Search results for: online training
4167 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5034166 Exploring the Knowledge from the Public on Technical and Vocational Education Training (TVET) in Ghana
Authors: Abubakar-Zagoon Adams, Emmanuel Intsiful, Haruna Zagoon-Sayeed
Abstract:
Within the Ghanaian context, the promotion of Technical and Vocational Education and Training (TVET) has been faced with many obstacles which are of great concern to national development. One of the obstacles that have been identified as having some negative impact on TVET promotion is the poor public perception of TVET. Poor public perception, as identified in the sub-sectors report in a number of Ghana Education Service reports, has received little attention in both research and the government’s effort to address the poor performance of the TVET sub-sector. This study investigated TVET stakeholders in the Ayawaso-West Municipality in the Greater Accra Region of Ghana to ascertain knowledge of technical and vocational education in Ghana. This study explored parents’ and students’ views and knowledge about technical and vocational education. The study adopted an exploratory research design and a qualitative research approach. Thirty-six (36) participants were selected by employing a purposive sampling technique. Twelve (ten parents and two school personnel) out of the total sample were engaged in key informant interviews, whereas three focus group discussions were conducted with students, eight in each group. The study found that the public has fair knowledge (positive) about TVET, and the other side of the coin knows that TVET is only meant for school dropouts, underprivileged students, and weak academic students. The study recommended that the government should intensify public education on TVET, deliberate investment should be made in TVET infrastructure, as well as proper regulation of the sub-sector.Keywords: public perception, TVET promotion, socioeconomic, self-employment
Procedia PDF Downloads 1034165 We Have Never Seen a Dermatologist. Prisons Telederma Project Reaching the Unreachable Through Teledermatology
Authors: Innocent Atuhe, Babra Nalwadda, Grace Mulyowa, Annabella Habinka Ejiri
Abstract:
Background: Atopic Dermatitis (AD) is one of the most prevalent and growing chronic inflammatory skin diseases in African prisons. AD care is limited in African due to a lack of information about the disease amongst primary care workers, limited access to dermatologists, lack of proper training of healthcare workers, and shortage of appropriate treatments. We designed and implemented the Prisons Telederma project based on the recommendations of the International Society of Atopic Dermatitis. We aimed at; i) increase awareness and understanding of teledermatology among prison health workers and ii) improve treatment outcomes of prisoners with atopic dermatitis through increased access to and utilization of consultant dermatologists through teledermatology in Uganda prisons. Approach: We used Store-and-forward Teledermatology (SAF-TD) to increase access to dermatologist-led care for prisoners and prison staff with AD. We conducted five days of training for prison health workers using an adapted WHO training guide on recognizing neglected tropical diseases through changes on the skin together with an adapted American Academy of Dermatology (AAD) Childhood AD Basic Dermatology Curriculum designed to help trainees develop a clinical approach to the evaluation and initial management of patients with AD. This training was followed by blended e-learning, webinars facilitated by consultant Dermatologists with local knowledge of medication and local practices, apps adjusted for pigmented skin, WhatsApp group discussions, and sharing pigmented skin AD pictures and treatment via zoom meetings. We hired a team of Ugandan Senior Consultant dermatologists to draft an iconographic atlas of the main dermatoses in pigmented African skin and shared this atlas with prison health staff for use as a job aid. We had planned to use MySkinSelfie mobile phone application to take and share skin pictures of prisoners with AD with Consultant Dermatologists, who would review the pictures and prescribe appropriate treatment. Unfortunately, the National Health Service withdrew the app from the market due to technical issues. We monitored and evaluated treatment outcomes using the Patient-Oriented Eczema Measure (POEM) tool. We held four advocacy meetings to persuade relevant stakeholders to increase supplies and availability of first-line AD treatments such as emollients in prison health facilities. Results: We have the very first iconographic atlas of the main dermatoses in pigmented African skin. We increased; i) the proportion of prison health staff with adequate knowledge of AD and teledermatology from 20% to 80%; ii) the proportion of prisoners with AD reporting improvement in disease severity (POEM scores) from 25% to 35% in one year; iii) increased proportion of prisoners with AD seen by consultant dermatologist through teledermatology from 0% to 20% in one year and iv)Increased the availability of AD recommended treatments in prisons health facilities from 5% to 10% in one year. Our study contributes to the use, evaluation, and verification of the use of teledermatology to increase access to specialist dermatology services to the most hard to reach areas and vulnerable populations such as that of prisoners.Keywords: teledermatology, prisoners, reaching, un-reachable
Procedia PDF Downloads 1014164 Information and Communication Technology (ICT) Education Improvement for Enhancing Learning Performance and Social Equality
Authors: Heichia Wang, Yalan Chao
Abstract:
Social inequality is a persistent problem. One of the ways to solve this problem is through education. At present, vulnerable groups are often less geographically accessible to educational resources. However, compared with educational resources, communication equipment is easier for vulnerable groups. Now that information and communication technology (ICT) has entered the field of education, today we can accept the convenience that ICT provides in education, and the mobility that it brings makes learning independent of time and place. With mobile learning, teachers and students can start discussions in an online chat room without the limitations of time or place. However, because liquidity learning is quite convenient, people tend to solve problems in short online texts with lack of detailed information in a lack of convenient online environment to express ideas. Therefore, the ICT education environment may cause misunderstanding between teachers and students. Therefore, in order to better understand each other's views between teachers and students, this study aims to clarify the essays of the analysts and classify the students into several types of learning questions to clarify the views of teachers and students. In addition, this study attempts to extend the description of possible omissions in short texts by using external resources prior to classification. In short, by applying a short text classification, this study can point out each student's learning problems and inform the instructor where the main focus of the future course is, thus improving the ICT education environment. In order to achieve the goals, this research uses convolutional neural network (CNN) method to analyze short discussion content between teachers and students in an ICT education environment. Divide students into several main types of learning problem groups to facilitate answering student problems. In addition, this study will further cluster sub-categories of each major learning type to indicate specific problems for each student. Unlike most neural network programs, this study attempts to extend short texts with external resources before classifying them to improve classification performance. In short, by applying the classification of short texts, we can point out the learning problems of each student and inform the instructors where the main focus of future courses will improve the ICT education environment. The data of the empirical process will be used to pre-process the chat records between teachers and students and the course materials. An action system will be set up to compare the most similar parts of the teaching material with each student's chat history to improve future classification performance. Later, the function of short text classification uses CNN to classify rich chat records into several major learning problems based on theory-driven titles. By applying these modules, this research hopes to clarify the main learning problems of students and inform teachers that they should focus on future teaching.Keywords: ICT education improvement, social equality, short text analysis, convolutional neural network
Procedia PDF Downloads 1284163 The Research of the Relationship between Triathlon Competition Results with Physical Fitness Performance
Authors: Chen Chan Wei
Abstract:
The purpose of this study was to investigate the impact of swim 1500m, 10000m run, VO2 max, and body fat on Olympic distance triathlon competition performance. The subjects were thirteen college triathletes with endurance training, with an average age, height and weight of 20.61±1.04 years (mean ± SD), 171.76±8.54 cm and 65.32±8.14 kg respectively. All subjects were required to take the tests of swim 1500m, run 10000m, VO2 max, body fat, and participate in the Olympic distance triathlon competition. First, the swim 1500m test was taken in the standardized 50m pool, with a depth of 2m, and the 10000m run test on the standardized 400m track. After three days, VO2 max was tested with the MetaMax 3B and body fat was measured with the DEXA machine. After two weeks, all 13 subjects joined the Olympic distance triathlon competition at the 2016 New Taipei City Asian Cup. The relationships between swim 1500m, 10000m run, VO2 max, body fat test, and Olympic distance triathlon competition performance were evaluated using Pearson's product-moment correlation. The results show that 10000m run and body fat had a significant positive correlation with Olympic distance triathlon performance (r=.830, .768), but VO2 max has a significant negative correlation with Olympic distance triathlon performance (r=-.735). In conclusion, for improved non-draft Olympic distance triathlon performance, triathletes should focus on running than swimming training and can be measure VO2 max to prediction triathlon performance. Also, managing body fat can improve Olympic distance triathlon performance. In addition, swimming performance was not significantly correlated to Olympic distance triathlon performance, possibly because the 2016 New Taipei City Asian Cup age group was not a drafting competition. The swimming race is the shortest component of Olympic distance triathlons. Therefore, in a non-draft competition, swimming ability is not significantly correlated with overall performance.Keywords: triathletes, olympic, non-drafting, correlation
Procedia PDF Downloads 2504162 The Effect of a 12 Week Rhythmic Movement Intervention on Selected Biomotor Abilities on Academy Rugby Players
Authors: Jocelyn Solomons, Kraak
Abstract:
Rhythmic movement, also referred to as “dance”, involves the execution of different motor skills as well as the integration and sequencing of actions between limbs, timing and spatial precision. The aim of this study was therefore to investigate and compare the effect of a 16-week rhythmic movement intervention on flexibility, dynamic balance, agility, power and local muscular endurance of academy rugby players in the Western Cape, according to positional groups. Players (N ¼ 54) (age 18.66 0.81 years; height 1.76 0.69 cm; weight 76.77 10.69 kg), were randomly divided into a treatment-control [TCA] (n ¼ 28) and a control-treatment [CTB] (n ¼ 26) group. In this crossover experimental design, the interaction effect of the treatment order and the treatment time between the TCA and CTB group, was determined. Results indicated a statistically significant improvement (p < 0.05) in agility2 (p ¼ 0.06), power2 (p ¼ 0.05), local muscular endurance1 (p ¼ 0.01) & 3 (p ¼ 0.01) and dynamic balance (p < 0.01). Likewise, forwards and backs also showed statistically significant improvements (p < 0.05) per positional groups. Therefore, a rhythmic movement intervention has the potential to improve rugby-specific bio-motor skills and furthermore, improve positional specific skills should it be designed with positional groups in mind. Future studies should investigate, not only the effect of rhythmic movement on improving specific rugby bio-motor skills, but the potential of its application as an alternative training method during off- season (or detraining phases) or as a recovery method.Keywords: agility, dance, dynamic balance, flexibility, local muscular endurance, power, training
Procedia PDF Downloads 624161 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1504160 Transferring Cultural Meanings: A Case of Translation Classroom
Authors: Ramune Kasperaviciene, Jurgita Motiejuniene, Dalia Venckiene
Abstract:
Familiarising students with strategies for transferring cultural meanings (intertextual units, culture-specific idioms, culture-specific items, etc.) should be part of a comprehensive translator training programme. The present paper focuses on strategies for transferring such meanings into other languages and explores possibilities for introducing these methods and practice to translation students. The authors (university translation teachers) analyse the means of transferring cultural meanings from English into Lithuanian in a specific travel book, attribute these means to theoretically grounded strategies, and make calculations related to the frequency of adoption of specific strategies; translation students are familiarised with concepts and methods related to transferring cultural meanings and asked to put their theoretical knowledge into practice, i.e. interpret and translate certain culture-specific items from the same source text, and ground their decisions on theory; the comparison of the strategies employed by the professional translator of the source text (as identified by the authors of this study) and by the students is made. As a result, both students and teachers gain valuable experience, and new practices of conducting translation classes for a specific purpose evolve. Conclusions highlight the differences and similarities of non-professional and professional choices, summarise the possibilities for introducing methods of transferring cultural meanings to students, and round up with specific considerations of the impact of theoretical knowledge and the degree of experience on decisions made in the translation process.Keywords: cultural meanings, culture-specific items, strategies for transferring cultural meanings, translator training
Procedia PDF Downloads 3514159 Cultural Self-Efficacy of Child Protection Social Workers in Norway: Barriers and Opportunities in Working with Migrant Families
Authors: Justyna Mroczkowska
Abstract:
Social worker's ability to provide culturally sensitive assistance in child protection is taken for granted; given limited training opportunities and lack of clear guidance, practitioners report working with migrant families more demanding in comparison to working with native families. In this study, the author developed and factor analyzed the Norwegian Cultural Self-Efficacy Scale to describe the level of cultural capability among Norwegian child protection professionals. The study aimed to determine the main influencing factors to cultural efficacy and examine the relationship between self-efficacy and perceived difficulty in working with migrant families. The scale was administered to child protection workers in Norway (N=251), and the reliability of the scale measured by Cronbach's alpha coefficient was .904. The confirmatory factor analysis of social work cultural self-efficacy found support for four separate but correlated subscales: Assessment, Communication, Support Request, and Teamwork. Regression analyses found the experience in working with migrant families, training and support from external agencies, and colleague support to be significant predictors of cultural self-efficacy. Self-efficacy in assessment skills and self-efficacy in communication skills were moderately related to the perceived difficulty to work with migrant families. The findings conclude with previous research and highlight the need for both professional development programs and institutional resources to be provided to support the practitioner's preparation for multicultural practice in child protection.Keywords: child protection, cultural self-efficacy, cultural competency, migration, resources
Procedia PDF Downloads 1434158 How Best Mentors mentor: A Metadiscursive Study of Mentoring Styles in Teacher Education
Authors: Cissy Li
Abstract:
Mentorship is a commonly used strategy for career development that has obvious benefits for students in undergraduate pre-service teacher training programs. In contrast to teaching practicum, which generally involves pedagogical supervision and performance evaluation by teachers, mentorship is more focused on sharing experiences, supporting challenges, and nurturing skills in order to promote personal and professional growth. To empower pre-service teachers and prepare them for potential challenges in the context of local English language teaching (ELT), an alumni mentoring program was established in the framework of communities of practice (CoP), with the mentors being in-service graduates working in local schools and mentees being students on the teacher-training programme in a Hong Kong university. By triangulating audio transcripts of mentoring sessions delivered by three top mentors with data from questionnaire responses and mentor logs, this paper examines the mentoring styles of the three best mentors from the metadiscursive perspective. It was found that, in a community of practice, mentors who may seem to enjoy a relative more dominant position, in fact, had to strategically and pragmatically employ metadiscursive resources to manage relationships with the mentees and organize talks in the mentoring process. Other attributing factors for a successful mentoring session include mentor personality and prior mentorship experiences, nature of the activities in the session, and group dynamics. This paper concludes that it is the combination of all the factors that constitute a particular mentoring style. The findings have implications for mentoring programs in teacher preparation.Keywords: mentoring, teacher education, mentoring style, metadiscourse
Procedia PDF Downloads 924157 Classification for Obstructive Sleep Apnea Syndrome Based on Random Forest
Authors: Cheng-Yu Tsai, Wen-Te Liu, Shin-Mei Hsu, Yin-Tzu Lin, Chi Wu
Abstract:
Background: Obstructive Sleep apnea syndrome (OSAS) is a common respiratory disorder during sleep. In addition, Body parameters were identified high predictive importance for OSAS severity. However, the effects of body parameters on OSAS severity remain unclear. Objective: In this study, the objective is to establish a prediction model for OSAS by using body parameters and investigate the effects of body parameters in OSAS. Methodologies: Severity was quantified as the polysomnography and the mean hourly number of greater than 3% dips in oxygen saturation during examination in a hospital in New Taipei City (Taiwan). Four levels of OSAS severity were classified by the apnea and hypopnea index (AHI) with American Academy of Sleep Medicine (AASM) guideline. Body parameters, including neck circumference, waist size, and body mass index (BMI) were obtained from questionnaire. Next, dividing the collecting subjects into two groups: training and testing groups. The training group was used to establish the random forest (RF) to predicting, and test group was used to evaluated the accuracy of classification. Results: There were 3330 subjects recruited in this study, whom had been done polysomnography for evaluating severity for OSAS. A RF of 1000 trees achieved correctly classified 79.94 % of test cases. When further evaluated on the test cohort, RF showed the waist and BMI as the high import factors in OSAS. Conclusion It is possible to provide patient with prescreening by body parameters which can pre-evaluate the health risks.Keywords: apnea and hypopnea index, Body parameters, obstructive sleep apnea syndrome, Random Forest
Procedia PDF Downloads 1534156 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging
Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.Keywords: breast, machine learning, MRI, radiomics
Procedia PDF Downloads 2674155 Stimulating Effects of Media in Improving Quality of Distance Education: A Literature Based Study
Authors: Tahzeeb Mahreen
Abstract:
Distance education refers to giving instruction in which students are remote from the institution and once in a while go to formal demonstration classes, and teaching sessions. Segments of media, for example, radio, TV, PC and Internet and so on are the assets and method for correspondence being utilized as a part of learning material by many open and distance learning institutions. Media has a great part in maximizing the learning opportunities thus enabling distance education, a mode of increased literacy rate of the country. This study goes for analyzing how media had affected distance education through its different mediums. The objectives of the study were (i) to determine the direct impact of media on distance education? (ii) To know how media effects distance education pedagogy (iii) To find out how media works to increase student’s achievement. Literature-based methodology was used, and books, peer-reviewed articles, press reports and internet-based materials were studied as a result. By using descriptive qualitative research analysis, the researcher has interpreted that distance education programs are progressively utilizing mixes of media to convey training that has a positive impact on learning along with a few challenges. In addition, the perception of the researcher varied depending on the programs of distance learning but generally believed that electronic media were moderately more supportive in enhancing the overall performance of the learners. It was concluded that the intellectual style, identity qualities, and self-expectations are the three primary enhanced areas in a student’s educational life in distance education programs. It was portrayed that a comprehension of how individual learners approach learning may make it workable for the distance educator to see an example of learning styles and arrange or modify course presentations through media. Moreover, it is noticed that teaching in distance education address the developing role of the instructor, the requirement for diminishing resistance as conventional teachers utilize remove conveyance frameworks lastly, staff state of mind toward the utilization of innovation. Furthermore, the results showed that media had assumed its part to make distance learning educators more dynamic, capable and concerned about their individual works. The study also indicated a high positive relationship between the media available at study centers and media used by the distance education. The challenge pointed out by the researcher was the clash of distance and time with communication as the life situations of every learner are varied. Recommendations included the realization of the duty of distance learning instructor to help students understand the effective use of media for their study lessons and also to develop online learning communities to be in instant connection with the students.Keywords: distance education, education, media, teaching and learning
Procedia PDF Downloads 1414154 A Sociological Qualitative Study: Intimate Relationships as a Social Pressure Around HIV-Related Issues Among Young South African Women and Girls (16-28)
Authors: Sunha Ahn
Abstract:
Intimate relationships have constructed our embodied experiences and emotional memories, which can become grounded as practical knowledge to some extent and play a critical role in social medicine, particularly, in our well-being and mental health. In South Africa, such relational factors are significant for young women and girls in their emotional development period of time, especially, working as the existence of social and relational pressures over feminine sexual health and choices. This, in turn, brings about the absence/lack of communication in intimate relationships, especially with their parents, which leads to a vicious cycle in sexual health behaviour choices. Drawing upon sociological and socio-anthropological understandings of HIV-related issues, this study provides narrative threads of evidence about South African teenage mothers from early-dating debuted to HIV infection. Their stories consist of a visualised figure in chronicle order, illustrating embodied journeys of sexual health choices surrounding uncommunicative relationships and socially-suppressive environments. Methodologically, this qualitative study explored data from mixed online methods: 1) a case study analysing online comments (N = 12,763) on the South African Springster's website, run by the UK-based NGO, namely, Girl Effect; and 2) In-depth online interviews (N = 21) were conducted with young SA women and girls (16-28 ages) recruited in Cape Town, Pretoria, and Johannesburg, SA. Participants consist of both those living with HIV and without. Ethical approval was gained via the College of Social Sciences Ethical Committee at the University of Glasgow, and informed consent was obtained verbally and in writing from participants in due course. Data were thematically applied to an iteratively developed codebook and analysed. There are three kinds of typical pressures as relational factors for them, including peer pressure, partners or boyfriends, and parents’ reactions. Under the patriarchal and religious-devoted social atmospheres, these relationships work as a source of scaredness among young women and girls who could not talk about their sexual health concerns and rights. Such an inability to communicate with intimate relationships, eventually, emerges as a perpetuated or taken-for-granted social environment in South Africa, insistently leading to an increase in unwanted pregnancies or new HIV infections in young South African women and girls. In this sense, this study reveals the pressing need for open communication between generations with accurate information about HIV/AIDS. This also implies that the sociological feminist praxes in South Africa would help eliminate HIV-related stigma as well as construct open space to reduce gender-based violence and sexually-transmitted infection. Ultimately, this will be a road for supporting sexually healthy decisions and well-being across South African generations.Keywords: HIV, young women, South Africa, intimate relationships, communication, social medicine
Procedia PDF Downloads 634153 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 3224152 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 714151 School Refusal Behaviours: The Roles of Adolescent and Parental Factors
Authors: Junwen Chen, Celina Feleppa, Tingyue Sun, Satoko Sasagawa, Michael Smithson
Abstract:
School refusal behaviours refer to behaviours to avoid school attendance, chronic lateness in arriving at school, or regular early dismissal. Poor attendance in schools is highly correlated with anxiety, depression, suicide attempts, delinquency, violence, and substance use and abuse. Poor attendance is also a strong indicator of lower achievement in school, as well as problematic social-emotional development. Long-term consequences of school refusal behaviours include fewer opportunities for higher education, employment, and social difficulties, and high risks of later psychiatric illness. Given its negative impacts on youth educational outcomes and well-being, a thorough understanding of factors that are involved in the development of this phenomenon is warranted for developing effective management approaches. This study investigated parental and adolescent factors that may contribute to school refusal behaviours by specifically focusing on the role of parental and adolescents’ anxiety and depression, emotion dysregulation, and parental rearing style. Findings are expected to inform the identification of both parental and adolescents’ factors that may contribute to school refusal behaviours. This knowledge will enable novel and effective approaches that incorporate these factors to managing school refusal behaviours in adolescents, which in turn improve their school and daily functioning. Results are important for an integrative understanding of school refusal behaviours. Furthermore, findings will also provide information for policymakers to weigh the benefits of interventions targeting school refusal behaviours in adolescents. One-hundred-and-six adolescents aged 12-18 years (mean age = 14.79 years old, SD = 1.78, males = 44) and their parents (mean age = 47.49 years old, SD = 5.61, males = 27) completed an online questionnaire measuring both parental and adolescents’ anxiety, depression, emotion dysregulation, parental rearing styles, and adolescents’ school refusal behaviours. Adolescents with school refusal behaviours reported greater anxiety and depression, with their parents showing greater emotion dysregulation. Parental emotion dysregulation and adolescents’ anxiety and depression predicted school refusal behaviours independently. To date, only limited studies have investigated the interplay between parental and youth factors in relation to youth school refusal behaviours. Although parental emotion dysregulation has been investigated in relation to youth emotion dysregulation, little is known about its role in the context of school refusal. This study is one of the very few that investigated both parental and adolescent factors in relation to school refusal behaviours in adolescents. The findings support the theoretical models that emphasise the role of youth and parental psychopathology in school refusal behaviours. Future management of school refusal behaviours should target adolescents’ anxiety and depression while incorporating training for parental emotion regulation skills.Keywords: adolescents, school refusal behaviors, parental factors, anxiety and depression, emotion dysregulation
Procedia PDF Downloads 1274150 Golden Dawn's Rhetoric on Social Networks: Populism, Xenophobia and Antisemitism
Authors: Georgios Samaras
Abstract:
New media such as Facebook, YouTube and Twitter introduced the world to a new era of instant communication. An era where online interactions could replace a lot of offline actions. Technology can create a mediated environment in which participants can communicate (one-to-one, one-to-many, and many-to-many) both synchronously and asynchronously and participate in reciprocal message exchanges. Currently, social networks are attracting similar academic attention to that of the internet after its mainstream implementation into public life. Websites and platforms are seen as the forefront of a new political change. There is a significant backdrop of previous methodologies employed to research the effects of social networks. New approaches are being developed to be able to adapt to the growth of social networks and the invention of new platforms. Golden Dawn was the first openly neo-Nazi party post World War II to win seats in the parliament of a European country. Its racist rhetoric and violent tactics on social networks were rewarded by their supporters, who in the face of Golden Dawn’s leaders saw a ‘new dawn’ in Greek politics. Mainstream media banned its leaders and members of the party indefinitely after Ilias Kasidiaris attacked Liana Kanelli, a member of the Greek Communist Party, on live television. This media ban was seen as a treasonous move by a significant percentage of voters, who believed that the system was desperately trying to censor Golden Dawn to favor mainstream parties. The shocking attack on live television received international coverage and while European countries were condemning this newly emerged neo-Nazi rhetoric, almost 7 percent of the Greek population rewarded Golden Dawn with 18 seats in the Greek parliament. Many seem to think that Golden Dawn mobilised its voters online and this approach played a significant role in spreading their message and appealing to wider audiences. No strict online censorship existed back in 2012 and although Golden Dawn was openly used neo-Nazi symbolism, it was allowed to use social networks without serious restrictions until 2017. This paper used qualitative methods to investigate Golden Dawn’s rise in social networks from 2012 to 2019. The focus of the content analysis was set on three social networking platforms: Facebook, Twitter and YouTube, while the existence of Golden Dawn’s website, which was used as a news sharing hub, was also taken into account. The content analysis included text and visual analyses that sampled content from their social networking pages to translate their political messaging through an ideological lens focused on extreme-right populism. The absence of hate speech regulations on social network platforms in 2012 allowed the free expression of those heavily ultranationalist and populist views, as they were employed by Golden Dawn in the Greek political scene. On YouTube, Facebook and Twitter, the influence of their rhetoric was particularly strong. Official channels and MPs profiles were investigated to explore the messaging in-depth and understand its ideological elements.Keywords: populism, far-right, social media, Greece, golden dawn
Procedia PDF Downloads 1484149 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs
Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga
Abstract:
Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox
Procedia PDF Downloads 3774148 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education
Procedia PDF Downloads 1324147 Social Media and Counseling: Opportunities, Risks and Ethical Considerations
Authors: Kyriaki G. Giota, George Kleftaras
Abstract:
The purpose of this article is to briefly review the opportunities that social media presents to counselors and psychologists. Particular attention was given to understanding some of the more important common risks inherent in social media and the potential ethical dilemmas which may arise for counselors and psychologists who embrace them in their practice. Key considerations of issues pertinent to an online presence such as multiple relationships, visibility and privacy, maintaining ethical principles and professional boundaries are being discussed.Keywords: social media, counseling, risks, ethics
Procedia PDF Downloads 4254146 Collaborative Platform for Learning Basic Programming (Algorinfo)
Authors: Edgar Mauricio Ruiz Osuna, Claudia Yaneth Herrera Bolivar, Sandra Liliana Gomez Vasquez
Abstract:
The increasing needs of professionals with skills in software development in industry are incremental, therefore, the relevance of an educational process in line with the strengthening of these competencies, are part of the responsibilities of universities with careers related to the area of Informatics and Systems. In this sense, it is important to consider that in the National Science, Technology and Innovation Plan for the development of the Electronics, Information Technologies and Communications (2013) sectors, it is established as a weakness in the SWOT Analysis of the Software sector and Services, Deficiencies in training and professional training. Accordingly, UNIMINUTO's Computer Technology Program has addressed the analysis of students' performance in software development, identifying various problems such as dropout in programming subjects, academic averages, as well as deficiencies in strategies and competencies developed in the area of programming. As a result of this analysis, it was determined to design a collaborative learning platform in basic programming using heat maps as a tool to support didactic feedback. The pilot phase allows to evaluate in a programming course the ALGORINFO platform as a didactic resource, through an interactive and collaborative environment where students can develop basic programming practices and in turn, are fed back through the analysis of time patterns and difficulties frequent in certain segments or program cycles, by means of heat maps. The result allows the teacher to have tools to reinforce and advise critical points generated on the map, so that students and graduates improve their skills as software developers.Keywords: collaborative platform, learning, feedback, programming, heat maps
Procedia PDF Downloads 1624145 Teachers' Technological Pedagogical and Content Knowledge and Technology Integration in Teaching and Learning in a Small Island Developing State: A Concept Paper
Authors: Aminath Waseela, Vinesh Chandra, Shaun Nykvist,
Abstract:
The success of technology integration initiatives hinges on the knowledge and skills of teachers to effectively integrate technology in classroom teaching. Consequently, gaining an understanding of teachers' technology knowledge and its integration can provide useful insights on strategies that can be adopted to enhance teaching and learning, especially in developing country contexts where research is scant. This paper extends existing knowledge on teachers' use of technology by developing a conceptual framework that recognises how three key types of knowledge; content, pedagogy, technology, and their integration are at the crux of teachers' technology use while at the same time is amenable to empirical studies. Although the aforementioned knowledge is important for effective use of technology that can result in enhanced student engagement, literature on how this knowledge leads to effective technology use and enhanced student engagement is limited. Thus, this theoretical paper proposes a framework to explore teachers' knowledge through the lens of the Technological Pedagogical and Content Knowledge (TPACK); the integration of technology in classroom teaching through the Substitution Augmentation Modification and Redefinition (SAMR) model and how this affects students' learning through the Bloom's Digital Taxonomy (BDT) lens. Studies using this framework could inform the design of professional development to support teachers to develop skills for effective use of available technology that can enhance student learning engagement.Keywords: information and communication technology, ICT, in-service training, small island developing states, SIDS, student engagement, technology integration, technology professional development training, technological pedagogical and content knowledge, TPACK
Procedia PDF Downloads 1474144 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle
Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito
Abstract:
Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks
Procedia PDF Downloads 674143 Investigating Teaching and Learning to Meet the Needs of Deaf Children in Physical Education
Authors: Matthew Fleet, Savannah Elliott
Abstract:
Background: This study investigates the use of teaching and learning to meet the needs of deaf children in the UK PE curriculum. Research has illustrated that deaf students in mainstream schools do not receive sufficient support from teachers in lessons. This research examines the impact of different types of hearing loss and its implications within Physical Education (PE) in secondary schools. Purpose: The purpose of this study is to highlight challenges PE teachers face and make recommendations for more inclusive learning environments for deaf students. The aims and objectives of this research are: to critically analyse the current situation for deaf students accessing the PE curriculum, by identifying barriers deaf students face; to identify the challenges for PE teachers in providing appropriate support for deaf students; to provide recommendations for deaf awareness training, to enhance PE teachers’ understanding and knowledge. Method: Semi-structured interviews collected data from both PE teachers and deaf students, to examine: the support available and coping mechanisms deaf students use when they do not receive support; strategies PE teachers use to provide support for deaf students; areas for improvement and potential strategies PE teachers can apply to their practice. Results & Conclusion: The findings from the study concluded that PE teachers were inconsistent in providing appropriate support for deaf students in PE lessons. Evidence illustrated that PE teachers had limited exposure to deaf awareness training. This impacted on their ability to support deaf students effectively. Communication was a frequent barrier for deaf students, affecting their ability to retain and learn information. Also, the use of assistive technology was found to be compromised in practical PE lessons.Keywords: physical education, deaf, inclusion, education
Procedia PDF Downloads 1554142 Convolution Neural Network Based on Hypnogram of Sleep Stages to Predict Dosages and Types of Hypnotic Drugs for Insomnia
Authors: Chi Wu, Dean Wu, Wen-Te Liu, Cheng-Yu Tsai, Shin-Mei Hsu, Yin-Tzu Lin, Ru-Yin Yang
Abstract:
Background: The results of previous studies compared the benefits and risks of receiving insomnia medication. However, the effects between hypnotic drugs used and enhancement of sleep quality were still unclear. Objective: The aim of this study is to establish a prediction model for hypnotic drugs' dosage used for insomnia subjects and associated the relationship between sleep stage ratio change and drug types. Methodologies: According to American Academy of Sleep Medicine (AASM) guideline, sleep stages were classified and transformed to hypnogram via the polysomnography (PSG) in a hospital in New Taipei City (Taiwan). The subjects with diagnosis for insomnia without receiving hypnotic drugs treatment were be set as the comparison group. Conversely, hypnotic drugs dosage within the past three months was obtained from the clinical registration for each subject. Furthermore, the collecting subjects were divided into two groups for training and testing. After training convolution neuron network (CNN) to predict types of hypnotics used and dosages are taken, the test group was used to evaluate the accuracy of classification. Results: We recruited 76 subjects in this study, who had been done PSG for transforming hypnogram from their sleep stages. The accuracy of dosages obtained from confusion matrix on the test group by CNN is 81.94%, and accuracy of hypnotic drug types used is 74.22%. Moreover, the subjects with high ratio of wake stage were correctly classified as requiring medical treatment. Conclusion: CNN with hypnogram was potentially used for adjusting the dosage of hypnotic drugs and providing subjects to pre-screening the types of hypnotic drugs taken.Keywords: convolution neuron network, hypnotic drugs, insomnia, polysomnography
Procedia PDF Downloads 1954141 Motion Capture Based Wizard of Oz Technique for Humanoid Robot
Authors: Rafal Stegierski, Krzysztof Dmitruk
Abstract:
The paper focuses on robotic tele-presence system build around humanoid robot operated with controller-less Wizard of Oz technique. Proposed solution gives possibility to quick start acting as a operator with short, if any, initial training.Keywords: robotics, motion capture, Wizard of Oz, humanoid robots, human robot interaction
Procedia PDF Downloads 4814140 Effects of Music Training on Social-Emotional Development and Basic Musical Skills: Findings from a Longitudinal Study with German and Migrant Children
Authors: Stefana Francisca Lupu, Jasmin Chantah, Mara Krone, Ingo Roden, Stephan Bongard, Gunter Kreutz
Abstract:
Long-term music interventions could enhance both musical and nonmusical skills. The present study was designed to explore cognitive, socio-emotional, and musical development in a longitudinal setting. Third-graders (N = 184: 87 male, 97 female; mean age = 8.61 years; 115 native German and 69 migrant children) were randomly assigned to two intervention groups (music and maths) and a control group over a period of one school-year. At baseline, children in these groups were similar in basic cognitive skills, with a trend of advantage in the control group. Dependent measures included the culture fair intelligence test CFT 20-R; the questionnaire of emotional and social school experience for grade 3 and 4 (FEESS 3-4), the test of resources in childhood and adolescence (FRKJ 8-16), the test of language proficiency for German native and non-native primary school children (SFD 3), the reading comprehension test (ELFE 1-6), the German math test (DEMAT 3+) and the intermediate measures of music audiation (IMMA). Data were collected two times at the beginning (T1) and at the end of the school year (T2). A third measurement (T3) followed after a six months retention period. Data from baseline and post-intervention measurements are currently being analyzed. Preliminary results of all three measurements will be presented at the conference.Keywords: musical training, primary-school German and migrant children, socio-emotional skills, transfer
Procedia PDF Downloads 2454139 Audit on Compliance with Ottawa Ankle Rules in Ankle Radiograph Requests
Authors: Daud Muhammad
Abstract:
Introduction: Ankle radiographs are frequently requested in Emergency Departments (ED) for patients presenting with traumatic ankle pain. The Ottawa Ankle Rules (OAR) serve as a clinical guideline to determine the necessity of these radiographs, aiming to reduce unnecessary imaging. This audit was conducted to evaluate the adequacy of clinical information provided in radiograph requests in relation to the OAR. Methods: A retrospective analysis was performed on 50 consecutive ankle radiograph requests under ED clinicians' names for patients aged above 5 years, specifically excluding follow-up radiographs for known fractures. The study assessed whether the provided clinical information met the criteria outlined by the OAR. Results: The audit revealed that none of the 50 radiograph requests contained sufficient information to satisfy the Ottawa Ankle Rules. Furthermore, 10 out of the 50 radiographs (20%) identified fractures. Discussion: The findings indicate a significant lack of adherence to the OAR, suggesting potential overuse of radiography and unnecessary patient exposure to radiation. This non-compliance may also contribute to increased healthcare costs and resource utilization, as well as possible delays in diagnosis and treatment. Recommendations: To address these issues, the following recommendations are proposed: (1) Education and Training: Enhance awareness and training among ED clinicians regarding the OAR. (2) Standardised Request Forms: Implement changes to imaging request forms to mandate relevant information according to the OAR. (3) Scan Vetting: Promote awareness among radiographers to discuss the appropriateness of scan requests with clinicians. (4) Regular re-audits should be conducted to monitor improvements in compliance.Keywords: Ottawa ankle rules, ankle radiographs, emergency department, traumatic pain
Procedia PDF Downloads 454138 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry
Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker
Abstract:
Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control
Procedia PDF Downloads 178