the CMR, that requires a reduction of the gas flow coming from the BB and a pre-concentration of Q2 and Q2O to be efficient. For this reason, and to keep this stage with reasonable dimensions, ZMs are required upfront to reduce as much as possible the He flows and concentrate the Q2/Q2O species. Therefore, experimental activities have been carried out at the Tritium Laboratory Karlsruhe (TLK) to test the separation performances of different zeolite membranes for H2/H2O/He. First experiments have been performed with binary mixtures of H2/He and H2O/He with commercial MFI-ZSM5 and NaA zeolite-type membranes. Only the MFI-ZSM5 demonstrated selectivity towards H2, with a separation factor around 1.5, and H2 permeances around 0.72 µmolm-2s-1Pa-1, rather independent for feed concentrations in the range 0.1 vol%-10 vol% H2/He. The experiments with H2O/He have demonstrated that the separation factor towards H2O is highly dependent on the feed concentration and temperature. For instance, at 0.2 vol% H2O/He the separation factor with NaA is below 2 and around 1000 at 5 vol% H2O/He, at 30°C. Overall, both membranes demonstrated complementary results at equivalent temperatures. In fact, at low feed concentrations ( ≤ 1 vol% H2O/He) MFI-ZSM5 separates better than NaA, whereas the latter has higher separation factors for higher inlet water content ( ≥ 5 vol% H2O/He). In this contribution, the results obtained with both MFI-ZSM5 and NaA membranes for H2/He and H2O/H2 mixtures at different concentrations and temperatures are compared and discussed.

Keywords: nuclear fusion, gas separation, tritium processes, zeolite membranes

Procedia PDF Downloads 288
1301 Modelling and Simulation of Hysteresis Current Controlled Single-Phase Grid-Connected Inverter

Authors: Evren Isen

Abstract:

In grid-connected renewable energy systems, input power is controlled by AC/DC converter or/and DC/DC converter depending on output voltage of input source. The power is injected to DC-link, and DC-link voltage is regulated by inverter controlling the grid current. Inverter performance is considerable in grid-connected renewable energy systems to meet the utility standards. In this paper, modelling and simulation of hysteresis current controlled single-phase grid-connected inverter that is utilized in renewable energy systems, such as wind and solar systems, are presented. 2 kW single-phase grid-connected inverter is simulated in Simulink and modeled in Matlab-m-file. The grid current synchronization is obtained by phase locked loop (PLL) technique in dq synchronous rotating frame. Although dq-PLL can be easily implemented in three-phase systems, there is difficulty to generate β component of grid voltage in single-phase system because single-phase grid voltage exists. Inverse-Park PLL with low-pass filter is used to generate β component for grid angle determination. As grid current is controlled by constant bandwidth hysteresis current control (HCC) technique, average switching frequency and variation of switching frequency in a fundamental period are considered. 3.56% total harmonic distortion value of grid current is achieved with 0.5 A bandwidth. Average value of switching frequency and total harmonic distortion curves for different hysteresis bandwidth are obtained from model in m-file. Average switching frequency is 25.6 kHz while switching frequency varies between 14 kHz-38 kHz in a fundamental period. The average and maximum frequency difference should be considered for selection of solid state switching device, and designing driver circuit. Steady-state and dynamic response performances of the inverter depending on the input power are presented with waveforms. The control algorithm regulates the DC-link voltage by adjusting the output power.

Keywords: grid-connected inverter, hysteresis current control, inverter modelling, single-phase inverter

Procedia PDF Downloads 479
1300 Variation of Inductance in a Switched-Reluctance Motor under Various Rotor Faults

Authors: Muhammad Asghar Saqib, Saad Saleem Khan, Syed Abdul Rahman Kashif

Abstract:

In order to have higher efficiency, performance and reliability the regular monitoring of an electrical motor is required. This article presents a novel view of the air-gap magnetic field analysis of a switched reluctance motor under rotor cracks and rotor tilt along its shaft axis. The fault diagnosis is illustrated on the basis of a 3-D model of the motor using finite element analysis (FEA). The analytical equations of flux linkages have been used to determine the inductance. The results of the 3-D finite element analysis on a 6/4 switched reluctance motor (SRM) shows the variation of mutual inductance with the tilting of the rotor shaft and cracked rotor conditions. These results present useful information regarding the detection of shaft tilting and cracked rotors.

Keywords: switched reluctance motor, finite element analysis, cracked rotor, 3-D modelling of a srm

Procedia PDF Downloads 665
1299 Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance

Authors: Farzad Yavari, Hamid Chegini, Saeed Lotfi

Abstract:

This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.

Keywords: VPI, resin rich, insulation, stator bar, dissipation factor, voltage endurance

Procedia PDF Downloads 198
1298 Multifunctional Composite Structural Elements for Sensing and Energy Harvesting

Authors: Amir H. Alavi, Kaveh Barri, Qianyun Zhang

Abstract:

This study presents a new generation of lightweight and mechanically tunable structural composites with sensing and energy harvesting functionalities. This goal is achieved by integrating metamaterial and triboelectric energy harvesting concepts. Proof-of-concept polymeric beam prototypes are fabricated using 3D printing methods based on the proposed concept. Experiments and theoretical analyses are conducted to quantitatively investigate the mechanical and electrical properties of the designed multifunctional beams. The results show that these integrated structural elements can serve as nanogenerators and distributed sensing mediums without a need to incorporating any external sensing modules and electronics. The feasibility of design self-sensing and self-powering structural elements at multiscale for next generation infrastructure systems is further discussed.

Keywords: multifunctional structures, composites, metamaterial, triboelectric nanogenerator, sensors, structural health monitoring, energy harvesting

Procedia PDF Downloads 196
1297 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application

Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada

Abstract:

This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.

Keywords: energy policy, energy diversification, “IntelSymb” software, renewable energy

Procedia PDF Downloads 224
1296 Design of Nano-Reinforced Carbon Fiber Reinforced Plastic Wheel for Lightweight Vehicles with Integrated Electrical Hub Motor

Authors: Davide Cocchi, Andrea Zucchelli, Luca Raimondi, Maria Brugo Tommaso

Abstract:

The increasing attention is given to the issues of environmental pollution and climate change is exponentially stimulating the development of electrically propelled vehicles powered by renewable energy, in particular, the solar one. Given the small amount of solar energy that can be stored and subsequently transformed into propulsive energy, it is necessary to develop vehicles with high mechanical, electrical and aerodynamic efficiencies along with reduced masses. The reduction of the masses is of fundamental relevance especially for the unsprung masses, that is the assembly of those elements that do not undergo a variation of their distance from the ground (wheel, suspension system, hub, upright, braking system). Therefore, the reduction of unsprung masses is fundamental in decreasing the rolling inertia and improving the drivability, comfort, and performance of the vehicle. This principle applies even more in solar propelled vehicles, equipped with an electric motor that is connected directly to the wheel hub. In this solution, the electric motor is integrated inside the wheel. Since the electric motor is part of the unsprung masses, the development of compact and lightweight solutions is of fundamental importance. The purpose of this research is the design development and optimization of a CFRP 16 wheel hub motor for solar propulsion vehicles that can carry up to four people. In addition to trying to maximize aspects of primary importance such as mass, strength, and stiffness, other innovative constructive aspects were explored. One of the main objectives has been to achieve a high geometric packing in order to ensure a reduced lateral dimension, without reducing the power exerted by the electric motor. In the final solution, it was possible to realize a wheel hub motor assembly completely comprised inside the rim width, for a total lateral overall dimension of less than 100 mm. This result was achieved by developing an innovative connection system between the wheel and the rotor with a double purpose: centering and transmission of the driving torque. This solution with appropriate interlocking noses allows the transfer of high torques and at the same time guarantees both the centering and the necessary stiffness of the transmission system. Moreover, to avoid delamination in critical areas, evaluated by means of FEM analysis using 3D Hashin damage criteria, electrospun nanofibrous mats have been interleaved between CFRP critical layers. In order to reduce rolling resistance, the rim has been designed to withstand high inflation pressure. Laboratory tests have been performed on the rim using the Digital Image Correlation technique (DIC). The wheel has been tested for fatigue bending according to E/ECE/324 R124e.

Keywords: composite laminate, delamination, DIC, lightweight vehicle, motor hub wheel, nanofiber

Procedia PDF Downloads 214
1295 Open Fields' Dosimetric Verification for a Commercially-Used 3D Treatment Planning System

Authors: Nashaat A. Deiab, Aida Radwan, Mohamed Elnagdy, Mohamed S. Yahiya, Rasha Moustafa

Abstract:

This study is to evaluate and investigate the dosimetric performance of our institution's 3D treatment planning system, Elekta PrecisePLAN, for open 6MV fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields guided by the recommended QA tests prescribed in AAPM TG53, NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Seven different tests were done applied on solid water equivalent phantom along with 2D array dose detection system, the calculated doses using 3D treatment planning system PrecisePLAN, compared with measured doses to make sure that the dose calculations are accurate for open fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields. The QA results showed dosimetric accuracy of the TPS for open fields within the specified tolerance limits. However large square (25cm x 25cm) and rectangular fields (20cm x 5cm) some points were out of tolerance in penumbra region (11.38 % and 10.9 %, respectively). For the test of SSD variation, the large field resulted from SSD 125 cm for 10cm x 10cm filed the results recorded an error of 0.2% at the central axis and 1.01% in penumbra. The results yielded differences within the accepted tolerance level as recommended. Large fields showed variations in penumbra. These differences between dose values predicted by the TPS and the measured values at the same point may result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.

Keywords: quality assurance, dose calculation, 3D treatment planning system, photon beam

Procedia PDF Downloads 517
1294 Possible Exposure of Persons with Cardiac Pacemakers to Extremely Low Frequency (ELF) Electric and Magnetic Fields

Authors: Leena Korpinen, Rauno Pääkkönen, Fabriziomaria Gobba, Vesa Virtanen

Abstract:

The number of persons with implanted cardiac pacemakers (PM) has increased in Western countries. The aim of this paper is to investigate the possible situations where persons with a PM may be exposed to extremely low frequency (ELF) electric (EF) and magnetic fields (MF) that may disturb their PM. Based on our earlier studies, it is possible to find such high public exposure to EFs only in some places near 400 kV power lines, where an EF may disturb a PM in unipolar mode. Such EFs cannot be found near 110 kV power lines. Disturbing MFs can be found near welding machines. However, we do not have measurement data from welding. Based on literature and earlier studies at Tampere University of Technology, it is difficult to find public EF or MF exposure that is high enough to interfere with PMs.

Keywords: cardiac pacemaker, electric field, magnetic field, electrical engineering

Procedia PDF Downloads 432
1293 Drivers of Liking: Probiotic Petit Suisse Cheese

Authors: Helena Bolini, Erick Esmerino, Adriano Cruz, Juliana Paixao

Abstract:

The currently concern for health has increased demand for low-calorie ingredients and functional foods as probiotics. Understand the reasons that infer on food choice, besides a challenging task, it is important step for development and/or reformulation of existing food products. The use of appropriate multivariate statistical techniques, such as External Preference Map (PrefMap), associated with regression by Partial Least Squares (PLS) can help in determining those factors. Thus, this study aimed to determine, through PLS regression analysis, the sensory attributes considered drivers of liking in probiotic petit suisse cheeses, strawberry flavor, sweetened with different sweeteners. Five samples in same equivalent sweetness: PROB1 (Sucralose 0.0243%), PROB2 (Stevia 0.1520%), PROB3 (Aspartame 0.0877%), PROB4 (Neotame 0.0025%) and PROB5 (Sucrose 15.2%) determined by just-about-right and magnitude estimation methods, and three commercial samples COM1, COM2 and COM3, were studied. Analysis was done over data coming from QDA, performed by 12 expert (highly trained assessors) on 20 descriptor terms, correlated with data from assessment of overall liking in acceptance test, carried out by 125 consumers, on all samples. Sequentially, results were submitted to PLS regression using XLSTAT software from Byossistemes. As shown in results, it was possible determine, that three sensory descriptor terms might be considered drivers of liking of probiotic petit suisse cheese samples added with sweeteners (p<0.05). The milk flavor was noticed as a sensory characteristic with positive impact on acceptance, while descriptors bitter taste and sweet aftertaste were perceived as descriptor terms with negative impact on acceptance of petit suisse probiotic cheeses. It was possible conclude that PLS regression analysis is a practical and useful tool in determining drivers of liking of probiotic petit suisse cheeses sweetened with artificial and natural sweeteners, allowing food industry to understand and improve their formulations maximizing the acceptability of their products.

Keywords: acceptance, consumer, quantitative descriptive analysis, sweetener

Procedia PDF Downloads 446
1292 Weight Comparison of Oil and Dry Type Distribution Transformers

Authors: Murat Toren, Mehmet Çelebi

Abstract:

Reducing the weight of transformers while providing good performance, cost reduction and increased efficiency is important. Weight is one of the most significant factors in all electrical machines, and as such, many transformer design parameters are related to weight calculations. This study presents a comparison of the weight of oil type transformers and dry type transformer weight. Oil type transformers are mainly used in industry; however, dry type transformers are becoming more widespread in recent years. MATLAB is typically used for designing transformers and design parameters (rated voltages, core loss, etc.) along with design in ANSYS Maxwell. Similar to other studies, this study presented that the dry type transformer option is limited. Moreover, the commonly-used 50 kVA distribution transformers in the industry are oil type and dry type transformers are designed and considered in terms of weight. Currently, the preference for low-cost oil-type transformers would change if costs for dry-type transformer were more competitive. The aim of this study was to compare the weight of transformers, which is a substantial cost factor, and to provide an evaluation about increasing the use of dry type transformers.

Keywords: weight, optimization, oil-type transformers, dry-type transformers

Procedia PDF Downloads 354
1291 Synthesis and Characterization of Doped Li₄Ti₅O₁₂/TiO2 as Potential Anode Materials for Li-Ion Batteries

Authors: S. Merazga, F. Boudeffar, A. Bouaoua, A. Cheriet, M. Berouaken, M. Mebarki, K. Ayouz, N. Gabouze

Abstract:

Several anode materials as transition metal oxides (Fe3O4, SnO2 a, SnO2, LiCoO2, and Li₄Ti₅O₁₂) has been used. Although titanium oxide has attracted great attention as a; superior electrode for Li-ion batteries due tohis excellent characteristic such as: high capacity, low cost and non-toxicity. In this work, the Synthesis and Characterization of Si Doped Li₄Ti₅O₁₂ with hydrothermal Method was electrochemically evaluated. The SEM images shows that the morphology of LTO powders sizes in the range 70nm.The electrochemical properties of synthesizer nanopowders are investigated for use as an anode active material for lithium-ion batteries by galvanostatic techniques in Li-half cells, obtaining reversible discharge capacity of 173.8 mAh/g at 0.1C even upon 100 cycles.Though the doped powders exhibit an upgrade in The electrical conductivity , This is suitable for use as a high-power cathode material for lithium-ion batteries.

Keywords: LTO, li-ion, battteries, anode

Procedia PDF Downloads 77
1290 Curriculum System Optimization under Outstanding Engineers Training Mode of Mechanical and Electronic Engineering

Authors: El Miloudi Djelloul

Abstract:

Teaching program of `A plan for educating and training outstanding engineers' is divided into intramural teaching program and enterprise practice teaching program. Based on analyzing the basic principles of teaching plans which teaching plan follows for undergraduate mechanical and electrical engineering, major contents of specialty teaching project are studied amply. The study contents include the system optimization and reform of common curriculum, specialty curriculum and practice curriculum. The practice indicated that under outstanding engineers training mode, the optimized curriculum system have practicability, and achieve the training objectives.

Keywords: curriculum system, mechanical and electronic engineering, outstanding engineers, teaching program

Procedia PDF Downloads 527
1289 Comparison of High Speed Railway Bride Foundation Design

Authors: Hussein Yousif Aziz

Abstract:

This paper discussed the design and analysis of bridge foundation subjected to load of train with three codes, namely AASHTO code, British Standard BS Code 8004 (1986), and Chinese code (TB10002.5-2005).The study focused on the design and analysis of bridge’s foundation manually with the three codes and found which code is better for design and controls the problem of high settlement due to the applied loads. The results showed the Chinese codes are costly that the number of reinforcement bars in the pile cap and piles is more than those with AASHTO code and BS code with the same dimensions. Settlement of the bridge was calculated depending on the data collected from the project site. The vertical ultimate bearing capacity of single pile for three codes is also discussed. Other analyses by using the two-dimensional Plaxis program and other programs like SAP2000 14, PROKON many parameters are calculated. The maximum values of the vertical displacement are close to the calculated ones. The results indicate that the AASHTO code is economics and safer in the bearing capacity of single pile. The purpose of this project is to study out the pier on the basis of the design of the pile foundation. There is a 32m simply supported beam of box section on top of the structure. The pier of bridge is round-type. The main component of the design is to calculate pile foundation and the settlement. According to the related data, we choose 1.0m in diameter bored pile of 48m. The pile is laid out in the rectangular pile cap. The dimension of the cap is 12m 9 m. Because of the interaction factors of pile groups, the load-bearing capacity of simple pile must be checked, the punching resistance of pile cap, the shearing strength of pile cap, and the part in bending of pile cap, all of them are very important to the structure stability. Also, checking soft sub-bearing capacity is necessary under the pile foundation. This project provides a deeper analysis and comparison about pile foundation design schemes. Firstly, here are brief instructions of the construction situation about the Bridge. With the actual construction geological features and the upper load on the Bridge, this paper analyzes the bearing capacity and settlement of single pile. In the paper the Equivalent Pier Method is used to calculate and analyze settlements of the piles.

Keywords: pile foundation, settlement, bearing capacity, civil engineering

Procedia PDF Downloads 421
1288 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control

Procedia PDF Downloads 210
1287 Supercritical Hydrothermal and Subcritical Glycolysis Conversion of Biomass Waste to Produce Biofuel and High-Value Products

Authors: Chiu-Hsuan Lee, Min-Hao Yuan, Kun-Cheng Lin, Qiao-Yin Tsai, Yun-Jie Lu, Yi-Jhen Wang, Hsin-Yi Lin, Chih-Hua Hsu, Jia-Rong Jhou, Si-Ying Li, Yi-Hung Chen, Je-Lueng Shie

Abstract:

Raw food waste has a high-water content. If it is incinerated, it will increase the cost of treatment. Therefore, composting or energy is usually used. There are mature technologies for composting food waste. Odor, wastewater, and other problems are serious, but the output of compost products is limited. And bakelite is mainly used in the manufacturing of integrated circuit boards. It is hard to directly recycle and reuse due to its hard structure and also difficult to incinerate and produce air pollutants due to incomplete incineration. In this study, supercritical hydrothermal and subcritical glycolysis thermal conversion technology is used to convert biomass wastes of bakelite and raw kitchen wastes to carbon materials and biofuels. Batch carbonization tests are performed under high temperature and pressure conditions of solvents and different operating conditions, including wet and dry base mixed biomass. This study can be divided into two parts. In the first part, bakelite waste is performed as dry-based industrial waste. And in the second part, raw kitchen wastes (lemon, banana, watermelon, and pineapple peel) are used as wet-based biomass ones. The parameters include reaction temperature, reaction time, mass-to-solvent ratio, and volume filling rates. The yield, conversion, and recovery rates of products (solid, gas, and liquid) are evaluated and discussed. The results explore the benefits of synergistic effects in thermal glycolysis dehydration and carbonization on the yield and recovery rate of solid products. The purpose is to obtain the optimum operating conditions. This technology is a biomass-negative carbon technology (BNCT); if it is combined with carbon capture and storage (BECCS), it can provide a new direction for 2050 net zero carbon dioxide emissions (NZCDE).

Keywords: biochar, raw food waste, bakelite, supercritical hydrothermal, subcritical glycolysis, biofuels

Procedia PDF Downloads 179
1286 Study of Some Physiochemical Properties of Ain Kaam Water Lagoon and Assessing Their Suitability for Human Use and Irrigation

Authors: Keri Alhadi Ighwela

Abstract:

In this research some physiochemical properties represented by temperature, pH, total hardness (TH), electrical conductivity (EC), total dissolved solids (TDS), chloride and hardness of calcium (Ca-H) and magnesium (Mg-H) were measured in the water of Ain Kaam Zliten in Libya (South side of the lagoon). A comparison of water quality with the values adopted internationally was accomplished to demonstrate the suitability for human and irrigation use. The experimental results showed that the values of pH and EC of the studied for water samples did not exceed the allowed range for drinking water. While TDS, TH, (Mg-H) and chloride values have exceeded the acceptable limit for drinking water internationally, calcium (Ca-H) results have shown a decrease in values of all samples except the first sample which record a marginal increase.

Keywords: physiochemical properties, Ain Kaam lagoon, Zliten, Libya

Procedia PDF Downloads 349
1285 Secured Power flow Algorithm Including Economic Dispatch with GSDF Matrix Using LabVIEW

Authors: Slimane Souag, Amel Graa, Farid Benhamida

Abstract:

In this paper we present a new method for solving the secured power flow problem by the economic dispatch using DC power flow method and Generation Shift Distribution Factor (GSDF), in this work we create a graphical interface in LabVIEW as a virtual instrument. Hence the dc power flow reduces the power flow problem to a set of linear equations, which make the iterative calculation very fast and the GSFD matrix present the effects of single and multiple generator MW change on the transmission line. The effectiveness of the method developed is identified through its application to an IEEE-14 bus test system. The calculation results show excellent performance of the proposed method, in regard to computation time and quality of results.

Keywords: electrical power system security, economic dispatch, sensitivity matrix, labview

Procedia PDF Downloads 489
1284 Seismic Isolation of Existing Masonry Buildings: Recent Case Studies in Italy

Authors: Stefano Barone

Abstract:

Seismic retrofit of buildings through base isolation represents a consolidated protection strategy against earthquakes. It consists in decoupling the ground motion from that of the structure and introducing anti-seismic devices at the base of the building, characterized by high horizontal flexibility and medium/high dissipative capacity. This allows to protect structural elements and to limit damages to non-structural ones. For these reasons, full functionality is guaranteed after an earthquake event. Base isolation is applied extensively to both new and existing buildings. For the latter, it usually does not require any interruption of the structure use and occupants evacuation, a special advantage for strategic buildings such as schools, hospitals, and military buildings. This paper describes the application of seismic isolation to three existing masonry buildings in Italy: Villa “La Maddalena” in Macerata (Marche region), “Giacomo Matteotti” and “Plinio Il Giovane” school buildings in Perugia (Umbria region). The seismic hazard of the sites is characterized by a Peak Ground Acceleration (PGA) of 0.213g-0.287g for the Life Safety Limit State and between 0.271g-0.359g for the Collapse Limit State. All the buildings are isolated with a combination of free sliders type TETRON® CD with confined elastomeric disk and anti-seismic rubber isolators type ISOSISM® HDRB to reduce the eccentricity between the center of mass and stiffness, thus limiting torsional effects during a seismic event. The isolation systems are designed to lengthen the original period of vibration (i.e., without isolators) by at least three times and to guarantee medium/high levels of energy dissipation capacity (equivalent viscous damping between 12.5% and 16%). This allows the structures to resist 100% of the seismic design action. This article shows the performances of the supplied anti-seismic devices with particular attention to the experimental dynamic response. Finally, a special focus is given to the main site activities required to isolate a masonry building.

Keywords: retrofit, masonry buildings, seismic isolation, energy dissipation, anti-seismic devices

Procedia PDF Downloads 72
1283 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change

Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems

Procedia PDF Downloads 68
1282 Increasing Holism: Qualitative, Cross-Dimensional Study of Contemporary Innovation Processes

Authors: Sampo Tukiainen, Jukka Mattila, Niina Erkama, Erkki Ormala

Abstract:

During the past decade, calls for more holistic and integrative organizational innovation research have been increasingly voiced. On the one hand, from the theoretical perspective, the reason for this has been the tendency in contemporary innovation studies to focus on disciplinary subfields, often leading to challenges in integrating theories in meaningful ways. For example, we find that during the past three decades the innovation research has evolved into an academic field consisting of several independent research streams, such as studies on organizational learning, project management, and top management teams, to name but a few. The innovation research has also proliferated according to different dimensions of innovation, such as sources, drivers, forms, and the nature of innovation. On the other hand, from the practical perspective the rationale has been the need to develop understanding of the solving of complex, interdisciplinary issues and problems in contemporary and future societies and organizations. Therefore, for advancing theorizing, as well as the practical applicability of organizational innovation research, we acknowledge the need for more integrative and holistic perspectives and approaches. We contribute to addressing this challenge by developing a ‘box transcendent’ perspective to examine interlinkages in and across four key dimensions of organizational innovation processes, which traditionally have been studied in separate research streams. Building on an in-depth, qualitative analysis of 123 interviews of CTOs (or equivalent) and CEOs in top innovative Finnish companies as well as three in-depth case studies, both as part of an EU-level interview study of more than 700 companies, we specify interlinkages in and between i) strategic management, ii) innovation management, iii) implementation and organization, and iv) commercialization, in innovation processes. We contribute to the existing innovation research in multiple ways. Firstly, we develop a cross-dimensional, ‘box transcendent’ conceptual model at the level of organizational innovation process. Secondly, this modeling enables us to extend existing theorizing by allowing us to distinguish specific cross-dimensional innovation ‘profiles’ in two different company categories: large multinational corporations and SMEs. Finally, from the more practical perspective, we consider the implications of such innovation ‘profiles’ for the societal and institutional, policy-making development.

Keywords: holistic research, innovation management, innovation studies, organizational innovation

Procedia PDF Downloads 327
1281 Uranium and Thorium Measurements in the Water along Oum Er-Rabia River (Morocco)

Authors: L. Oufni, M. Amrane

Abstract:

In this work, different river water samples have been collected and analyzed from different locations along Oum Er-Rabia River in Morocco. The uranium (238U) and thorium (232Th) concentrations were investigated in the studied river and dam water samples using Solid State Nuclear Track Detector (SSNTD). Mean activity concentrations of uranium and thorium in water were found to be between 12 – 37 Bq m^-3 and 2-10 Bq m^-3, respectively. The pH measured at all river water samples was slightly alkaline and ranged from 7.5 to 8.75. The electrical conductivity ranged from 2790 to 794 µS cm^-1. It was found that uranium and thorium concentrations were correlated with some chemical parameters in Oum Er-Rabia River water. The uranium concentrations found in river water are insignificant from the radiological point of view. The recommended value for uranium in drinking water based on its toxicity given by the Federal Environment Agency. This corresponds to an activity concentration of 238U of 123.5 mBq L^-1. In none of the samples, the uranium activity exceeds this value.

Keywords: uranium, thorium, conductivity, water, SSNTD

Procedia PDF Downloads 356
1280 Shared Vision System Support for Maintenance Tasks of Wind Turbines

Authors: Buket Celik Ünal, Onur Ünal

Abstract:

Communication is the most challenging part of maintenance operations. Communication between expert and fieldworker is crucial for effective maintenance and this also affects the safety of the fieldworkers. To support a machine user in a remote collaborative physical task, both, a mobile and a stationary device are needed. Such a system is called a shared vision system and the system supports two people to solve a problem from different places. This system reduces the errors and provides a reliable support for qualified and less qualified users. Through this research, it was aimed to validate the effectiveness of using a shared vision system to facilitate communication between on-site workers and those issuing instructions regarding maintenance or inspection works over long distances. The system is designed with head-worn display which is called a shared vision system. As a part of this study, a substitute system is used and implemented by using a shared vision system for maintenance operation. The benefits of the use of a shared vision system are analyzed and results are adapted to the wind turbines to improve the occupational safety and health for maintenance technicians. The motivation for the research effort in this study can be summarized in the following research questions: -How can expert support technician over long distances during maintenance operation? -What are the advantages of using a shared vision system? Experience from the experiment shows that using a shared vision system is an advantage for both electrical and mechanical system failures. Results support that the shared vision system can be used for wind turbine maintenance and repair tasks. Because wind turbine generator/gearbox and the substitute system have similar failures. Electrical failures, such as voltage irregularities, wiring failures and mechanical failures, such as alignment, vibration, over-speed conditions are the common and similar failures for both. Furthermore, it was analyzed the effectiveness of the shared vision system by using a smart glasses in connection with the maintenance task performed by a substitute system under four different circumstances, namely by using a shared vision system, an audio communication, a smartphone and by yourself condition. A suitable method for determining dependencies between factors measured in Chi Square Test, and Chi Square Test for Independence measured for determining a relationship between two qualitative variables and finally Mann Whitney U Test is used to compare any two data sets. While based on this experiment, no relation was found between the results and the gender. Participants` responses confirmed that the shared vision system is efficient and helpful for maintenance operations. From the results of the research, there was a statistically significant difference in the average time taken by subjects on works using a shared vision system under the other conditions. Additionally, this study confirmed that a shared vision system provides reduction in time to diagnose and resolve maintenance issues, reduction in diagnosis errors, reduced travel costs for experts, and increased reliability in service.

Keywords: communication support, maintenance and inspection tasks, occupational health and safety, shared vision system

Procedia PDF Downloads 260
1279 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications

Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin

Abstract:

A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.

Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors

Procedia PDF Downloads 370
1278 Energy Resilience in the Sustainable Built Environment: the Use of Biogas to Reduce Vulnerabilities and Risks

Authors: Janaina Camile Pasqual Lofhagen, David Savarese, Veronika Vazhnik

Abstract:

The built environment is considered as a key element in transitioning to clean energy, needed to create resilient buildings and cities, enhance their adaptability to changes, and pursue energy saving. For such energy transition, this paper presents biogas as one of the sustainable sources of energy, as it is produced from organic materials often available in both urban and rural areas and can be converted into electrical and thermal energy, or into vehicular energies fuel. The resilience benefits of this fuel is being a localized alternative energy, and also provides tangible benefits for water, air, and soil quality. Through bibliographic and empirical research, this study analyzed the biogas potential and applications in Brazil and in the U.S. The results indicated that biogas emits 85% less CO2 to the atmosphere compared to diesel and could supply 40% of domestic electricity demand and 70% of diesel consumption in Brazil, with a similar scenario for the U.S.

Keywords: resilience, sustainability, built environment, energy transition, biogas.

Procedia PDF Downloads 92
1277 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping

Authors: Masato Saeki

Abstract:

Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.

Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level

Procedia PDF Downloads 453
1276 Livestock Depredation by Large Predators: Patterns, Perceptions and Implications for Conservation and Livelihoods in Karakoram Mountain Ranges

Authors: Muhammad Zafar Khan, Babar Khan, Muhammad Saeed Awan, Farida Begum

Abstract:

Livestock depredation has greater significance in pastoral societies like Himalaya-Karakoram-Hindu Kush mountain ranges. The dynamics of depredation by large predators (snow leopard and wolf) and its implications for conservation and livelihoods of local people was investigated by household surveys in Hushey valley of Central Karakoram National Park, Pakistan. We found that, during five years (2008-12) 90% of the households in the valley had lost their livestock to snow leopard and wolf, accounting for 4.3% of the total livestock holding per year. On average each household had to bear a loss of 0.8 livestock head per year, equivalent to Pak Rupees 9,853 (US$ 101), or 10% of the average annual cash income. Majority of the predation incidences occurred during late summer in alpine pastures, mostly at night when animals were not penned properly. The prey animals in most of the cases were females or young ones. Of the total predation incidences, 60% were attributed to snow leopard, 37% to wolf, while in 3% the predator was unknown. The fear of snow leopard is greater than that of wolf. As immediate response on predation, majority of the local people (64%, n=99) preferred to report the case to their village conservation committee, 32% had no response while only 1% tended to kill the predator. The perceived causes of predation were: poor guarding practices (77%); reduction in wild prey (13%) and livestock being the favourite food of predators (10%). The most preferred strategies for predator management, according to the respondents were improved and enhanced guarding of livestock (72%), followed by increasing wild prey (18%) and lethal control (10%). To strike a balance between predator populations and pastoral livelihoods, better animal husbandry practices should be promoted including: improved guarding through collective hiring of skilled shepherds; corral improvement and use of guard dogs.

Keywords: Panthera unica, Canis lupus, Karakoram, human-carnivore conflict, predation

Procedia PDF Downloads 256
1275 Optimal MPPT Charging Battery System for Photovoltaic Standalone Applications

Authors: Kelaiaia Mounia Samira, Labar Hocine, Mesbah Tarek, Kelaiaia samia

Abstract:

The photovoltaic panel produces green power, and because of its availability across the globe, it can supply isolated loads (site away of the electrical network or difficult of access). Unfortunately this energy remains very expensive. The most application of these types of power needs storage devices, the Lithium batteries are commonly used because of its powerful storage capability. Using a solar panel or an array of panels without a controller that can perform MPPT will often result in wasted power, which results in the need to install more panels for the same power requirement. For devices that have the battery connected directly to the panel, this will also result in premature battery failure or capacity loss. In this paper it is proposed a modified P&O algorithm for the MPPT which takes in account the battery’s internal resistance vs temperature and stage of charging. Of course the temperature variation and irradiation of the PV panel are also introduced.

Keywords: modeling, battery, MPPT, charging, PV Panel

Procedia PDF Downloads 525
1274 Physico-Chemical Analysis of the Reclaimed Land Area of Kasur

Authors: Shiza Zafar

Abstract:

The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities.

Keywords: soil toxicity, agriculture, reclaimed land, physico-chemical analysis

Procedia PDF Downloads 379
1273 Nanotechnolgy for Energy Harvesting Applications

Authors: Eiman Nour

Abstract:

The rising interest in harvesting power is because of the capabilities application of expanding self-powered systems based on nanostructures. Using renewable and self-powered sources is necessary for the growth of green electronics and could be of the capability to wireless sensor networks. The ambient mechanical power is among the ample sources for various power harvesting device configurations that are published. In this work, we design and fabricate a paper-based nanogenerator (NG) utilizing piezoelectric zinc oxide (ZnO) nanowires (NWs) grown hydrothermally on a paper substrate. The fabricated NG can harvest ambient mechanical energy from various kinds of human motions, such as handwriting. The fabricated NG from a single ZnO NWs/PVDF-TrFE NG has been used firstly as handwriting-driven NG. The mechanical pressure applied on the paper platform while handwriting is harvested by the NG to deliver electrical energy; depending on the mode of handwriting, a maximum harvested voltage of 4.8 V was obtained.

Keywords: nanostructure, zinc oxide, nanogenerator, energy harvesting

Procedia PDF Downloads 63