Search results for: social networks sites (SNSs)
11323 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 19911322 Multilingual Females and Linguistic Change: A Quantitative and Qualitative Sociolinguistic Case Study of Minority Speaker in Southeast Asia
Authors: Stefanie Siebenhütter
Abstract:
Men and women use minority and majority languages differently and with varying confidence levels. This paper contrasts gendered differences in language use with socioeconomic status and age factors of minority language speakers in Southeast Asia. Language use and competence are conditioned by the variable of gender. Potential reasons for this variation by examining gendered language awareness and sociolinguistic attitudes will be given. Moreover, it is analyzed whether women in multilingual minority speakers’ society function as 'leaders of linguistic change', as represented in Labov’s sociolinguistic model. It is asked whether the societal role expectations in collectivistic cultures influence the model of linguistic change. The findings reveal speaking preferences and suggest predictions on the prospective language use, which is a stable situation of multilingualism. The study further exhibits differences between male and females identity-forming processes and shows why females are the leaders of (socio-) linguistic change.Keywords: gender, identity construction, multilingual minorities, linguistic change, social networks
Procedia PDF Downloads 15911321 Studies on the Physico-Chemical Parameters of Jebba Lake, Niger State, Nigeria
Authors: M. B. Mshelia, J. K. Balogun, J. Auta, N. O. Bankole
Abstract:
Studies on some aspects of the physico-chemical parameters of Jebba Lake, Niger State, Nigeria was carried out from January to December, 2011. The aim was to investigate some of the physico-chemical parameters relevant to life and health of fish in the water body. Six (6) sampling sites were selected at random which covered Northern (Faku and Awuru), middle (Old Gbajibo and Shankade) and southern zones (New Gbajibo and Jebba dam} of Jebba Lake. Sampling was carried out for the period of 12 Months. The Physico-chemical parameters that were considered were water temperature, pH, dissolved oxygen, electrical conductivity, water transparency, phosphate and nitrate. They were all measured using standard methods. The results showed that water temperature values ranged between 26.06 ± 0.15a in Jebba lake site to 27.34 ± 0.12b in Shankade sampling site, depth varied from 8.08m to 31.64m, water current was between 20.10.62 cm/sec and 26.46 cm/sec, Secchi disc transparency ranged from0.46±0.01 m in New Gbajibo, while the highest mean value was 0.53 ± 0.04 m in Jebba dam., pH varied from 6.49 ± 0.01 and 7.59,5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.The dissolved oxygen varied between 5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.,The mean conductivity value was highest in Faku and Jebba with 128.8 ± 0.32 and 128.8 ± 0.42homs/cm) respectively, Alkalinity ranged 43.00±0.02 to33.30±0.32 mg/l., The nitrate-nitrogen range (2.37 ± 0.08 – 6.40 ± 0.50mg/l)., The mean values of phosphate-phosphorus (PO4-P) recorded varied between 0.18 ± 0.00 mg/l in Faku to 0.47 + 0.10 mg/l in Old Gbajibo.The highest mean value for total dissolved solids was 57.88 ± 0.28 mg/l in Shankade, while the lowest mean value of 39.17 ± 0.42 mg/l was recorded in Faku. Free CO2 ranged from 1.75 mg/l to 2.94 mg/l, Biochemical oxygen demand (BOD) was between 4.25 mg/l and 5.41 mg/l and nitrate-nitrogen concentration was between 2.37 mg/l and 6.40 mg/l. There were significant differences (P < 0.05) between these parameters in relation to stations. Generally, the physico-chemical characteristics of Lake Jebba were within the productive values for aquatic systems, and strongly indicate that the lake is unpolluted.Keywords: Jebba Lake, water quality, secchi disc, DO meter, sampling sites, physico-chemical parameters
Procedia PDF Downloads 43611320 An Integrated Water Resources Management Approach to Evaluate Effects of Transportation Projects in Urbanized Territories
Authors: Berna Çalışkan
Abstract:
The integrated water management is a colloborative approach to planning that brings together institutions that influence all elements of the water cycle, waterways, watershed characteristics, wetlands, ponds, lakes, floodplain areas, stream channel structure. It encourages collaboration where it will be beneficial and links between water planning and other planning processes that contribute to improving sustainable urban development and liveability. Hydraulic considerations can influence the selection of a highway corridor and the alternate routes within the corridor. widening a roadway, replacing a culvert, or repairing a bridge. Because of this, the type and amount of data needed for planning studies can vary widely depending on such elements as environmental considerations, class of the proposed highway, state of land use development, and individual site conditions. The extraction of drainage networks provide helpful preliminary drainage data from the digital elevation model (DEM). A case study was carried out using the Arc Hydro extension within ArcGIS in the study area. It provides the means for processing and presenting spatially-referenced Stream Model. Study area’s flow routing, stream levels, segmentation, drainage point processing can be obtained using DEM as the 'Input surface raster'. These processes integrate the fields of hydrologic, engineering research, and environmental modeling in a multi-disciplinary program designed to provide decision makers with a science-based understanding, and innovative tools for, the development of interdisciplinary and multi-level approach. This research helps to manage transport project planning and construction phases to analyze the surficial water flow, high-level streams, wetland sites for development of transportation infrastructure planning, implementing, maintenance, monitoring and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. Transport projects are frequently perceived as critical to the ‘success’ of major urban, metropolitan, regional and/or national development because of their potential to affect significant socio-economic and territorial change. In this context, sustaining and development of economic and social activities depend on having sufficient Water Resources Management. The results of our research provides a workflow to build a stream network how can classify suitability map according to stream levels. Transportation projects establish, develop, incorporate and deliver effectively by selecting best location for reducing construction maintenance costs, cost-effective solutions for drainage, landslide, flood control. According to model findings, field study should be done for filling gaps and checking for errors. In future researches, this study can be extended for determining and preventing possible damage of Sensitive Areas and Vulnerable Zones supported with field investigations.Keywords: water resources management, hydro tool, water protection, transportation
Procedia PDF Downloads 5611319 Training a Neural Network to Segment, Detect and Recognize Numbers
Authors: Abhisek Dash
Abstract:
This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.Keywords: convolutional neural networks, OCR, text detection, text segmentation
Procedia PDF Downloads 16111318 Ubiquitous Collaborative Mobile Learning (UCML): A Flexible Instructional Design Model for Social Learning
Authors: Hameed Olalekan Bolaji
Abstract:
The digital natives are driving the trends of literacy in the use of electronic devices for learning purposes. This has reconfigured the context of learning in the exploration of knowledge in a social learning environment. This study explores the impact of Ubiquitous Collaborative Mobile Learning (UCML) instructional design model in a quantitative designed-based research approach. The UCML model was a synergetic blend of four models that are relevant to the design of instructional content for a social learning environment. The UCML model serves as the treatment and instructions were transmitted via mobile device based on the principle of ‘bring your own device’ (BYOD) to promote social learning. Three research questions and two hypotheses were raised to guide the conduct of this study. A researcher-designed questionnaire was used to collate data and the it was subjected to reliability of Cronbach Alpha which yielded 0.91. Descriptive statistics of mean and standard deviation were used to answer research questions while inferential statistics of independent sample t-test was used to analyze the hypotheses. The findings reveal that the UCML model was adequately evolved and it promotes social learning its design principles through the use of mobile devices.Keywords: collaboration, mobile device, social learning, ubiquitous
Procedia PDF Downloads 15711317 Child Homicide Victimization and Community Context: A Research Note
Authors: Bohsiu Wu
Abstract:
Among serious crimes, child homicide is a rather rare event. However, the killing of children stirs up a special type of emotion in society that pales other criminal acts. This study examines the relevancy of three possible community-level explanations for child homicide: social deprivation, female empowerment, and social isolation. The social deprivation hypothesis posits that child homicide results from lack of resources in communities. The female empowerment hypothesis argues that a higher female status translates into a higher level of capability to prevent child homicide. Finally, the social isolation hypothesis regards child homicide as a result of lack of social connectivity. Child homicide data, aggregated by US postal ZIP codes in California from 1990 to 1999, were analyzed with a negative binomial regression. The results of the negative binomial analysis demonstrate that social deprivation is the most salient and consistent predictor among all other factors in explaining child homicide victimization at the ZIP-code level. Both social isolation and female labor force participation are weak predictors of child homicide victimization across communities. Further, results from the negative binomial regression show that it is the communities with a higher, not lower, degree of female labor force participation that are associated with a higher count of child homicide. It is possible that poor communities with a higher level of female employment have a lesser capacity to provide the necessary care and protection for the children. Policies aiming at reducing social deprivation and strengthening female empowerment possess the potential to reduce child homicide in the community.Keywords: child homicide, deprivation, empowerment, isolation
Procedia PDF Downloads 19411316 Information Communication Technologies and Renewable Technologies' Impact on Irish People's Lifestyle: A Constructivist Grounded Theory Study
Authors: Hamilton V. Niculescu
Abstract:
This paper discusses findings relating to people's engagement with mobile communication technologies and remote automated systems. This interdisciplinary study employs a constructivist grounded theory methodology, with qualitative data that was generated following in-depth semi-structured interviews with 18 people living in Ireland being corroborated with participants' observations and quantitative data. Additional data was collected following participants' remote interaction with six custom-built automated enclosures, located at six different sites around Dublin, Republic of Ireland. This paper argues that ownership and education play a vital role in people engaging with and adoption of new technologies. Analysis of participants' behavior and attitude towards Information Communication Technologies (ICT) suggests that innovations do not always improve peoples' social inclusion. Technological innovations are sometimes perceived as destroying communities and create a dysfunctional society. Moreover, the findings indicate that a lack of public information and support from Irish governmental institutions, as well as limited off-the-shelves availability, has led to low trust and adoption of renewable technologies. A limited variation in participants' behavior and interaction patterns with technologies was observed during the study. This suggests that people will eventually adopt new technologies according to their needs and experience, even though they initially rejected the idea of changing their lifestyle.Keywords: automation, communication, ICT, renewables
Procedia PDF Downloads 11211315 The Impact of Corporate Social Responsibility and Knowledge Management Factors on Students’ Job Performance: A Case Study of Silpakorn University’s Internship Program
Authors: Naritphol Boonjyakiat
Abstract:
This research attempts to investigate the effects of corporate social responsibility and knowledge management factors on students’ job performance of the Silpakorn University’s internship program within various organizations. The goal of this study is to fill the literature gap by gaining an understanding of corporate social responsibility and the knowledge management factors that fundamentally relate to students’ job performance within the organizations. Thus, this study will focus on the outcomes that were derived from a set of secondary data that were obtained using a Silpakorn university’s data base of 200 students and selected employer assessment and evaluation forms from the companies. The results represent the perceptions of students towards the corporate social responsibility aspects and knowledge management factors within the university and their job performance evaluation from the employers in various organizations. The findings indicate that corporate social responsibility and knowledge management have significant effects on students’ job performance. This study may assist us in gaining a better understanding of the integrated aspects of university and workplace environments to discover how to optimally allocate university’s resources and management approaches to gain benefits from corporate social responsibility and knowledge management practices toward students’ job performance within an organizational experience settings. Therefore, there is a sufficient reason to believe that the findings can contribute to research in the area of CSR, KM, and job performance as essential aspect of involved stakeholder.Keywords: corporate social responsibility, knowledge management, job performance, internship program
Procedia PDF Downloads 33211314 The Role of Hausa Oral Praise Singer in Conflict Management and Social Mobilization in Nigeria
Authors: Ladan Surajo
Abstract:
Nigeria as a third world country is full of people who cannot read and write, thereby constituting a stumbling block to the modern way of communication. It is a well known fact that Nigeria is a heterogeneous country with an estimated 450 or more ethnic groups communicating in divergent languages. Despite this scenario, English, Hausa, Igbo and Yoruba languages are predominantly used in the country. Apart from English language, Hausa has a wider coverage of usage among the indigenous languages in Nigeria, thereby using it in the area of social mobilization and conflict management cannot be overemphasized. Hausa Oral Singers are depicting their artistic and God endowed talents through singing to mobilize and sensitize the local communities about government programmes and the ills of other social problems of the society. It is the belief of this researcher that if used properly, the Hausa Oral Singers will assist immensely in reducing to the barest minimum some social ills of the society in Nigeria. More so that music is the food of the heart and has a resounding impact in changing the behaviour of individuals and groups.Keywords: oral, singers, praise, social mobilization, conflict management
Procedia PDF Downloads 46211313 Qualitative and Quantitative Case Study Research Method on Social Science: Accounting Perspective
Authors: Bubaker F. Shareia
Abstract:
The main aim of this paper is to set the parameters within which the study is to be conducted, specifically justifying the use of qualitative research, informed by theory. This paper argues that the social world is subjective in nature and may be accessed through the interpretive approach provided by the people involved in the context of the study. The paper defines and distinguishes between qualitative and quantitative research methodologies, explores Burrell and Morgan's framework for social research, and presents the study's adopted methodology and methods, with the rationale for these choices.Keywords: accounting, methodologies, qualitative, quantitative research
Procedia PDF Downloads 23311312 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance
Authors: Libo Jiang, Huan Li, Rongling Wu
Abstract:
Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance
Procedia PDF Downloads 63911311 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 8611310 A Review of Current Trends in Grid Balancing Technologies
Authors: Kulkarni Rohini D.
Abstract:
While emerging as plausible sources of energy generation, new technologies, including photovoltaic (PV) solar panels, home battery energy storage systems, and electric vehicles (EVs), are exacerbating the operations of power distribution networks for distribution network operators (DNOs). Renewable energy production fluctuates, stemming in over- and under-generation energy, further complicating the issue of storing excess power and using it when necessary. Though renewable sources are non-exhausting and reoccurring, power storage of generated energy is almost as paramount as to its production process. Hence, to ensure smooth and efficient power storage at different levels, Grid balancing technologies are consequently the next theme to address in the sustainable space and growth sector. But, since hydrogen batteries were used in the earlier days to achieve this balance in power grids, new, recent advancements are more efficient and capable per unit of storage space while also being distinctive in terms of their underlying operating principles. The underlying technologies of "Flow batteries," "Gravity Solutions," and "Graphene Batteries" already have entered the market and are leading the race for efficient storage device solutions that will improve and stabilize Grid networks, followed by Grid balancing technologies.Keywords: flow batteries, grid balancing, hydrogen batteries, power storage, solar
Procedia PDF Downloads 7011309 The Effects of Cultural Self-Efficacy and Perceived Social Support on Acculturative Stress of International Postgraduate Students in the United Kingdom
Authors: Rhea Mathews
Abstract:
The purpose of the study is to investigate the effects of perceived social support and cultural self-efficacy on the acculturative stress of international postgraduate students in the United Kingdom. The study adopted Berry, Kim, Minde & Mok’s (1987) acculturative framework on acculturative stress and examined the relationship between the variables. The study hypothesized that perceived social support and cultural self-efficacy would predict lower levels of acculturative stress among students. Postgraduate students in the United Kingdom (N = 76) completed three surveys measuring the variables; Acculturative Stress Scale for International Students, Multidimensional Scale of Perceived Social Support, and Cultural Self-efficacy for Adolescents. To evaluate the role of the perceived social support and cultural self-efficacy in determining the acculturative stress level of international students, multiple linear regression was employed. Both independent variables exhibited a significant, negative relationship with acculturative stress (p < 0.001; p < 0.01). Results described that cultural self-efficacy and perceived social support significantly predicted acculturative stress (p < 0.01). Together, the variables accounted for 22% of the variance in acculturative stress scores (adjusted R² = 0.22), with cultural self-efficacy playing a larger role in predicting the dependent variable. Limitations and implications of the study are noted. The findings of the study are discussed in relation to enhancing international students’ acculturative experience when relocating to a new environment.Keywords: acculturative stress, coping, cultural adjustment, cultural self-efficacy, international education, international students, migration, perceived social support
Procedia PDF Downloads 32711308 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 11311307 Delving into the Concept of Social Capital in the Smart City Research
Authors: Atefe Malekkhani, Lee Beattie, Mohsen Mohammadzadeh
Abstract:
Unprecedented growth of megacities and urban areas all around the world have resulted in numerous risks, concerns, and problems across various aspects of urban life, including environmental, social, and economic domains like climate change, spatial and social inequalities. In this situation, ever-increasing progress of technology has created a hope for urban authorities that the negative effects of various socio-economic and environmental crises can potentially be mitigated with the use of information and communication technologies. The concept of 'smart city' represents an emerging solution to urban challenges arising from increased urbanization using ICTs. However, smart cities are often perceived primarily as technological initiatives and are implemented without considering the social and cultural contexts of cities and the needs of their residents. The implementation of smart city projects and initiatives has the potential to (un)intentionally exacerbate pre-existing social, spatial, and cultural segregation. Investigating the impact of smart city on social capital of people who are users of smart city systems and with governance as policymakers is worth exploring. The importance of inhabitants to the existence and development of smart cities cannot be overlooked. This concept has gained different perspectives in the smart city studies. Reviewing the literature about social capital and smart city show that social capital play three different roles in smart city development. Some research indicates that social capital is a component of a smart city and has embedded in its dimensions, definitions, or strategies, while other ones see it as a social outcome of smart city development and point out that the move to smart cities improves social capital; however, in most cases, it remains an unproven hypothesis. Other studies show that social capital can enhance the functions of smart cities, and the consideration of social capital in planning smart cities should be promoted. Despite the existing theoretical and practical knowledge, there is a significant research gap reviewing the knowledge domain of smart city studies through the lens of social capital. To shed light on this issue, this study aims to explore the domain of existing research in the field of smart city through the lens of social capital. This research will use the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' (PRISMA) method to review relevant literature, focusing on the key concepts of 'Smart City' and 'Social Capital'. The studies will be selected Web of Science Core Collection, using a selection process that involves identifying literature sources, screening and filtering studies based on titles, abstracts, and full-text reading.Keywords: smart city, urban digitalisation, ICT, social capital
Procedia PDF Downloads 1411306 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 13611305 Social Media and Political Mobilization in Nigeria: A Study in E-Participation
Authors: Peter Amobi Chiamogu
Abstract:
Communication has subsisted as the basis for mass mobilization and political education through history with the media as a generic concept. Revolutions in ICTs have occasioned a limitless environment for the dissemination of information and ideas especially with the use of a seemingly pervasive access, penetration and use of the internet which has engendered a connected society. This study seeks to analyze the prospects and challenges for the adaptation of social media for free election and how this process can enhance public policy making, implementation and evaluation in a developing state.Keywords: social media, e-participation, political mobilization, public policy, electioneering
Procedia PDF Downloads 35211304 How Social Capital Mediates the Relationships between Interpersonal Interaction and Health: Location-Based Augmented Reality Games
Authors: Chechen Liao, Pui-Lai To, Yi-Hui Wang
Abstract:
Recently location-based augmented reality games (LBS+AR) have become increasingly popular as a major form of entertainment. Location-based augmented reality games have provided a lot of opportunities for face-to-face interaction among players. Prior studies also indicate that the social side of location-based augmented reality games are one of the major reasons for players to engage in the games. However, the impact of the usage of location-based augmented reality games has not been well explored. The study examines how interpersonal interaction affects social capital and health through playing location-based augmented reality games. The study also investigates how social capital mediates the relationships between interpersonal interaction and health. The study uses survey method to collect data. Six-hundred forty-seven questionnaires are collected. Structural equation modeling is used to investigate the relationships among variables. The causal relationships between variables in the research model are tested. The results of the study indicated that four interpersonal attraction attributes, including ability, proximity, similarity, and familiarity, are identified by ways of factor analysis. Interpersonal attraction is important for location-based augmented reality game-players to develop bonding and bridging social capital. Bonding and bridging social capital have a positive impact on the mental and social health of game-players. The results of the study provide academic and practical implications for future growth of location-based augmented reality games.Keywords: health, interpersonal interaction, location-based augmented reality games, social capital
Procedia PDF Downloads 25811303 Socioeconomic Status and Gender Influence on Linguistic Change: A Case Study on Language Competence and Confidence of Multilingual Minority Language Speakers
Authors: Stefanie Siebenhütter
Abstract:
Male and female speakers use language differently and with varying confidence levels. This paper contrasts gendered differences in language use with socioeconomic status and age factors. It specifically examines how Kui minority language use and competence are conditioned by the variable of gender and discusses potential reasons for this variation by examining gendered language awareness and sociolinguistic attitudes. Moreover, it discusses whether women in Kui society function as 'leaders of linguistic change', as represented in Labov’s sociolinguistic model. It discusses whether societal role expectations in collectivistic cultures influence the model of linguistic change. The findings reveal current Kui speaking preferences and give predictions on the prospective language use, which is a stable situation of multilingualism because the current Kui speakers will socialize and teach the prospective Kui speakers in the near future. It further confirms that Lao is losing importance in Kui speaker’s (female’s) daily life.Keywords: gender, identity construction, language change, minority language, multilingualism, sociolinguistics, social Networks
Procedia PDF Downloads 17711302 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma
Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam
Abstract:
Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.Keywords: systems biology, ependymoma, deg, network analysis
Procedia PDF Downloads 29811301 The Long-Term Impact of Health Conditions on Social Mobility Outcomes: A Modelling Study
Authors: Lise Retat, Maria Carmen Huerta, Laura Webber, Franco Sassi
Abstract:
Background: Intra-generational social mobility (ISM) can be defined as the extent to which individuals change their socio-economic position over a period of time or during their entire life course. The relationship between poor health and ISM is established. Therefore, quantifying the impact that potential health policies have on ISM now and into the future would provide evidence for how social inequality could be reduced. This paper takes the condition of overweight and obesity as an example and estimates the mean earning change per individual if the UK were to introduce policies to effectively reduce overweight and obesity. Methods: The HealthLumen individual-based model was used to estimate the impact of obesity on social mobility measures, such as earnings, occupation, and wealth. The HL tool models each individual's probability of experiencing downward ISM as a result of their overweight and obesity status. For example, one outcome of interest was the cumulative mean earning per person of implementing a policy which would reduce adult overweight and obesity by 1% each year between 2020 and 2030 in the UK. Results: Preliminary analysis showed that by reducing adult overweight and obesity by 1% each year between 2020 and 2030, the cumulative additional mean earnings would be ~1,000 Euro per adult by 2030. Additional analysis will include other social mobility indicators. Conclusions: These projections are important for illustrating the role of health in social mobility and for providing evidence for how health policy can make a difference to social mobility outcomes and, in turn, help to reduce inequality.Keywords: modelling, social mobility, obesity, health
Procedia PDF Downloads 12211300 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks
Authors: Mohanad Alhabo, Naveed Nawaz
Abstract:
The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing the handover procedure while the user is on the move. However, the dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and handover failure because of short time of stay of the user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. Multi-tier small cells network is considered in this work. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method has decreased the candidate small cell list, unnecessary handovers, handover failure, and short time of stay cells compared to the competitive method.Keywords: handover, HetNets, multi-attribute decision making, small cells
Procedia PDF Downloads 12011299 Towards Kurdish Internet Linguistics: A Case Study on the Impact of Social Media on Kurdish Language
Authors: Karwan K. Abdalrahman
Abstract:
Due to the impacts of the internet and social media, new words and expressions enter the Kurdish language, and a number of familiarized words get new meanings. The case is especially true when the technique of transliteration is taken into consideration. Through transliteration, a number of selected words widely used on social media are entering the Kurdish media discourse. In addition, a selected number of Kurdish words get new cultural and psychological meanings. The significance of this study is to delve into the process of word formation in the Kurdish language and explore how new words and expressions are formed by social media users and got public recognition. First, the study investigates the English words that enter the Kurdish language through different social media platforms. All of these words are transliterated and are used in spoken and written discourses. Second, there are a specific number of Kurdish words that got new meanings in social media. As for these words, there are psychological and cultural factors that make people use these expressions for specific political reasons. It can be argued that they have an indirect political message along with their new linguistic usages. This is a qualitative study analyzing video content that was published in the last two years on social media platforms, including Facebook and YouTube. The collected data was analyzed based on the themes discussed above. The findings of the research can be summarized as follows: the widely used transliterated words have entered both the spoken and written discourses. Authors in online and offline newspapers, TV presenters, literary writers, columnists are using these new expressions in their writings. As for the Kurdish words with new meanings, they are also widely used for psychological, cultural, and political reasons.Keywords: Kurdish language, social media, new meanings, transliteration, vocabulary
Procedia PDF Downloads 18011298 Parallel Transformation Processes of Historical Centres: The Cases of Sevilla and Valparaiso
Authors: Jorge Ferrada Herrera, Pablo M. Millán-Millán
Abstract:
The delimitation in the cities of heritage areas implicit in strong processes of transformation, both social and material. The study shows how two cities, seemingly different as Seville (Spain) and Valparaiso (Chile), share the same transformation process from its declaration as heritage cities. The metdología used in research has been on the one hand the analytic-criticism has shown us all processes and the level of involvement of these. On the other hand the direct observation methodology has allowed us to ratify all studied. Faced with these processes research shows social resources that people have developed to address each of them. The study concludes the need to strengthen the social and associative fabric in heritage areas as a resource to ensure the survival of heritage, not only material but also social and cultural. As examples, we have chosen Seville and Valparaiso: the gentrification of Seville prior to the universal exhibition of ‘92 –with pretty specific plans-- is paralleled by Valparaiso’s plan to revitalize its port and its protected (UNESCO) area. The whole of our theoretical discourse will be based thereupon.Keywords: historical centers, tourism, heritage, social processes
Procedia PDF Downloads 30511297 Floristic Diversity, Carbon Stocks and Degradation Factors in Two Sacred Forests in the West Cameroon Region
Authors: Maffo Maffo Nicole Liliane, Mounmeni Kpoumie Hubert, Mbaire Matindje Karl Marx, Zapfack Louis
Abstract:
Sacred forests play a valuable role in conserving local biodiversity and provide numerous ecosystem services in Cameroon. The study was carried out in the sacred forests of Bandrefam and Batoufam (western Cameroon). The aim was to estimate the diversity of woody species, carbon stocks and degradation factors in these sacred forests. The floristic inventory was carried out in plots measuring 25m × 25m for trees with diameters greater than 10 cm and 5m × 5m for trees with diameters less than 10 cm. Carbon stocks were estimated using the non-destructive method and the allometric equations. Data on degradation factors were collected using semi-structured surveys in the Bandrefam and Batoufam neighborhoods. The floristic inventory identified 65 species divided into 57 genera and 30 families in the Bandrefam Sacred Forest and 45 species divided into 42 genera and 27 families in the Batoufam Sacres Forest. The families common to both sacred forests are as follows: Phyllanthaceae, Fabaceae, Moraceae, Lamiaceae, Malvaceae, Rubiaceae, Meliaceae, Anacardiaceae, and Sapindaceae. Three genera are present in both sites. These are: Albizia, Macaranga, Trichillia. In addition, there are 27 species in common between the two sites. The total carbon stock is 469.26 tC/ha at Batoufam and 291.41 tC/ha at Bandrefam. The economic value varies between 15 823 877.05 fcfa at Batoufam and 9 825 530.528 fcfa at Bandrefam. The study shows that despite the sacred nature of these forests, they are subject to degradation factors such as bushfires (35.42 %), the creation of plantations (23.96 %), illegal timber exploitation (21.88 %), young people's lack of interest in the notion of conservation (9.38 %), climate change (7.29 %) and growing urbanization (2.08 %). These factors threaten biodiversity and reduce carbon storage in these forests.Keywords: sacred forests, degradation factors, carbon stocks, semi-structured surveys
Procedia PDF Downloads 4911296 Forms of Social Provision for Housing Investments in Local Planning Acts for European Capitals: Comparative Study and Spatial References
Authors: Agata Twardoch
Abstract:
The processes of commodification of real estate and changes in housing markets have led to a situation where the prices of free market housing in European capitals are significantly higher than the purchasing value of average wages. This phenomenon has many negative social and spatial consequences. At the same time, the attractiveness of real estate as an asset makes these processes progress. Out of concern for sustainable social development, city authorities apply solutions to balance the burdensome effects of codification of housing. One of them is a social provision for housing investments. The article presents a comparative study of solutions applied in selected European capitals, on the example of Warsaw, Paris, London, Berlin, Copenhagen, and Vienna. The study was conducted along with works on expert report for the master plan for Warsaw. The forms of commissions applied in Local Planning Acts were compared, with particular reference to spatial solutions. The results of the analysis made it possible to determine common features of the solutions applied and to establish recommendations for further practice. Major findings of the study indicate that requirement of social provision is achievable in spatial planning documents. Study shows that application of social provision in private housing investments is a useful tool in housing policy against commodification.Keywords: affordable housing, housing provision, spatial planning, sustainable social development
Procedia PDF Downloads 17911295 How Influencers Influence: The Effects of Social Media Influencers Influence on Purchase Intention and the Differences among Generation X and Millennials
Authors: Samatha Ss Sutton, Kaouther Kooli
Abstract:
In recent years social media influences (SMI) have become integrated into many companies marketing strategies to create buzz, target new and younger markets and further expand social media coverage in business (Lim et al 2017). SMI’s can be defined as online personalities with a substantial number of followers, across one or more social media platforms, with influence on their followers (Lou and Yuan 2018). Recently expenditure on influencer marketing has increased exponentially becoming an important area for marketing opportunities and strategies in the future (Lou and Yuan 2018). In order to market products and brands effectively through SMI’s it is important for business to understand the attributes of SMI that effect purchase intention (Lim et al 2017) of their followers and whether or not these attributes vary across generations so to market effectively to their specific segment or target market. The present study involves quantitative research to understand the attributes by which influence differs across generations namely Generation X and Millennials and its effects on purchase intentions of these generational groups. A survey will be conducted using an online questionnaire. Structural Equation Modelling and Multi group analysis will be applied. The study provides insight to marketers/decision makers on how to use influencers accordingly with their target consumer.Keywords: social media marketing, social media influencers, attitude towards social media influencers, intention to purchase
Procedia PDF Downloads 13611294 Shopping Centers in the Context of a Growing and Changing City: The Case of Konya Kent Plaza
Authors: H. Derya Arslan
Abstract:
Shopping centers have become an important part of urban life. The numbers of shopping centers have rapidly increased for ten years, in Turkey. Malls that have been built with increasing speed in the last two decades meet most social and cultural needs of people. In this study, architectural characteristics of a recent mall built in the city of Konya in Turkey have been discussed. The assessment of the mall in question has been made in the context of a growing and changing city. The study opened up new horizons and discussion areas to entrepreneurs who make significant investments in shopping centers, architects who design shopping centers as efficient commercial and social environments, and social scientists that investigate the effects of increase in these closed urban spaces on urban life.Keywords: shopping center, architecture, city, social
Procedia PDF Downloads 336