Search results for: equivalent stress gradient (ESG) specimen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5679

Search results for: equivalent stress gradient (ESG) specimen

3489 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan

Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad

Abstract:

Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.

Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules

Procedia PDF Downloads 90
3488 Graded Orientation of the Linear Polymers

Authors: Levan Nadareishvili, Roland Bakuradze, Barbara Kilosanidze, Nona Topuridze, Liana Sharashidze, Ineza Pavlenishvili

Abstract:

Some regularities of formation of a new structural state of the thermoplastic polymers-gradually oriented (stretched) state (GOS) are discussed. Transition into GOS is realized by the graded oriented stretching-by action of inhomogeneous mechanical field on the isotropic linear polymers or by zonal stretching that is implemented on a standard tensile-testing machine with using a specially designed zone stretching device (ZSD). Both technical approaches (especially zonal stretching method) allows to manage the such quantitative parameters of gradually oriented polymers as a range of change in relative elongation/orientation degree, length of this change and profile (linear, hyperbolic, parabolic, logarithmic, etc.). Uniaxial graded stretching method should be considered as an effective technological solution to create polymer materials with a predetermined gradient of physical properties.

Keywords: controlled graded stretching, gradually oriented state, linear polymers, zone stretching device

Procedia PDF Downloads 418
3487 Structural and Electronic Properties of Cd0.75V0.25S Alloy

Authors: H. Baltache, M. El Amine. Monir, R. Khenata, D. Rached, T. Seddik

Abstract:

The first principles calculations based on the density functional theory (DFT) by using the full-potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) in order to investigate the structural and electronic properties of Cd1-xVxS alloy at x = 0.25 in zincblende structure. For the structural properties, we have calculated the equilibrium lattice parameters, such as lattice constant, bulk modulus and first pressure derivatives of the bulk modulus. From the electronic structure, we obtain that Cd0.75V0.25S alloy is nearly half-metallic. The analysis of the density of states (DOS) curves allow to evaluate the spin-exchange splitting energies Δx(d) and Δx(pd) that are generated by V-3d states, where the effective potential for spin-down case is attractive than for spin-up case. Calculations of the exchange constants N0α (valence band) and N0β (conduction band) are served to describe the magnetic behavior of the compounds.

Keywords: first-principles calculations, structural properties, electronic properties

Procedia PDF Downloads 347
3486 Comparative Study of Computer Assisted Instruction and Conventional Method in Attaining and Retaining Mathematical Concepts

Authors: Nirupma Bhatti

Abstract:

This empirical study was aimed to compare the effectiveness of Computer Assisted Instruction (CAI) and Conventional Method (CM) in attaining and retaining mathematical concepts. Instructional and measuring tools were developed for five units of Matrix Algebra, two of Calculus and five of Numerical Analysis. Reliability and validity of these tools were also examined in pilot study. Ninety undergraduates participated in this study. Pre-test – post-test equivalent – groups research design was used. SPSS v.16 was used for data analysis. Findings supported CAI as better mode of instruction for attainment and retention of basic mathematical concepts. Administrators should motivate faculty members to develop Computer Assisted Instructional Material (CAIM) in mathematics for higher education.

Keywords: attainment, CAI, CAIM, conventional method, retention

Procedia PDF Downloads 173
3485 Physical Properties of New Perovskite Kgex3 (X = F, Cl and Br) for Photovoltaic Applications

Authors: B. Bouadjemia, M. Houaria, S. Haida, Y. B. Idriss, A, Akham, M. Matouguia, A. Gasmia, T. Lantria, S. Bentataa

Abstract:

It have investigated the structural, optoelectronic, elastic and thermodynamic properties of KGeX₃ (X = F, Cl and Br) using the density functional theory (DFT) with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke-Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material.The results show that the band structure of the metalloid halide perovskites KGeX₃ (X = F, Cl and Br) have a semiconductor behavior with direct band gap at R-R direction, the gap energy values for each compound as following: 2.83, 1.27 and 0.79eV respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity and absorption coefficient, are investigated. As results, these compounds are competent candidates for optoelectronic and photovoltaic devices in this range of the energy spectrum.

Keywords: density functional theory (DFT), semiconductor behavior, metalloid halide perovskites, optical propertie and photovoltaic devices

Procedia PDF Downloads 50
3484 Structural and Microstructural Investigation into Causes of Rail Squat Defects and Their Correlation with White Etching Layers

Authors: A. Al-Juboori, D. Wexler, H. Li, H. Zhu, C. Lu, A. McCusker, J. McLeod, S. Pannila, Z. Wang

Abstract:

Squats are a type railhead defect related to rolling contact fatigue (RCF) damage and are considered serious problem affecting a wide range of railway networks across the world. Squats can lead to partial or complete rail failure. Formation mechanics of squats on the surface of rail steel is still a matter of debate. In this work, structural and microstructural observations from ex-service damaged rail both confirms the phases present in white etching layer (WEL) regions and relationship between cracking in WEL and squat defect formation. XRD synchrotron results obtained from the top surfaces of rail regions containing both WEL and squat defects reveal that these regions contain both martensite and retained austenite. Microstructural analysis of these regions revealed the occurrence cracks extending from WEL down into the rail through the squat region. These findings obtained from field rail specimen support the view that WEL contains regions of austenite and martensitic transformation product, and that cracks in this brittle surface layer propagate deeper into the rail as squats originate and grow.

Keywords: squat, white etching layer, rolling contact fatigue, synchrotron diffraction

Procedia PDF Downloads 317
3483 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber

Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He

Abstract:

As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.

Keywords: 3D printed, carbon fiber, fiber content, recycling

Procedia PDF Downloads 175
3482 Changes in Some Morphological Characters of Dill Under Cadmium Stress

Authors: A. M. Daneshian Moghaddam, A. H. Hosseinzadeh, A. Bandehagh

Abstract:

To investigate the effect of cadmium heavy metal stress on five ecotype of dill, this experiment was conducted in the greenhouse of Tabriz University and Shabestar Islamic Azad University’s laboratories with tree replications. After growing the plants, cadmium treatments (concentration 0,300, 600 µmol) were applied. The essential oil of the samples was measured by hydro distillation and using a Clevenger apparatus. Variables used in this study include: wet and dry roots and aerial part of plant, plant height, stem diameter, and root length. The results showed that different concentrations of heavy metal has statistical difference (p < 0.01) on the fresh weight, dry weight, plant height and root length but hadn’t significant difference on essential oil percentage and root length. Dill ecotypes have statistical significant difference on essential oil percent, fresh plant weight, plant height, root length, except plant dry weight. The interactions between Cd concentration and dill ecotypes have not significant effect on all traits, except root length. Maximum fresh weight (4.98 gr) and minimum amount (3.13 gr) were obtained in control trait and 600 ppm of cd concentration, respectively. Highest amount of fresh weight (4.78 gr) was obtained in Birjand ecotype. Maximum plant dry weight (1.2 gr) was obtained at control. The highest plant height (32.54 cm) was obtained in control and with applies cadmium concentrations from zero to 300 and 600 ppm was found significantly reduced in plant height.

Keywords: pollution, essential oil, ecotype, dill, heavy metals, cadmium

Procedia PDF Downloads 414
3481 3D Electrode Carrier and its Implications on Retinal Implants

Authors: Diego Luján Villarreal

Abstract:

Retinal prosthetic devices aim to repair some vision in visual impairment patients by stimulating electrically neural cells in the visual system. In this study, the 3D linear electrode carrier is presented. A simulation framework was developed by placing the 3D carrier 1 mm away from the fovea center at the highest-density cell. Cell stimulation is verified in COMSOL Multiphysics by developing a 3D computational model which includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. Current distribution resulting from low threshold amplitudes produces a small volume equivalent to the volume confined by individual cells at the highest-density cell using small-sized electrodes. Delicate retinal tissue is protected by excessive charge density

Keywords: retinal prosthetic devices, visual devices, retinal implants., visual prosthetic devices

Procedia PDF Downloads 92
3480 Peristaltic Transport of a Jeffrey Fluid with Double-Diffusive Convection in Nanofluids in the Presence of Inclined Magnetic Field

Authors: Safia Akram

Abstract:

In this article, the effects of peristaltic transport with double-diffusive convection in nanofluids through an asymmetric channel with different waveforms is presented. Mathematical modelling for two-dimensional and two directional flows of a Jeffrey fluid model along with double-diffusive convection in nanofluids are given. Exact solutions are obtained for nanoparticle fraction field, concentration field, temperature field, stream functions, pressure gradient and pressure rise in terms of axial and transverse coordinates under the restrictions of long wavelength and low Reynolds number. With the help of computational and graphical results the effects of Brownian motion, thermophoresis, Dufour, Soret, and Grashof numbers (thermal, concentration, nanoparticles) on peristaltic flow patterns with double-diffusive convection are discussed.

Keywords: nanofluid particles, peristaltic flow, Jeffrey fluid, magnetic field, asymmetric channel, different waveforms

Procedia PDF Downloads 370
3479 Modeling of a Vehicle Wheel System having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

Authors: Barenten Suciu

Abstract:

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

Keywords: built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel

Procedia PDF Downloads 496
3478 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics

Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic

Abstract:

Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.

Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress

Procedia PDF Downloads 211
3477 Increasing Sustainability of Melanin Bio-Production Using Seawater

Authors: Harsha Thaira, Ritu Raval, Keyur Raval

Abstract:

Melanin has immense applications in the field of agriculture, cosmetics and pharmaceutical industries due to its photo-protective, UV protective and anti- oxidant activities. However, its production is limited to costly chemical methods or harsh extractive methods from hair which ultimately gives poor yields. This makes the cost of melanin very high, to the extent of US Dollar 300 per gram. Some microorganisms are reported to produce melanin under stress conditions. Out of all melanin producing organisms, Pseudomonas stutzeri can grow in sea water and produce melanin under saline stress. The objective of this study was to develop a sea water based bioprocess. Effects of different growth media and process parameters on melanin production using sea water were investigated. The marine bacterial strain Pseudomonas stutzeri HMGM-7(MTCC 11712) was selected and the effect of different media such as Nutrient Broth (NB), Luria Bertini (LB) broth, Bushnell- Haas broth (BHB) and Trypticase Soy broth (TSB) and various medium components were investigated with one factor at a time approach. Parameters like shaking frequency, inoculum age, inoculum size, pH and temperature were also investigated in order to obtain the optimum conditions for maximum melanin production. The highest yield of melanin concentration, 0.306 g/L, was obtained in Trypticase Soy broth at 36 hours. The yield was 1.88 times higher than the melanin obtained before optimization, 0.163 g/L at 36 hours. Studies are underway to optimize medium constituents to further enhance melanin production.

Keywords: melanin, marine, bioprocess, pseudomonas

Procedia PDF Downloads 265
3476 Analysis of Moment Rotation Curve for Steel Beam Column Joint

Authors: A. J. Shah, G. R. Vesmawala

Abstract:

Connections perform a fundamental role in the steel structures as global behaviour. In order to evaluate the real influence of the physical and geometrical parameters that control their behaviour, many experimental tests and analysis have been developed but a definitive answer to the problem in question still stands. Here, various configurations of bolts were tried and the resulting moment rotation (M-θ) curves were plotted. The connection configuration is such that two bolts are located above each of the flanges and beside each of the webs. The model considers the combined effects of prying action, the formation of yield lines, and failures due to punching shear and beam section failure. For many types of connections, the stiffness at the service load level falls somewhere in between the fully restrained and simple limits and designers need to account for its behaviour. The (M-θ) curves are generally assumed to be the best characterization of connection behaviour. The moment rotation curves are generally derived from experiments on cantilever type specimens. The moments are calculated directly from the statics of the specimen, while the rotations are measured over a distance typically equal to the point of loading. Thus, this paper establishes the relationship between M-θ behaviour of different types of connections tested and presents the relative strength of various possible arrangements of bolts.

Keywords: bolt, moment, rotation, stiffness, connections

Procedia PDF Downloads 381
3475 Relationship between Reproduction Performances and Coat Characteristics of Montbeliarde Cows during Hot Season in Algeria

Authors: Sara Lamari, Toufik Madani

Abstract:

This study aimed to explore the relationship between reproduction performances and coat characteristics of Montbéliarde cows born in Algeria or imported from Europe during the hot season in Algeria. Hair coat traits (hair coat color, Hair Weight, hair length, the number of hair per unit area, total hair diameters and hair medulla diameters) were estimated in 18 imported cattle and 49 locally born cows. These traits were measured in an area of 20cm below the dorsal line in the center of the thorax. Results showed that hair coats were significantly different between locally born and imported cows. Imported cows had whiter coats when compared to locally born cows for Montbéliarde cows. A significant effect of total hair diameter was observed on the interval from calving to conception (IC) for imported Montbéliarde cows, suggesting less incidence of heat stress on reproduction efficiency of cows with thin diameter hair coats. Montbéliarde cows with short hair coat registered significantly more number of mating per conception (2, 28±1, 93 Vs. 1,67±0,92) and IC (98,04±78,81Vs 74.53 ± 35.60 days) when compared to cows with long hairs. Hair works as a temperature regulator in association with muscles in the skin and may affect reproduction performances during hit stress season. It can be assumed that the length and a total diameter of hairs for the Montbeliarde breed appears to be related to their reproductive efficiency.

Keywords: hair coat, reproduction, Montbeliarde cow, hot season

Procedia PDF Downloads 148
3474 Adaptive Dehazing Using Fusion Strategy

Authors: M. Ramesh Kanthan, S. Naga Nandini Sujatha

Abstract:

The goal of haze removal algorithms is to enhance and recover details of scene from foggy image. In enhancement the proposed method focus into two main categories: (i) image enhancement based on Adaptive contrast Histogram equalization, and (ii) image edge strengthened Gradient model. Many circumstances accurate haze removal algorithms are needed. The de-fog feature works through a complex algorithm which first determines the fog destiny of the scene, then analyses the obscured image before applying contrast and sharpness adjustments to the video in real-time to produce image the fusion strategy is driven by the intrinsic properties of the original image and is highly dependent on the choice of the inputs and the weights. Then the output haze free image has reconstructed using fusion methodology. In order to increase the accuracy, interpolation method has used in the output reconstruction. A promising retrieval performance is achieved especially in particular examples.

Keywords: single image, fusion, dehazing, multi-scale fusion, per-pixel, weight map

Procedia PDF Downloads 457
3473 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.

Keywords: uranium diNitride, UN2, DFT+U, elastic properties

Procedia PDF Downloads 433
3472 Cr Induced Magnetization in Zinc-Blende ZnO-Based Diluted Magnetic Semiconductors

Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali

Abstract:

The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect the tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.

Keywords: ZnO, density functional theory, diluted agnetic semiconductors, ferromagnetic materials, FP-L(APW+lo)

Procedia PDF Downloads 414
3471 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: equal channel angular extrusion, severe plastic deformation, copper, mechanical properties

Procedia PDF Downloads 175
3470 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car

Authors: Erik Vassøy Olsen, Hirpa G. Lemu

Abstract:

Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat race car they have designed and built. The design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has a direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from the University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the above-mentioned requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of a possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with an equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.

Keywords: composite material, Formula student, ION racing, monocoque design, structural equivalence

Procedia PDF Downloads 492
3469 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 308
3468 Investing the Employees Higher Quitting Intention at the Call Centers of Pakistan: A Reality or a Myth: A Case Study of Pakistan Telecommunication Sector

Authors: Naheed Malik, Marisa Smith

Abstract:

This study has been undertaken as an attempt to explore the underlying reasons that cause higher employee turnover rates at the call centers of Pakistan. This research also aimed to examine the relationship among the job related variables such as job satisfaction, organizational commitment, supervisor support, self-esteem, organizational stressors (work overload, role ambiguity and work family conflict) and quitting inclination. A total of 340 call centers respondents filled the survey questionnaire. The data was analyzed through SPSS 19.0. Results reveal the significant relationship among the study variables and stress level contributing more towards employee penchant to leave the job. A significant amount of call centers employee have proclivity to quit from their jobs as soon as they would be able to find some other jobs with attractive compensation. The majority of the respondents were found to be unhappy and dissatisfied due to hectic schedule and imbalance between family and work. This research also highlighted the specific areas in which call centre management needs to emphasize deliberately that affect more sharply on employee leaving aptitude. This study also suggests some useful strategies for the well being of employees that can minimize their tendency of quitting and retention in the long run.

Keywords: call centers, stress, job satisfaction, organizational commitment, supervisor’s support, self esteem, employee turnover, employees’ intention to quit, customer service representative (CSRs)

Procedia PDF Downloads 272
3467 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 93
3466 A Boundary Fitted Nested Grid Model for Tsunami Computation along Penang Island in Peninsular Malaysia

Authors: Md. Fazlul Karim, Ahmad Izani Md. Ismail, Mohammed Ashaque Meah

Abstract:

This paper focuses on the development of a 2-D Boundary Fitted and Nested Grid (BFNG) model to compute the tsunami propagation of Indonesian tsunami 2004 along the coastal region of Penang in Peninsular Malaysia. In the presence of a curvilinear coastline, boundary fitted grids are suitable to represent the model boundaries accurately. On the other hand, when large gradient of velocity within a confined area is expected, the use of a nested grid system is appropriate to improve the numerical accuracy with the least grid numbers. This paper constructs a shallow water nested and orthogonal boundary fitted grid model and presents computational results of the tsunami impact on the Penang coast due to the Indonesian tsunami of 2004. The results of the numerical simulations are compared with available data.

Keywords: boundary fitted nested model, tsunami, Penang Island, 2004 Indonesian Tsunami

Procedia PDF Downloads 310
3465 Evaluating Service Trustworthiness for Service Selection in Cloud Environment

Authors: Maryam Amiri, Leyli Mohammad-Khanli

Abstract:

Cloud computing is becoming increasingly popular and more business applications are moving to cloud. In this regard, services that provide similar functional properties are increasing. So, the ability to select a service with the best non-functional properties, corresponding to the user preference, is necessary for the user. This paper presents an Evaluation Framework of Service Trustworthiness (EFST) that evaluates the trustworthiness of equivalent services without need to additional invocations of them. EFST extracts user preference automatically. Then, it assesses trustworthiness of services in two dimensions of qualitative and quantitative metrics based on the experiences of past usage of services. Finally, EFST determines the overall trustworthiness of services using Fuzzy Inference System (FIS). The results of experiments and simulations show that EFST is able to predict the missing values of Quality of Service (QoS) better than other competing approaches. Also, it propels users to select the most appropriate services.

Keywords: user preference, cloud service, trustworthiness, QoS metrics, prediction

Procedia PDF Downloads 273
3464 The Development of a Residual Stress Measurement Method for Roll Formed Products

Authors: Yong Sun, Vladimir Luzin, Zhen Qian, William J. T. Daniel, Mingxing Zhang, Shichao Ding

Abstract:

The residual stresses in roll formed products are generally very high and un-predictable. This is due to the occurrence of redundant plastic deformation in roll forming process and it can cause various product defects. Although the residual stresses of a roll formed product consist of longitudinal and transverse residual stresses components, but the longitudinal residual stresses plays a key role to the product defects of a roll formed product and therefore, only the longitudinal residual stresses concerned by the roll forming scholars and engineers. However, how to inspect the residual stresses of a product quickly and economically as a routine operation is still a challenge. This paper introduces a residual stresses measurement method called slope cutting method to study the longitudinal residual stresses through layers geometrically to a roll formed products or a product with similar process such as a rolled sheet. The detailed measuring procedure is given and discussed. The residual stresses variation through the layer can be derived based on the variation of curvature in different layers and steps. The slope cutting method has been explored and validated by experimental study on a roll-formed square tube. The neutron diffraction method is applied to validate the accuracy of the newly proposed layering removal materials results. The two set results agree with each other very well and therefore, the method is expected to be a routine testing method to monitor the quality of a product been formed and that is a great impact to roll forming industry.

Keywords: roll forming, residual stress, measurement method, neutron diffraction

Procedia PDF Downloads 353
3463 Experiences on the Application of WIKI Based Coursework in a Fourth-Year Engineering Module

Authors: D. Hassell, D. De Focatiis

Abstract:

This paper presents work on the application of wiki based coursework for a fourth-year engineering module delivered as part of both a MEng and MSc programme in Chemical Engineering. The module was taught with an equivalent structure simultaneously on two separate campuses, one in the United Kingdom (UK) and one in Malaysia, and the subsequent results were compared. Student feedback was sought via questionnaires, with 45 respondents from the UK and 49 from Malaysia. Results include discussion on; perceived difficulty; student enjoyment and experiences; differences between MEng and MSc students; differences between cohorts on different campuses. The response of students to the use of wiki-based coursework was found to vary based on their experiences and background, with UK students being generally more positive on its application than those in Malaysia.

Keywords: engineering education, student differences, student learning, web based coursework

Procedia PDF Downloads 284
3462 Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs

Authors: L. Giraudet, O. Simonetti, G. de Tournadre, N. Dumelié, B. Clarenc, F. Reisdorffer

Abstract:

In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure.

Keywords: mobility field activation, numerical simulation, OTFT, saturation failure

Procedia PDF Downloads 507
3461 Determination of Safe Ore Extraction Methodology beneath Permanent Extraction in a Lead Zinc Mine with the Help of FLAC3D Numerical Model

Authors: Ayan Giri, Lukaranjan Phukan, Shantanu Karmakar

Abstract:

Structure and tectonics play a vital role in ore genesis and deposition. The existence of a swelling structure below the current level of a mine leads to the discovery of ores below some permeant developments of the mine. The discovery and the extraction of the ore body are very critical to sustain the business requirement of the mine. The challenge was to extract the ore without hampering the global stability of the mine. In order to do so, different mining options were considered and analysed by numerical modelling in FLAC3d software. The constitutive model prepared for this simulation is the improved unified constitutive model, which can better and more accurately predict the stress-strain relationships in a continuum model. The IUCM employs the Hoek-Brown criterion to determine the instantaneous Mohr-Coulomb parameters cohesion (c) and friction (ɸ) at each level of confining stress. The extra swelled part can be dimensioned as north-south strike width 50m, east-west strike width 50m. On the north side, already a stope (P1) is excavated of the dimension of 25m NS width. The different options considered were (a) Open stoping of extraction of southern part (P0) of 50m to the full extent, (b) Extraction of the southern part of 25m, then filling of both the primaries and extraction of secondary (S0) 25m in between. (c) Extraction of the southern part (P0) completely, preceded by backfill and modify the design of the secondary (S0) for the overall stability of the permanent excavation above the stoping.

Keywords: extraction, IUCM, FLAC 3D, stoping, tectonics

Procedia PDF Downloads 204
3460 Real-Time Measurement Approach for Tracking the ΔV10 Estimate Value of DC EAF

Authors: Jin-Lung Guan, Jyh-Cherng Gu, Chun-Wei Huang, Hsin-Hung Chang

Abstract:

This investigation develops a revisable method for estimating the estimate value of equivalent 10 Hz voltage flicker (DV10) of a DC Electric Arc Furnace (EAF). This study also discusses three 161kV DC EAFs by field measurement, with those results indicating that the estimated DV10 value is significantly smaller than the survey value. The key point is that the conventional means of estimating DV10 is inappropriate. There is a main cause as the assumed Qmax is too small. Although DC EAF is regularly operated in a constant MVA mode, the reactive power variation in the Main Transformer (MT) is more significant than that in the Furnace Transformer (FT). A substantial difference exists between estimated maximum reactive power fluctuation (DQmax) and the survey value from actual DC EAF operations. However, this study proposes a revisable method that can obtain a more accurate DV10 estimate than the conventional method.

Keywords: voltage flicker, dc EAF, estimate value, DV10

Procedia PDF Downloads 438