Search results for: solid Oxide Cells
4199 Protective Coating Layers via Phosphazene Compounds for Stabilizing Silicon Anode Materials
Authors: Adjmal Ghaur, Christoph Peschel, Iris Dienwiebel, Lukas Haneke, Leilei Du , Laurin Profanter, Tobias Placke, Martin Winter
Abstract:
In recent years, lithium-ion batteries (LIBs)are widely used in electric vehicles (EVs) and mobile energy storage devices (ESDs), which has led to higher requirements for energy density. To fulfill these requirements, tremendous attention has been paid to design advanced LIBs with various siliconactive materials as alternative negative electrodes to replace graphite (372 mAh g⁻¹)due to their high theoretical gravimetric capacity (4200mAh g⁻¹). However, silicon as potential anode material suffers from huge volume changes during charging and discharging and has poor electronicconductivity which negatively impacts the long-term performance and preventshigh silicon contents from practical application. Additionally, an unstable crystalline silicon structure tends to pulverization during the (de)lithiation process. To compensate for the volume changes, alleviate pulverization, and maintain high electronicconductivity, silicon-doped graphite composites with protecting coating layers are a promising approach. In this context, phosphazene compounds are investigated concerning their silicon protecting properties in silicon-doped graphite composites. In detail, electrochemical performance measurements in pouch full-cells(NCM523||SiOx/C), supressing gas formation properties, and post-mortem analyzes were carried out to characterize phosphazene compounds as additive materials. The introduction of the dual-additive approach in state-of-the-art electrolytes leads to synergistic effects between FEC and phosphazene compounds which accelerate the durability of silicon particles and results in enhanced electrochemical performance.Keywords: silicon, phosphazene, solid electrolyte interphase, electrolyte, gasmeasurements
Procedia PDF Downloads 1654198 Recent Advances of Photo-Detectors in Single Photon Emission Computed Tomography Imaging System
Authors: Qasem A. Alyazji
Abstract:
One of the main techniques for Positron emission tomography (PET), Single photon emission computed tomography (SPECT) is the development of radiation detectors. The NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes known as the Anger camera, is the most dominant detectors system in PET and SPECT devices. Technological advances in many materials, in addition to the emerging importance of specialized applications such as preclinical imaging and cardiac imaging, have encouraged innovation so that alternatives to the anger camera are now part in alternative imaging systems. In this paper we will discuss the main performance characteristics of detectors devices and scanning developments in both scintillation detectors, semiconductor (solid state) detectors, and Photon Transducers such as photomultiplier tubes (PMTs), position sensitive photomultiplier tubes (PSPMTs), Avalanche photodiodes (APDs) and Silicon photomultiplier (SiPMT). This paper discussed the detectors that showed promising results. This study is a review of recent developments in the detectors used in single photon emission computed tomography (SPECT) imaging system.Keywords: SPECT, scintillation, PMTs, SiPMT, PSPMTs, APDs, semiconductor (solid state)
Procedia PDF Downloads 1644197 Mn3O4 anchored Broccoli-Flower like Nickel Manganese Selenide Composite for Ultra-efficient Solid-State Hybrid Supercapacitors with Extended Durability
Authors: Siddhant Srivastav, Shilpa Singh, Sumanta Kumar Meher
Abstract:
Innovative renewable energy sources for energy storage/conversion is the demand of the current scenario in electrochemical machinery. In this context, choosing suitable organic precipitants for tuning the crystal characteristics and microstructures is a challenge. On the same note, herein we report broccoli flower-like porous Mn3O4/NiSe2−MnSe2 composite synthesized using a simple two step hydrothermal synthesis procedure assisted by sluggish precipitating agent and an effective cappant followed by intermediated anion exchange. The as-synthesized material was exposed to physical and chemical measurements depicting poly-crystallinity, stronger bonding and broccoli flower-like porous arrangement. The material was assessed electrochemically by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) measurements. The Electrochemical studies reveal redox behavior, supercapacitive charge-discharge shape and extremely low charge transfer resistance. Further, the fabricated Mn3O4/NiSe2−MnSe2 composite based solid-state hybrid supercapacitor (Mn3O4/NiSe2−MnSe2 ||N-rGO) delivers excellent rate specific capacity, very low internal resistance, with energy density (~34 W h kg–1) of a typical rechargeable battery and power density (11995 W kg–1) of an ultra-supercapacitor. Consequently, it can be a favorable contender for supercapacitor applications for high performance energy storage utilizations. A definitive exhibition of the supercapacitor device is credited to electrolyte-ion buffering reservior alike behavior of broccoli flower like Mn3O4/NiSe2−MnSe2, enhanced by upgraded electronic and ionic conductivities of N- doped rGO (negative electrode) and PVA/KOH gel (electrolyte separator), respectivelyKeywords: electrolyte-ion buffering reservoir, intermediated-anion exchange, solid-state hybrid supercapacitor, supercapacitive charge-dischargesupercapacitive charge-discharge
Procedia PDF Downloads 724196 Breast Cancer: The Potential of miRNA for Diagnosis and Treatment
Authors: Abbas Pourreza
Abstract:
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance.Keywords: breast cancer, HER2 positive, miRNA, TNBC
Procedia PDF Downloads 944195 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification
Authors: Anita Kushwaha
Abstract:
We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining
Procedia PDF Downloads 2724194 The Role of Cholesterol Oxidase of Mycobacterium tuberculosis in the Down-Regulation of TLR2-Signaling Pathway in Human Macrophages during Infection Process
Authors: Michal Kielbik, Izabela Szulc-Kielbik, Anna Brzostek, Jaroslaw Dziadek, Magdalena Klink
Abstract:
The goal of many research groups in the world is to find new components that are important for survival of mycobacteria in the host cells. Mycobacterium tuberculosis (Mtb) possesses a number of enzymes degrading cholesterol that are considered to be an important factor for its survival and persistence in host macrophages. One of them - cholesterol oxidase (ChoD), although not being essential for cholesterol degradation, is discussed as a virulence compound, however its involvement in macrophages’ response to Mtb is still not sufficiently determined. The recognition of tubercle bacilli antigens by pathogen recognition receptors is crucial for the initiation of the host innate immune response. An important receptor that has been implicated in the recognition and/or uptake of Mtb is Toll-like receptor type 2 (TLR2). Engagement of TLR2 results in the activation and phosphorylation of intracellular signaling proteins including IRAK-1 and -4, TRAF-6, which in turn leads to the activation of target kinases and transcription factors responsible for bactericidal and pro-inflammatory response of macrophages. The aim of these studies was a detailed clarification of the role of Mtb cholesterol oxidase as a virulence factor affecting the TLR2 signaling pathway in human macrophages. As human macrophages the THP-1 differentiated cells were applied. The virulent wild-type Mtb strain (H37Rv), its mutant lacking a functional copy of gene encoding cholesterol oxidase (∆choD), as well as complimented strain (∆choD–choD) were used. We tested the impact of Mtb strains on the expression of TLR2-depended signaling proteins (mRNA level, cytosolic level and phosphorylation status). The cytokine and bactericidal response of THP-1 derived macrophages infected with Mtb strains in relation to TLR2 signaling pathway dependence was also determined. We found that during the 24-hours of infection process the wild-type and complemented Mtb significantly reduced the cytosolic level and phosphorylation status of IRAK-4 and TRAF-6 proteins in macrophages, that was not observed in the case of ΔchoD mutant. Decreasement of TLR2-dependent signaling proteins, induced by wild-type Mtb, was not dependent on the activity of proteasome. Blocking of TLR2 expression, before infection, effectively prevented the induced by wild-type strain reduction of cytosolic level and phosphorylation of IRAK-4. None of the strains affected the surface expression of TLR2. The mRNA level of IRAK-4 and TRAF-6 genes were significantly increased in macrophages 24 hours post-infection with either of tested strains. However, the impact of wild-type Mtb strain on both examined genes was significantly stronger than its ΔchoD mutant. We also found that wild-type strain stimulated macrophages to release high amount of immunosuppressive IL-10, accompanied by low amount of pro-inflammatory IL-8 and bactericidal nitric oxide in comparison to mutant lacking cholesterol oxidase. The influence of wild-type Mtb on this type of macrophages' response strongly dependent on fully active IRAK-1 and IRAK-4 signaling proteins. In conclusion, Mtb using cholesterol oxidase causes the over-activation of TLR2 signaling proteins leading to the reduction of their cytosolic level and activity resulting in the modulation of macrophages response to allow its intracellular survival. Supported by grant: 2014/15/B/NZ6/01565, National Science Center, PolandKeywords: Mycobacterium tuberculosis, cholesterol oxidase, macrophages, TLR2-dependent signaling pathway
Procedia PDF Downloads 4154193 Ph-Triggered Cationic Solid Lipid Nanoparticles Mitigated Colitis in Mice
Authors: Muhammad Naeem, Juho Lee, Jin-Wook Yoo
Abstract:
In this study, we hypothesized that prolonged gastrointestinal transit at the inflamed colon conferred by a pH-triggered mucoadhesive smart nanoparticulate drug delivery system aids in achieving selective and sustained levels of the drug within the inflamed colon for the treatment of ulcerative colitis. We developed budesonide-loaded pH-sensitive charge-reversal solid lipid nanoparticles (SLNs) using a hot homogenization method. Polyetylenimine (PEI) was used to render SLNs cationic (PEI-SLNs). Eudragit S100 (ES) was coated on PEI-SLNs for pH-trigger charge-reversal SLNs (ES-PEI-SLNs). Therapeutic potential of the prepared SNLs formulation was evaluated in ulcerative colitis in mice. The transmission electron microscopy, zeta size and zeta potential data showed the successful formation of SLNs formulations. SLNs and PEI-SLNs showed burst drug release in acidic pH condition mimicking stomach and early small intestine environment which limiting their application as oral delivery systems. However, ES-PEI-SLNs prevented a burst drug release in acidic pH conditions and showed sustained release at a colonic pH. Most importantly, the surface charge of ES-PEI-SLNs switched from negative to positive in colonic conditions by pH-triggered removal of ES coating and accumulated selectively in inflamed colon. Furthermore, a charge reversal ES-PEI-SLNs showed a superior mitigation of dextran sulfate sodium (DSS)-induced acute colitis in mice as compared to SLNs and PEI-SLNs treated groups. Moreover, histopathological analysis of distal colon sections stained with hematoxylin/eosin and E-cadherin immunostaining revealed attenuated inflammation in an ES-PEI-SLNs-treated group. We also found that ES-PEI-SLNs markedly reduced the myeloperoxidase level and expression of TNF-alpha in colon tissue. Our results suggest that the pH-triggered charge reversal SLNs presented in this study would be a promising approach for ulcerative colitis therapy.Keywords: solid lipid nanoparticles, stimuli-triggered charge-reversal, ulcerative colitis, methacrylate copolymer, budesonide
Procedia PDF Downloads 2474192 Vapor Phase Transesterification of Dimethyl Malonate with Phenol over Cordierite Honeycomb Coated with Zirconia and Its Modified Forms
Authors: Prathap S. Raghavendra, Mohamed S. Z. Shamshuddin, Thimmaraju N. Venkatesh
Abstract:
The transesterification of dimethyl malonate (DMM) with phenol has been studied in vapour phase over cordierite honeycomb coated with solid acid catalysts such as ZrO2,Mo(VI)/ZrO2 and SO42-/ZrO2. The catalytic materials were prepared honeycomb coated and powder forms and characterized for their total surface acidity by NH3-TPD and crystalinity by powder XRD methods. Phenyl methyl malonate (PMM) and diphenyl malonate (DPM) were obtained as the reaction products. A good conversion of DMM (up to 82%) of MPM with 95% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 °C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. But over SO42-/ZrO2 catalyst, the yield of DPM was found to be higher. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of Mo(VI) or SO42– ions. Transesterification reactions were also carried out over powder forms of the catalytic materials and the yield of the desired phenyl ester products were compared with that of the HC coated catalytic materials. The solid acids were found to be reusable when used for at least 5 reaction cycles.Keywords: cordierite honeycomb, methyl phenyl malonate, vapour phase transesterification, zirconia
Procedia PDF Downloads 3144191 Efficiently Dispersed MnOx on Mesoporous 3D Cubic Support for Cyclohexene Epoxidation
Authors: G. Imran, A. Pandurangan
Abstract:
Epoxides constitute important intermediates for the production of fine and bulk chemicals as well as valuable building blocks for the synthesis of a variety of bioactive molecules. Manganese oxides are used as selective catalyst for various redox type reactions and also effectively used in the field of catalytic disposal of pollutants. Non-toxic, cost efficient factor and more over existence of wide range of oxidation state (+2 to +7) makes catalyst more interesting for both academic research and industrial applications. However, the serious drawback lying is the lower surface area. Exceedingly dispersed manganese oxide grafted over mesoporous solid material KIT-6 through ALD (Atomic Layer Deposition) technique effectively catalyze cyclohexene with H2O2 (30% in water) to corresponding epoxides. Highly selective epoxide >99% with 55.7% conversion of cyclohexene was achieved using huge dispersed active sites of MnOx species containing catalysts. Various weight percent such as (1, 3, 5, 7 & 10 wt %) of manganese (II) acetylacetonate complex was employed as Mn source to post-graft via active silanol groups of KIT-6 and are designated as (Mn-G-KIT-6). XRD, N2 sorption, HR-TEM, DRS-UV-VIS, EPR and H2-TPR were employed for structural and textural properties. Immense Mn species of about 95% proportion on silica matrix obtained was evident from ICP-OES.The resulting materials exhibited Type IV adsorption isotherms indiacting mesopore in nanorange. Si-KIT-6 and Mn-G-KIT-6 materials exhibited surface area of 519-289 m2/g and with decrease in pore volume of 0.96-0.49 cm3/g with pore diameter ranging 7.9- 7.2 with increase in wt%. DRS-UV-VIS spectroscopy and EPR studies reveal that manganese coexists as Mn2+/3+ species as extra-framework sites and frame-work sites that result in dispersion on surface of silica matrix of KIT-6 and incorporated manganese sites with silanol groups along with small sized MnO cluster, evident from HR-TEM which increase with Mn content. Conventional production of epoxides by the intramolecular etherification of chlorohydrins formed by the reaction of alkenes with hypochlorous acid is the major drawbacks obtained recently. The most efficient synthesis of oxiranes (epoxides) is obtained by mesoporous catalysts (Mn-G-KIT-6) are presented here and discussed.Keywords: ALD, epoxidation, mesoporous, MnOx
Procedia PDF Downloads 1824190 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits
Authors: Sandeep Das
Abstract:
Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysisKeywords: ANSYS, functionally graded material, lead-acid battery, terminal post
Procedia PDF Downloads 1374189 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer
Authors: Philippa Saunders, Claire Fletcher
Abstract:
INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft
Procedia PDF Downloads 1414188 Cytotoxic Activity against Hepatocarcinoma and Cholangiocarcinoma Cells of Four Cathartic Herbal Medicines
Authors: Pranporn Kuropakornpong, Srisopa Ruangnoo, Arunporn Itharat
Abstract:
Liver cancer has the highest prevalence rate in the North and Northeast of Thailand. Four Thai medicinal plants such as resin of Ferula asafoetida Regel, latex of Aloe barbadensis Miller leaves, roots of Baliospermum manotanum, and latex of Garcinia hanburyi Hook are used in Thai traditional medicine as cathartic drug and detoxification in liver cancer patients. Thus, this research aimed to evaluate the cytotoxic activity of these plants against hepatocarcinoma (HepG2) and cholangiocarcinoma (KKU-M156) cells by SRB assay. These plants were macerated in 95% ethanol. The results showed that roots of Baliospermum manotanum and latex of Garcinia hanburyi Hook showed the strongest cytotoxicity against HepG2 (IC50 = 3.03+0.91 and 0.62+0.01µg/ml, respectively) and KKU-M156 (IC50 = 0.978+0.663 and 0.006+0.005 µg/ml, respectively). Latex of Garcinia hanburyi Hook also showed high cytotoxicity against normal cell line (IC50=8.86+0.31 µg/ml), and even though its selective values are high, dose of this herb should be limited.Keywords: cholangiocarcinoma, cytotoxic activity, Garcinia hanburyi Hook, hepatocarcinoma
Procedia PDF Downloads 4494187 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study
Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung
Abstract:
Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification
Procedia PDF Downloads 3044186 Study into the Interactions of Primary Limbal Epithelial Stem Cells and HTCEPI Using Tissue Engineered Cornea
Authors: Masoud Sakhinia, Sajjad Ahmad
Abstract:
Introduction: Though knowledge of the compositional makeup and structure of the limbal niche has progressed exponentially during the past decade, much is yet to be understood. Identifying the precise profile and role of the stromal makeup which spans the ocular surface may inform researchers of the most optimum conditions needed to effectively expand LESCs in vitro, whilst preserving their differentiation status and phenotype. Limbal fibroblasts, as opposed to corneal fibroblasts are thought to form an important component of the microenvironment where LESCs reside. Methods: The corneal stroma was tissue engineered in vitro using both limbal and corneal fibroblasts embedded within a tissue engineered 3D collagen matrix. The effect of these two different fibroblasts on LESCs and hTCEpi corneal epithelial cell line were then subsequently determined using phase contrast microscopy, histolological analysis and PCR for specific stem cell markers. The study aimed to develop an in vitro model which could be used to determine whether limbal, as opposed to corneal fibroblasts, maintained the stem cell phenotype of LESCs and hTCEpi cell line. Results: Tissue culture analysis was inconclusive and required further quantitative analysis for remarks on cell proliferation within the varying stroma. Histological analysis of the tissue-engineered cornea showed a comparable structure to that of the human cornea, though with limited epithelial stratification. PCR results for epithelial cell markers of cells cultured on limbal fibroblasts showed reduced expression of CK3, a negative marker for LESC’s, whilst also exhibiting a relatively low expression level of P63, a marker for undifferentiated LESCs. Conclusion: We have shown the potential for the construction of a tissue engineered human cornea using a 3D collagen matrix and described some preliminary results in the analysis of the effects of varying stroma consisting of limbal and corneal fibroblasts, respectively, on the proliferation of stem cell phenotype of primary LESCs and hTCEpi corneal epithelial cells. Although no definitive marker exists to conclusively illustrate the presence of LESCs, the combination of positive and negative stem cell markers in our study were inconclusive. Though it is less traslational to the human corneal model, the use of conditioned medium from that of limbal and corneal fibroblasts may provide a more simple avenue. Moreover, combinations of extracellular matrices could be used as a surrogate in these culture models.Keywords: cornea, Limbal Stem Cells, tissue engineering, PCR
Procedia PDF Downloads 2764185 Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal
Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese
Abstract:
Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness.Keywords: water purification, polyelectrolytes, membrane modification, layer-by-layer coating, ceramic membranes
Procedia PDF Downloads 2444184 Experimental Studies on the Effect of Premixing Methods in Anaerobic Digestor with Corn Stover
Authors: M. Sagarika, M. Chandra Sekhar
Abstract:
Agricultural residues are producing in large quantities in India and account for abundant but underutilized source of renewable biomass in agriculture. In India, the amount of crop residues available is estimated to be approximately 686 million tons. Anaerobic digestion is a promising option to utilize the surplus agricultural residues and can produce biogas and digestate. Biogas is mainly methane (CH4), which can be utilized as an energy source in replacement for fossil fuels such as natural gas, oil, in other hand, digestate contains high amounts of nutrients, can be employed as fertilizer. Solid state anaerobic digestion (total solids ≥ 15%) is suitable for agricultural residues, as it reduces the problems like stratification and floating issues that occur in liquid anaerobic digestion (total solids < 15%). The major concern in solid-state anaerobic digestion is the low mass transfer of feedstock and inoculum that resulting in low performance. To resolve this low mass transfer issue, effective mixing of feedstock and inoculum is required. Mechanical mixing using stirrer at the time of digestion process can be done, but it is difficult to operate the stirring of feedstock with high solids percentage and high viscosity. Complete premixing of feedstock and inoculum is an alternative method, which is usual in lab scale studies but may not be affordable due to high energy demand in large-scale digesters. Developing partial premixing methods may reduce this problem. Current study is to improve the performance of solid-state anaerobic digestion of corn stover at feedstock to inoculum ratios 3 and 5, by applying partial premixing methods and to compare the complete premixing method with two partial premixing methods which are two alternative layers of feedstock and inoculum and three alternative layers of feedstock and inoculum where higher inoculum ratios in the top layers. From experimental studies it is observed that, partial premixing method with three alternative layers of feedstock and inoculum yielded good methane.Keywords: anaerobic digestion, premixing methods, methane yield, corn stover, volatile solids
Procedia PDF Downloads 2314183 Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments
Authors: Parag Katira, Frederika Rentzeperis, Zuzanna Nowicka, Giada Fiandaca, Thomas Veith, Jack Farinhas, Noemi Andor
Abstract:
Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments.Keywords: tumor evolution, intra-tumor heterogeneity, whole-genome doubling, mathematical modeling
Procedia PDF Downloads 704182 Dietary Gluten and the Balance of Gut Microbiota in the Dextran Sulphate Sodium Induced Colitis Model
Authors: Austin Belfiori, Kevin Rinek, Zach Barcroft, Jennifer Berglind
Abstract:
Diet influences the composition of the gut microbiota and host's health. Disruption of the balance among the microbiota, epithelial cells, and resident immune cells in the intestine is involved in the pathogenesis of inflammatory bowel disease (IBD). To study the role of gut microbiota in intestinal inflammation, the microbiome of control mice (C57BL6) given a gluten-containing standard diet versus C57BL6 mice given the gluten-free (GF) feed (n=10 in each group) was examined. All mice received the 3% DSS for 5 days. Throughout the study, feces were collected and processed for DNA extraction and MiSeq Illumina sequencing of V4 region of bacterial 16S rRNA gene. Alpha and beta diversities and compositional differences at phylum and genus levels were determined in intestinal microbiota. The mice receiving the GF diet showed a significantly increased abundance of Firmicutes and a decrease of Bacteroides and Lactobacillus at phylum level. Therefore, the gluten free diet led to reductions in beneficial gut bacteria populations. These findings indicate a role of wheat gluten in dysbiosis of the intestinal microbiota.Keywords: gluten, colitis, microbiota, DSS, dextran sulphate sodium
Procedia PDF Downloads 2094181 Identification and Characterization of Nuclear Envelope Protein Interactions
Authors: Mohammed Hakim Jafferali, Balaje Vijayaraghavan, Ricardo A. Figueroa, Ellinor Crafoord, Veronica J. Larsson, Einar Hallberg, Santhosh Gudise
Abstract:
The nuclear envelope which surrounds the chromatin of eukaryotic cells contains more than a hundred transmembrane proteins. Mutations in some genes encoding nuclear envelope proteins give rise to human diseases including neurological disorders. The function of many nuclear envelope proteins is not well established. This is partly because nuclear envelope proteins and their interactions are difficult to study due to the inherent resistance to extraction of nuclear envelope proteins. We have developed a novel method called MCLIP, to identify interacting partners of nuclear envelope proteins in live cells. Using MCLIP, we found three new binding partners of the inner nuclear membrane protein Samp1: the intermediate filament protein Lamin B1, the LINC complex protein Sun1 and the G-protein Ran. Furthermore, using in vitro studies, we show that Samp1 binds both Emerin and Ran directly. We have also studied the interaction between Samp1 and Ran in detail. The results show that the Samp1 binds stronger to RanGTP than RanGDP. Samp1 is the first transmembrane protein known to bind Ran and it is tempting to speculate that Samp1 may provide local binding sites for RanGTP at membranes.Keywords: MCLIP, nuclear envelope, ran, Samp1
Procedia PDF Downloads 3504180 Contamination by Heavy Metals of Some Environmental Objects in Adjacent Territories of Solid Waste Landfill
Authors: D. Kekelidze, G. Tsotadze, G. Maisuradze, L. Akhalbedashvili, M. Chkhaidze
Abstract:
Statement of Problem: The problem of solid wastes -dangerous sources of environmental pollution,is the urgent issue for Georgia as there are no waste-treatment and waste- incineration plants. Urban peripheral and rural areas, frequently along small rivers, are occupied by landfills without any permission. The study of the pollution of some environmental objects in the adjacent territories of solid waste landfill in Tbilisi carried out in 2020-2021, within the framework of project: “Ecological monitoring of the landfills surrounding areas and population health risk assessment”. Research objects: This research had goal to assess the ecological state of environmental objects (soil cover and surface water) in the territories, adjacent of solid waste landfill, on the base of changes heavy metals' (HM) concentration with distance from landfill. An open sanitary landfill for solid domestic waste in Tbilisi locates at suburb Lilo surrounded with densely populated villages. Content of following HM was determined in soil and river water samples: Pb, Cd, Cu, Zn, Ni, Co, Mn. Methodology: The HM content in samples was measured, using flame atomic absorption spectrophotometry (spectrophotometer of firm Perkin-Elmer AAnalyst 200) in accordance with ISO 11466 and GOST Р 53218-2008. Results and discussion: Data obtained confirmed migration of HM mainly in terms of the distance from the polygon that can be explained by their areal emissions and storage in open state, they could also get into the soil cover under the influence of wind and precipitation. Concentration of Pb, Cd, Cu, Zn always increases with approaching to landfill. High concentrations of Pb, Cd are characteristic of the soil covers of the adjacent territories around the landfill at a distance of 250, 500 meters.They create a dangerous zone, since they can later migrate into plants, enter in rivers and lakes. The higher concentrations, compared to the maximum permissible concentrations (MPC) for surface waters of Georgia, are observed for Pb, Cd. One of the reasons for the low concentration of HM in river water may be high turbidity – as is known, suspended particles are good natural sorbents that causes low concentration of dissolved forms. Concentration of Cu, Ni, Mn increases in winter, since in this season the rivers are switched to groundwater feeding. Conclusion: Soil covers of the areas adjacent to the landfill in Lilo are contaminated with HM. High concentrations in soils are characteristic of lead and cadmium. Elevated concentrations in comparison with the MPC for surface waters adopted in Georgia are also observed for Pb, Cd at checkpoints along and below (1000 m) of the landfill downstream. Data obtained confirm migration of HM to the adjacent territories of the landfill and to the Lochini River. Since the migration and toxicity of metals depends also on the presence of their mobile forms in water bodies, samples of bottom sediments should be taken too. Bottom sediments reflect a long-term picture of pollution, they accumulate HM and represent a constant source of secondary pollution of water bodies. The study of the physicochemical forms of metals is one of the priority areas for further research.Keywords: landfill, pollution, heavy metals, migration
Procedia PDF Downloads 994179 Epoxomicin Affects Proliferating Neural Progenitor Cells of Rat
Authors: Bahaa Eldin A. Fouda, Khaled N. Yossef, Mohamed Elhosseny, Ahmed Lotfy, Mohamed Salama, Mohamed Sobh
Abstract:
Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on the brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have their maximum effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS e.g. lead, however; most of the agents cannot be identified with certainty due the defective nature of predictive toxicology models used. A novel alternative method that can overcome most of the limitations of conventional techniques is the use of 3D neurospheres system. This in-vitro system can recapitulate most of the changes during the period of brain development making it an ideal model for predicting neurotoxic effects. In the present study, we verified the possible DNT of epoxomicin which is a naturally occurring selective proteasome inhibitor with anti-inflammatory activity. Rat neural progenitor cells were isolated from rat embryos (E14) extracted from placental tissue. The cortices were aseptically dissected out from the brains of the fetuses and the tissues were triturated by repeated passage through a fire-polished constricted Pasteur pipette. The dispersed tissues were allowed to settle for 3 min. The supernatant was, then, transferred to a fresh tube and centrifuged at 1,000 g for 5 min. The pellet was placed in Hank’s balanced salt solution cultured as free-floating neurospheres in proliferation medium. Two doses of epoxomicin (1µM and 10µM) were used in cultured neuropsheres for a period of 14 days. For proliferation analysis, spheres were cultured in proliferation medium. After 0, 4, 5, 11, and 14 days, sphere size was determined by software analyses. The diameter of each neurosphere was measured and exported to excel file further to statistical analysis. For viability analysis, trypsin-EDTA solution were added to neurospheres for 3 min to dissociate them into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Epoxomicin was found to affect proliferation and viability of neuropsheres, these effects were positively correlated to doses and progress of time. This study confirms the DNT effects of epoxomicin on 3D neurospheres model. The effects on proliferation suggest possible gross morphologic changes while the decrease in viability propose possible focal lesion on exposure to epoxomicin during early childhood.Keywords: neural progentor cells, epoxomicin, neurosphere, medical and health sciences
Procedia PDF Downloads 4254178 Cocrystals of Etodolac: A Crystal Engineering Approach with an Endeavor to Enhance Its Biopharmaceutical Assets
Authors: Sakshi Tomar, Renu Chadha
Abstract:
Cocrystallization comprises a selective route to the intensive design of pharmaceutical products with desired physiochemical and pharmacokinetic properties. The present study is focused on the preparation, characterization, and evaluation of etodolac (ET) co-crystals with coformers nicotinamide (ETNI) and Glutaric acid (ETGA), using cocrystallization approach. Preliminarily examination of the prepared co-crystal was done by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD). DSC thermographs of ETNI and ETGA cocrystals showed single sharp melting endotherms at 144°C and 135°C, respectively, which were different from the melting of drugs and coformers. FT-IR study points towards carbonyl-acid interaction sandwiched between the involving molecules. The emergence of new peaks in the PXRD pattern confirms the formation of new crystalline solid forms. Both the cocrystals exhibited better apparent solubility, and 3.8-5.0 folds increase in IDR were established, as compared to pure etodolac. Evaluations of these solid forms were done using anti-osteoarthritic activities. All the results indicate that etodolac cocrystals possess better anti-osteoarthritic efficacy than free drug. Thus loom of cocrystallization has been found to be a viable approach to resolve the solubility and bioavailability issues that circumvent the use of potential antiosteoarthritic molecules.Keywords: bioavailability, etodolac, nicotinamide, osteoarthritis
Procedia PDF Downloads 1984177 Enhanced Peroxidase Production by Raoultella Species
Authors: Ayodeji O. Falade, Leonard V. Mabinya, Uchechukwu U. Nwodo, Anthony I. Okoh
Abstract:
Given the high-utility of peroxidase, its production in large amount is of utmost importance. Over the years, actinomycetes have been the major peroxidase-producing bacteria. Consequently, other classes of bacteria with peroxidase production potentials are underexplored. This study, therefore, sought to enhance peroxidase production by a Raoultella species, a new ligninolytic proteobacteria strain, by determining the optimum culture conditions (initial pH, incubation temperature and agitation speed) for peroxidase production under submerged fermentation using the classical process of one variable at a time and supplementing the fermentation medium with some lignin model and inorganic nitrogen compounds. Subsequently, the time-course assay was carried out under optimized conditions. Then, some agricultural residues were valorized for peroxidase production under solid state fermentation. Peroxidase production was optimal at initial pH 5, incubation temperature of 35 °C and agitation speed of 150 rpm with guaiacol and ammonium chloride as the best inducer and nitrogen supplement respectively. Peroxidase production by the Raoultella species was optimal at 72 h with specific productivity of 16.48 ± 0.89 U mg⁻¹. A simultaneous production of a non-peroxide dependent extracellular enzyme which suggests probable laccase production was observed with specific productivity of 13.63 ± 0.45 U mg⁻¹ while sawdust gave the best peroxidase yield under solid state fermentation. In conclusion, peroxidase production by the Raoultella species was increased by 3.40-fold.Keywords: enzyme production, ligninolytic bacteria, peroxidase, proteobacteria
Procedia PDF Downloads 2694176 Strain-Driven Bidirectional Spin Orientation Control in Epitaxial High Entropy Oxide Films
Authors: Zhibo Zhao, Horst Hahn, Robert Kruk, Abhisheck Sarkar
Abstract:
High entropy oxides (HEOs), based on the incorporation of multiple-principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto-electronic states. Epitaxial (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄-HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel-HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual-phase coexistence appears as a universal phenomenon in (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄ epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain-induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out-of-plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze-like magnetic domain structure, indicating perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine-tuning properties in oxides.Keywords: high entropy oxides, thin film, strain tuning, perpendicular magnetic anistropy
Procedia PDF Downloads 464175 Synergistic Effects of Chrysin-Curcumin Loaded in PLGA-PEG Nanoparticles on Inhibiting Breast Cancer Cell Line Growth
Authors: N. Zarghami, M. Mohammadinejad, A. Akbarzadeh, Y. Pilehvar-Soltanahmadi, F. Zarghami
Abstract:
Breast cancer is known to be the most common cancer in women. Cyclin D1 is a proto-oncogene and over expression of cyclin D1 is directly associated with tumorgenesis. Cyclin D1 is overexpressed in more than 50% of breast cancer cases. Curcumin is derived from turmeric (curcuma longa) and chrysin is a component that could be extracted from many plants and honey. These two plants derived compounds are believed to assist in inhibition of the cancer cells growth and reducing cyclin D1 expression. In this work, the hypothesis is to combine curcumin and chrysin in order to analyze the potential synergistic effect in inhibition of cell proliferation and down regulation of cyclin D1. In addition, use of PLGA-PEG to improve bioavailability of pure curcumin and chrysin, while reinforcing the potential effect of this combination. PLGA-PEG nanoparticles were synthesized and characterized with FT-IR and 1HNMR methods. Although morphological features were analyzed by SEM. Afterward curcumin and chrysin were encapsulated with synthesized PLGA-PEG and MTT-assay was performed to measure cytotoxicity effect of these plant constitutes. T-47D cells were treated with proper concentration of these constituents and Real-time PCR was carried out to evaluate cyclin D1 expression levels. Curcumin, chrysin and combination of curcumin –chrysin in intact and nano-capsulated form affected T-47D cells in time and dose dependent manner and the combination of these compounds had synergistic effects. Real-time PCR results, revealed that curcumin, chrysin and combination of curcumin-chrysin in pure and encapsulated form inhibited cyclin D1 expression. Compared to pure components, different concentrations of nano-curcumin, nano chrysin and nano-combination caused further decline in cyclin D12 expression by 5-11%, 8-22% and 6-18% respectively. Our results demonstrated that, combination of chrysin-curcumin had synergistic effect and nano capsulated form of this component had grater inhibition on cyclin D1 expression.Keywords: breast cancer, cyclin D1, curcumin, chrysin, nanoparticles
Procedia PDF Downloads 2714174 Enhanced Anti-Obesity Effect of Soybean by Fermentation with Lactobacillus plantarum P1201 in 3T3-L1 Adipocyte
Authors: Chengliang Xie, Jinhyun Ryu, Hyun Joon Kim, Gyeong Jae Cho, Wan Sung Choi, Sang Soo Kang, Kye Man Cho, Dong Hoon Lee
Abstract:
Obesity has become a global health problem and a source of major metabolic diseases like type-2 diabetes, hypertension, heart disease, nonalcoholic fatty liver and cancer. Synthetic anti-obesity drugs are effective but very costly and with undesirable side effects, so natural products such as soybean are needed as an alternative for obesity treatment. Lactobacillus Plantarum P1201is a probiotic bacterial strain reported to produce conjugated linoleic acid (CLA) and increase the ratio of aglycone-isoflavone of soybean, both of which have anti-obesity effect. In this study, the anti-obesity effect of the fermented soybean extract with P1201 (FSE) will be evaluated compared with that of the soybean extract (SE) by 3T3-L1 cells as an in vitro model of adipogenesis. 3T3-L1 cells were treated with SE and FSE during the nine days of the differentiation, lipid accumulation was evaluated by oil-red staining and triglyceride content and the mRNA expression level of adipogenic or lipogenic genes were analyzed by RT-PCR and qPCR. The results showed that formation of lipid droplets in differentiated 3T3-L1 cells was inhibited and triglyceride content was reduced by 23.1% after treated with 1000 μg/mL of FSE compared with control. For SE-treated groups, no delipidating effect was observed. The effect of FSE on adipogenesis inhibition can be attributed to the down-regulation of mRNA expressionof CCAAT/enhancer binding protein (C/EBP-α), lipoprotein lipase (LPL), adiponectin, adipocyte fatty acid-binding protein (aP2), fatty acid synthesis (FAS) and CoA carboxylase (ACC). Our results demonstrated that the anti-obesity effect of soybean can be improved by fermentation with P1201, and P1201can be used as a potential probiotic bacterial strain to produce natural anti-obesity food.Keywords: fermentation, Lactobacillus plantarum P1201, obesity, soybean
Procedia PDF Downloads 3324173 Effect of Copper Complexes on Human Colon Carcinoma Cell Line and Human Breast Carcinoma Cell Line
Authors: Katarína Koňariková, Georgios A. Perdikaris, Lucia Andrezálová, Zdeňka Ďuračková, Lucia Laubertová, Helena Gbelcová, Ingrid Žitňanová
Abstract:
Introduction: The continuous demand for new anti-cancer drugs has stimulated chemotherapeutic research based on the use of essential metalloelements with the aim to develop potential drugs with lower toxicity and higher antiproliferative activity against tumors. Copper(II) and its complexes play an important role as suitable species for antiproliferative tests. Objectives: The central objective of the current study was to investigate the potential in vitro anti-proliferative effects of N-salicylidene-L-glutamato copper (II) complexes and molecular mechanism of apoptosis induced by tested complexes. In our project we tested N-salicylidene-L-glutamato copper (II) complexes ZK1 - [Cu(N-salicylidene-L-glutamato)(H2O)2].H2O; MK0 - ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O); MK1 - [Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O; MK3 - transbis(ethanol)tetrakis(imidazol)Cu(II)(2+)bis(N-salicylidene-D,L-glutamato-N,O)-KO:KO´-(imidazol); MK5 - [Cu(N-salicylidene-D,L- glutamato)(2-methylimidazol] at concentration range 0.001-100 µmol/L against human colon carcinoma cell line HT-29 and human breast carcinoma cell line MCF-7. Methods: Viability was assessed by direct counting of 0.4% trypan blue dye-excluding cells after 24, 48 and 72 hour cultivations with or without copper complex and by MTT assay. To analyze the type of cell death and its mechanism induced by our copper complex we used different methods. To distinguish apoptosis from necrosis we used electrophoretic analysis, to study the activity of caspases 8 and 9 – luminometric analysis and caspase activity 3 colorimetric assay. Results: The observed anti-proliferative effect of the copper complexes appeared to be dose-, time- and cell line- dependent. Human colon carcinoma cells HT-29 appeared to be more sensitive to the complex MK0 ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O) than to ZK1 ([Cu(N-salicylidene-L-glutamato)(H2O)2].H2O) and MK1 ([Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O)). Human colon carcinoma cells HT-29 appeared to be more sensitive to the complex than human breast carcinoma cells MCF-7. IC50 decreased with time of incubation (24, 48 and 72h) for HT-29, but increased for MCF-7. By electrophoresis we found apoptotic cell death induced by our copper complexes in HT-29 at concentrations 1, 10, 50 and 100 µmol/L after 48h (ZK1) and 72h (MK0, MK1) and in MCF-7 we did not find apoptosis. We also studied molecular mechanism of apoptosis in HT-29 induced by copper complexes. We found active caspase 9 in HT-29 after ZK1 ([Cu(N-salicylidene-L-glutamato)(H2O)2].H2O) and MK1 ([Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O)) influence and active caspase 8 after MK0 ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O) influence. Conclusion: Our copper complexes showed cytotoxic activities against human colon carcinoma cells HT-29 and breast cancer cell line MCF-7 in vitro. Apoptosis was activated by mitochondrial pathway (intrinsic pathway) in case of ZK1 [Cu(N-salicylidene-L-glutamato)(H2O)2].H2O; MK1 [Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O; MK3 - transbis(ethanol)tetrakis(imidazol)Cu(II)(2+)bis(N-salicylidene-D,L-glutamato-N,O)-KO:KO´-(imidazol) and MK5 - [Cu(N-salicylidene-D,L- glutamato)(2-methylimidazol] copper complexes and by death receptors (extrinsic pathway) in case of MK0 [Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O copper complex in HT-29.Keywords: apoptosis, copper complex, cancer, carcinoma cell line
Procedia PDF Downloads 2924172 Induction of Adaptive Response in Yeast Cells under Influence of Extremely High Frequency Electromagnetic Field
Authors: Sergei Voychuk
Abstract:
Introduction: Adaptive response (AR) is a manifestation of radiation hormesis, which deal with the radiation resistance that may be increased with the pretreatment with small doses of radiation. In the current study, we evaluated the potency of radiofrequency EMF to induce the AR mechanisms and to increase a resistance to UV light. Methods: Saccharomyces cerevisiae yeast strains, which were created to study induction of mutagenesis and recombination, were used in the study. The strains have mutations in rad2 and rad54 genes, responsible for DNA repair: nucleotide excision repair (PG-61), postreplication repair (PG-80) and mitotic (crossover) recombination (T2). An induction of mutation and recombination are revealed due to the formation of red colonies on agar plates. The PG-61 and T2 are UV sensitive strains, while PG-80 is sensitive to ionizing radiation. Extremely high frequency electromagnetic field (EHF-EMF) was used. The irradiation was performed in floating mode and frequency changed during exposure from 57 GHz to 62 GHz. The power of irradiation was 100 mkW, and duration of exposure was 10 and 30 min. Treatment was performed at RT and then cells were stored at 28° C during 1 h without any exposure but after that they were treated with UV light (254nm) for 20 sec (strain T2) and 120 sec (strain PG-61 and PG-80). Cell viability and quantity of red colonies were determined after 5 days of cultivation on agar plates. Results: It was determined that EHF-EMF caused 10-20% decrease of viability of T2 and PG-61 strains, while UV showed twice stronger effect (30-70%). EHF-EMF pretreatment increased T2 resistance to UV, and decreased it in PG-61. The PG-80 strain was insensitive to EHF-EMF and no AR effect was determined for this strain. It was not marked any induction of red colonies formation in T2 and PG-80 strain after EHF or UV exposure. The quantity of red colonies was 2 times more in PG-61 strain after EHF-EMF treatment and at least 300 times more after UV exposure. The pretreatment of PG-61 with EHF-EMF caused at least twice increase of viability and consequent decrease of amount of red colonies. Conclusion: EHF-EMF may induce AR in yeast cells and increase their viability under UV treatment.Keywords: Saccharomyces cerevisiae, EHF-EMF, UV light, adaptive response
Procedia PDF Downloads 3194171 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy
Procedia PDF Downloads 4424170 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading
Authors: Eda Gök
Abstract:
Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.Keywords: non-local continuum mechanics, peridynamic theory, solid structures, tensile loading, flexural loading
Procedia PDF Downloads 120