Search results for: hydraulic flume experiments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3907

Search results for: hydraulic flume experiments

1717 Experimental Investigation on Effects of Carrier Solvent and Oxide Fluxes in Activated TIG Welding of Reduced Activation Ferritic/Martensitic Steel

Authors: Jay J. Vora, Vishvesh J. Badheka

Abstract:

This work attempts to investigate the effect of oxide fluxes on 6mm thick Reduced Activation ferritic/martensitic steels (RAFM) during Activated TIG (A-TIG) welding. Six different fluxes Al₂O₃, Co₃O₄, CuO, HgO, MoO₃, and NiO were mixed with methanol for conversion into paste and bead-on-plate experiments were then carried out. This study, systematically investigates the influence of oxide-based flux powder and carrier solvent composition on the weld bead shape, geometric shape of weld bead and dominant depth enhancing mechanism in tungsten inert gas (TIG) welding of reduced activation ferritic/martensitic (RAFM) steel. It was inferred from the study that flux Co₃O₄ and MoO₃ imparted full and secure (more than 6mm) penetration with methanol owing to dual mechanism of reversed Marangoni and arc construction. The use of methanol imparted good spreadabilty and coverability and ultimately higher peak temperatures were observed with its use owing to stronger depth enhancing mechanisms than use of acetone with same oxide fluxes and welding conditions.

Keywords: A-TIG, flux, oxides, penetration, RAFM, temperature, welding

Procedia PDF Downloads 208
1716 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh

Abstract:

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.

Keywords: disturbed state concept (DSC), hierarchical single surface (HISS) failure criterion, high performance concrete (HPC), high-strength concrete (HSC), nonlinear finite element analysis (NFEA), polymer concrete (PC), steel fibers, uniaxial compression test

Procedia PDF Downloads 312
1715 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 173
1714 Effects of Viscous and Pressure Forces in Vortex and Wake Induced Vibrations

Authors: Ravi Chaithanya Mysa, Abouzar Kaboudian, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

Cross-flow vortex-induced vibrations of a circular cylinder are compared with the wake-induced oscillations of the downstream cylinder of a tandem cylinder arrangement. It is known that the synchronization of the frequency of vortex shedding with the natural frequency of the structure leads to large amplitude motions. In the case of tandem cylinders, the large amplitudes of the downstream cylinder found are compared to single cylinder setup. In this work, in the tandem arrangement, the upstream cylinder is fixed and the downstream cylinder is free to oscillate in transverse direction. We show that the wake from the upstream cylinder interacts with the downstream cylinder which influences the response of the coupled system. Extensive numerical experiments have been performed on single cylinder as well as tandem cylinder arrangements in cross-flow. Here, the wake interactions in connection to the forces generated are systematically studied. The ratio of the viscous loads to the pressure loads is found to play a major role in the displacement response of the single and tandem cylinder arrangements, as the viscous forces dissipate the energy.

Keywords: circular cylinder, vortex-shedding, VIV, wake-induced, vibrations

Procedia PDF Downloads 366
1713 Cross Matching: An Improved Method to Obtain Comprehensive and Consolidated Evidence

Authors: Tuula Heinonen, Wilhelm Gaus

Abstract:

At present safety, assessment starts with animal tests although their predictivity is often poor. Even after extended human use experimental data are often judged as the core information for risk assessment. However, the best opportunity to generate true evidence is to match all available information. Cross matching methodology combines the different fields of knowledge and types of data (e.g. in-vitro and in-vivo experiments, clinical observations, clinical and epidemiological studies, and daily life observations) and gives adequate weight to individual findings. To achieve a consolidated outcome, the information from all available sources is analysed and compared with each other. If single pieces of information fit together a clear picture becomes visible. If pieces of information are inconsistent or contradictory careful consideration is necessary. 'Cross' can be understood as 'orthographic' in geometry or as 'independent' in mathematics. Results coming from different sources bring independent and; therefore, they result in new information. Independent information gives a larger contribution to evidence than results coming repeatedly from the same source. A successful example of cross matching is the assessment of Ginkgo biloba where we were able to come to the conclusive result: Ginkgo biloba leave extract is well tolerated and safe for humans.

Keywords: cross-matching, human use, safety assessment, Ginkgo biloba leave extract

Procedia PDF Downloads 287
1712 Reinventing Urban Governance: Sustainable Transport Solutions for Mitigating Climate Risks in Smart Cities

Authors: Jaqueline Nichi, Leila Da Costa Ferreira, Fabiana Barbi Seleguim, Gabriela Marques Di Giulio, Mariana Barbieri

Abstract:

The transport sector is responsible for approximately 55% of global greenhouse gas (GHG) emissions, in addition to pollution and other negative externalities, such as road accidents and congestion, that impact the routine of those who live in large cities. The objective of this article is to discuss the application and use of distinct mobility technologies such as climate adaptation and mitigation measures in the context of smart cities in the Global South. The documentary analysis is associated with 22 semi structured interviews with managers who work with mobility technologies in the public and private sectors and in civil society organizations to explore solutions in multilevel governance for smart and low-carbon mobility based on the case study from the city of São Paulo, Brazil. The hypothesis that innovation and technology to mitigate and adapt to climate impacts are not yet sufficient to make mobility more sustainable has been confirmed. The results indicate four relevant aspects for advancing a climate agenda in smart cities: integrated planning, coproduction of knowledge, experiments in governance, and new means of financing to guarantee the sustainable sociotechnical transition of the sector.

Keywords: urban mobility, climate change, smart cities, multilevel governance

Procedia PDF Downloads 57
1711 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 347
1710 Model Canvas and Process for Educational Game Design in Outcome-Based Education

Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro

Abstract:

This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.

Keywords: constructive alignment, constructivist theory, educational game, outcome-based education

Procedia PDF Downloads 355
1709 Characterization and Comparative Analysis of North Bengal Sand

Authors: Marzia Hoque Tania, Oishy Roy, ASW Kurny, Fahmida Gulshan

Abstract:

This paper presents results of the investigation on the characterization of silica sand of northern region of Bangladesh on the basis of material composition, particle shape, and size, density, transportation, crystallinity, etc. before and after upgradation. The raw sand samples collected from Nilphamari and Lalmonirhat district were studied and compared for the prospect silica as a high valued commodity rather than heavy minerals. The raw sand particles were colorful in appearance with varying particle size distribution. Scanning Electron Microscopy (SEM) showed uniformity in grain size and mineralogical composition. X-ray fluorescence (XRF) analysis indicated the silica content of the as-received sample to be 75%. Thermogravimetric and Differential Thermal Analysis (DTA) did not detect the presence of any organic material. These tests revealed the sample to be alpha-quartz. Samples were washed with organic and inorganic acid with a combination of varying rotation speed, concentration, solid-liquid ratio. Experiments showed the silica content could be enhanced to more than 85% by washing with 15% sulphuric acid in room temperature. Beneficiation can be improved in further work considering the effect of varying temperature or advanced technology.

Keywords: beneficiation, characterization, commercial grade sand, glass sand, silica, upgradation

Procedia PDF Downloads 136
1708 Corporate Social Responsibility in an Experimental Market

Authors: Nikolaos Georgantzis, Efi Vasileiou

Abstract:

We present results from experimental price-setting oligopolies in which green firms undertake different levels of energy-saving investments motivated by public subsidies and demand-side advantages. We find that consumers reveal higher willingness to pay for greener sellers’ products. This observation in conjunction to the fact that greener sellers set higher prices is compatible with the use and interpretation of energy-saving behaviour as a differentiation strategy. However, sellers do not exploit the resulting advantage through sufficiently high price-cost margins, because they seem trapped into “run to stay still” competition. Regarding the use of public subsidies to energy-saving sellers we uncover an undesirable crowding-out effect of consumers’ intrinsic tendency to support green manufacturers. Namely, consumers may be less willing to support a green seller whose energy-saving strategy entails a direct financial benefit. Finally, we disentangle two alternative motivations for consumer’s attractions to pro-social firms; first, the self-interested recognition of the firm’s contribution to the public and private welfare and, second, the need to compensate a firm for the cost entailed in each pro-social action. Our results show the prevalence of the former over the latter.

Keywords: corporate social responsibility, energy savings, public good, experiments, vertical differentiation, altruism

Procedia PDF Downloads 258
1707 Further Study of Mechanism of Contrasting Charge Transport Properties for Phenyl and Thienyl Substituent Organic Semiconductors

Authors: Yanan Zhu

Abstract:

Based on the previous work about the influence mechanism of the mobility difference of phenyl and thienyl substituent semiconductors, we have made further exploration towards to design high-performance organic thin-film transistors. The substituent groups effect plays a significant role in materials properties and device performance as well. For the theoretical study, simulation of materials property and crystal packing can supply scientific guidance for materials synthesis in experiments. This time, we have taken the computational methods to design a new material substituent with furan groups, which are the potential to be used in organic thin-film transistors and organic single-crystal transistors. The reorganization energy has been calculated and much lower than 2,6-diphenyl anthracene (DPAnt), which performs large mobility as more than 30 cm²V⁻¹s⁻¹. Moreover, the other important parameter, charge transfer integral is larger than DPAnt, which suggested the furan substituent material may get a much better charge transport data. On the whole, the mechanism investigation based on phenyl and thienyl assisted in designing novel materials with furan substituent, which is predicted to be an outperformed organic field-effect transistors.

Keywords: theoretical calculation, mechanism, mobility, organic transistors

Procedia PDF Downloads 138
1706 Mixture of Polymers and Coating Fullerene Soft Nanoparticles

Authors: L. Bouzina, A. Bensafi, M. Duval, C. Mathis, M. Rawiso

Abstract:

We study the stability and structural properties of mixtures of model nanoparticles and non-adsorbing polymers in the 'protein limit', where the size of polymers exceeds the particle size substantially. We have synthesized in institute (Charles Sadron Strasbourg) model nanoparticles by coating fullerene C60 molecules with low molecular weight polystyrene (PS) chains (6 PS chains with a degree of polymerization close to 25 and 50 are grafted on each fullerene C60 molecule. We will present a Small Angle Neutron scattering (SANS) study of Tetrahydrofuran (THF) solutions involving long polystyrene (PS) chains and fullerene (C60) nanoparticles. Long PS chains and C60 nanoparticles with different arm lengths were synthesized either hydrogenated or deuteriated. They were characterized through Size Exclusion Chromatography (SEC) and Quasielastic Light Scattering (QLS). In this way, the solubility of the C60 nanoparticles in the usual good solvents of PS was controlled. SANS experiments were performed by use of the contrast variation method in order to measure the partial scattering functions related to both components. They allow us to obtain information about the dispersion state of the C60 nanoparticles as well as the average conformation of the long PS chains. Specifically, they show that the addition of long polymer chains leads to the existence of an additional attractive interaction in between soft nanoparticles.

Keywords: fulleren nanoparticles, polymer, small angle neutron scattering, solubility

Procedia PDF Downloads 377
1705 Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating Livestock Wastewater

Authors: Hammad Khan, Wookeun Bae

Abstract:

The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~2000 mg-NH4+-N/L and biodegradable contents of ~0.8 g-COD/L. The experiments were performed at 30°C, pH: 8.0 DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i.e. from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to7.5 and further 7.2, removal rate can be easily controlled as 95%, 75% and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA and FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model presents relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.

Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation

Procedia PDF Downloads 327
1704 Effect of Graphene Oxide Nanoparticles on a Heavy Oilfield: Interfacial Tension, Wettability and Oil Displacement Studies

Authors: Jimena Lizeth Gomez Delgado, Jhon Jairo Rodriguez, Nicolas Santos, Enrique Mejia Ospino

Abstract:

Nanotechnology has played an important role in the hydrocarbon industry, recently , due to the unique properties of graphene oxide nanoparticles, they have been incorporated in different studies enhanced oil recovery. Nonetheless, very few studies have used graphene oxide nanoparticles in coreflooding experiments. Herein, the use of Graphene oxide (GO) nanoparticle was explored, exploited and evaluated. The performance of Graphene oxide nanoparticles on the interfacial properties in the presence of different electrolyte concentrations representative of field brine and pH conditions was investigated. Moreover, wettability behavior of the nanofluid at the oil/sand interface was studied used contact angle and Amott Harvey evaluation. Experimental result shows that the adsorption of GO on the sandstone surface changes the wettability of the sandstone from being strongly crude oil-wet to intermediate crude oil-wettability. At 900 ppm formation brine with 8 pH solution and 0.09 wt% nanoparticles concentration, Graphene oxide nanofluid exhibited better performance under the different electrolyte concentration studied. Finally, heavy oil displacement test in sandstone cores showed that oil recovery of Graphene oxide nanofluid had 7% incremental oil recovery over conventional waterflooding.

Keywords: nanoparticle, graphene oxide, nanotechnology, wettability, enhanced oil recovery, coreflooding

Procedia PDF Downloads 109
1703 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition

Authors: Anes Enakoa, Yawei Liang

Abstract:

Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.

Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment

Procedia PDF Downloads 145
1702 Seed Germination, Seedling Emergence and Response to Herbicides of Papaver Species (Papaver rhoeas and P. dubium)

Authors: Faezeh Zaefarian1, Sajedeh Golmohammadzadeh, Mohammad Rezvani

Abstract:

Weed management decisions for weed species can be derived from knowledge of seed germination biology. Experiments were conducted in laboratory and greenhouse to determine the effects of light, temperature, salt and water stress, seed burial depth on seed germination and seedling emergence of Papaver rhoeas and P.dubium and to assay the response of these species to commonly available POST herbicides. Germination of the Papaver seeds was influenced by the tested temperatures (day/night temperatures of 20 and 25 °C) and light. The concentrations of sodium chloride, ranging from 0 to 80 mM, influence germination of seeds. The osmotic potential required for 50% inhibition of maximum germination of P. rhoeas was -0.27 MPa and for P. dubium species was 0.25 MPa. Seedling emergence was greatest for the seeds placed at 1 cm and emergence declined with increased burial depth in the soil. No seedlings emerged from a burial depth of 6 cm. The herbicide 2,4-D at 400 g ai ha-1 provided excellent control of both species when applied at the four-leaf and six-leaf stages. However, at the six-leaf stage, percent control was reduced. The information gained from this study could contribute to developing components of integrated weed management strategies for Papaver species.

Keywords: germination, papaver species, planting depth, POST herbicides

Procedia PDF Downloads 245
1701 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.

Keywords: data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP

Procedia PDF Downloads 317
1700 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics

Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah

Abstract:

Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 299
1699 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 124
1698 The Effect of Micro-Arc Oxidation Coated Piston Crown on Engine Characteristics in a Spark Ignited Engine

Authors: A.Velavan, C. G. Saravanan, M. Vikneswaran, E. James Gunasekaran

Abstract:

In present investigation, experiments were carried out to compare the effect of the ceramic coated piston crown and uncoated piston on combustion, performance and emission characteristics of a port injected Spark Ignited engine. The piston crown was coated with aluminium alloy in the form ceramic oxide layer of thickness 500 µm using micro-arc oxidation technique. This ceramic coating will act as a thermal barrier which reduces in-cylinder heat rejection and increases the durability of the piston by withstanding high temperature and pressure produced during combustion. Flame visualization inside the combustion chamber was carried out using AVL Visioscope combustion analyzer to predict the type of combustion occurs at different load condition. Based on the experimental results, it was found that the coated piston shows an improved thermal efficiency when compared to uncoated piston. This is because more heat presents in the combustion chamber which helps efficient combustion of the fuel. The CO and HC emissions were found to be reduced due to better combustion of the fuel whereas NOx emission was increased due to increase in combustion temperature for ceramic coated piston.

Keywords: coated piston, micro-arc oxidation, thermal barrier, thermal efficiency, visioscope

Procedia PDF Downloads 148
1697 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate

Authors: Neetu Manocha

Abstract:

Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).

Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI

Procedia PDF Downloads 141
1696 A Slip Transmission through Alpha/Beta Boundaries in a Titanium Alloy (Ti-6Al-4V)

Authors: Rayan B. M. Ameen, Ian P. Jones, Yu Lung Chiu

Abstract:

Single alpha-beta colony micro-pillars have been manufactured from a polycrystalline commercial Ti-6Al-4V sample using Focused Ion Beam (FIB). Each pillar contained two alpha lamellae separated by a thin fillet of beta phase. A nano-indenter was then used to conduct uniaxial micro-compression tests on Ti alloy single crystals, using a diamond flat tip as a compression platen. By controlling the crystal orientation along the micro-pillar using Electron back scattering diffraction (EBSD) different slip systems have been selectively activated. The advantage of the micro-compression method over conventional mechanical testing techniques is the ability to localize a single crystal volume which is characterizable after deformation. By matching the stress-strain relations resulting from micro-compression experiments to TEM (Transmission Electron Microscopy) studies of slip transmission mechanisms through the α-β interfaces, some proper constitutive material parameters such as the role of these interfaces in determining yield, strain-hardening behaviour, initial dislocation density and the critical resolved shear stress are suggested.

Keywords: α/β-Ti alloy, focused ion beam, micro-mechanical test, nano-indentation, transmission electron diffraction, plastic flow

Procedia PDF Downloads 386
1695 Storage Study of Bael (Aegle marmelos Correa.) Fruit and Pulp of Cv. Pant Sujata

Authors: B. R. Jana, Madhumita Singh

Abstract:

Storage study of bael fruit and pulp were conducted at ICAR-RCER, Research Centre Ranchi to find out suitable storage life to extent the availability of the fruit and produce the value added product in form of fruit. The cultivar under storage is Pant Sujata. CFB box packing resulted in minimum 21 % PLW during 2010-11 during its 28-35 days storage under ambient temperature. CFB box and Gunny bag retains maximum total sugar (17.3-17.4 °B) after 28 days storage. Bael pulp of cultivar Pant Sujata can be stored up to 2 months at 4 °C with good quality condition. Treatments were highly significant in the characters such as T.S.S., acidity, reducing sugar and total sugar. Storage conditions and treatments interaction were insignificant in all characters except acidity. The maximum T.S.S. of 21.87 °B has been found in sample treated with 800 ppm benzoic acid when kept for two months at 4 °C temperature. This treatment also resulted in retaining the maximum reducing sugar (8.09 %) and total sugar content (9.52 %) at same storage condition than other treatments. From the present experiments, it is concluded that CFB box packing and pulp storage with 800 ppm benzoic acid at 4 °C are important to extent the availability of bael for two months.

Keywords: bael, storage, fruits, pulp, benzoic acid

Procedia PDF Downloads 247
1694 A Survey and Theory of the Effects of Various Hamlet Videos on Viewers’ Brains

Authors: Mark Pizzato

Abstract:

How do ideas, images, and emotions in stage-plays and videos affect us? Do they evoke a greater awareness (or cognitive reappraisal of emotions) through possible shifts between left-cortical, right-cortical, and subcortical networks? To address these questions, this presentation summarizes the research of various neuroscientists, especially Bernard Baars and others involved in Global Workspace Theory, Matthew Lieberman in social neuroscience, Iain McGilchrist on left and right cortical functions, and Jaak Panksepp on the subcortical circuits of primal emotions. Through such research, this presentation offers an ‘inner theatre’ model of the brain, regarding major hubs of neural networks and our animal ancestry. It also considers recent experiments, by Mario Beauregard, on the cognitive reappraisal of sad, erotic, and aversive film clips. Finally, it applies the inner-theatre model and related research to survey results of theatre students who read and then watched the ‘To be or not to be’ speech in 8 different video versions (from stage and screen productions) of William Shakespeare’s Hamlet. Findings show that students become aware of left-cortical, right-cortical, and subcortical brain functions—and shifts between them—through staging and movie-making choices in each of the different videos.

Keywords: cognitive reappraisal, Hamlet, neuroscience, Shakespeare, theatre

Procedia PDF Downloads 318
1693 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio

Abstract:

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars

Procedia PDF Downloads 140
1692 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 39
1691 Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia

Authors: Dessie Tibebe, Muluken Asmare, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare

Abstract:

The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy.

Keywords: electrochemical, treatment, aluminum, tannery effluent

Procedia PDF Downloads 114
1690 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 300
1689 Computational Experiment on Evolution of E-Business Service Ecosystem

Authors: Xue Xiao, Sun Hao, Liu Donghua

Abstract:

E-commerce is experiencing rapid development and evolution, but traditional research methods are difficult to fully demonstrate the relationship between micro factors and macro evolution in the development process of e-commerce, which cannot provide accurate assessment for the existing strategies and predict the future evolution trends. To solve these problems, this paper presents the concept of e-commerce service ecosystem based on the characteristics of e-commerce and business ecosystem theory, describes e-commerce environment as a complex adaptive system from the perspective of ecology, constructs a e-commerce service ecosystem model by using Agent-based modeling method and Java language in RePast simulation platform and conduct experiment through the way of computational experiment, attempt to provide a suitable and effective researching method for the research on e-commerce evolution. By two experiments, it can be found that system model built in this paper is able to show the evolution process of e-commerce service ecosystem and the relationship between micro factors and macro emergence. Therefore, the system model constructed by Agent-based method and computational experiment provides proper means to study the evolution of e-commerce ecosystem.

Keywords: e-commerce service ecosystem, complex system, agent-based modeling, computational experiment

Procedia PDF Downloads 360
1688 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction

Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh

Abstract:

Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.

Keywords: feature selection, neural network, particle swarm optimization, software fault prediction

Procedia PDF Downloads 97