Search results for: activation constant
824 Financing Innovation: Differences across National Innovation Systems
Authors: Núria Arimany Serrat, Xavier Ferràs Hernández, Petra A. Nylund, Eric Viardot
Abstract:
Innovation is an increasingly important antecedent to firm competitiveness and growth. Successful innovation, however, requires a significant financial commitment and the means of financing accessible to the firm may affect its ability to innovate. The access to equity financing such as venture capital has been connected to innovativeness for young firms. For established enterprises, debt financing of innovation may be a more realistic option. Continuous innovation and growth would otherwise require a constant increase of equity. We, therefore, investigate the relation between debt financing and innovation for large firms and hypothesize that those firms that carry more debt will be more innovative. The need for debt financing of innovation may be reduced for very profitable firms, which can finance innovation with cash flow. We thus hypothesize a moderating effect of profitability on the relationship between debt financing and innovation. We carry out an empirical investigation using a longitudinal data set including 167 large European firms over five years, resulting in 835 firm years. We apply generalized least squares (GLS) regression with fixed firm effects to control for firm heterogeneity. The findings support our hypotheses and we conclude that access to debt finding is an important antecedent of innovation, with profitability as a moderating factor. The results do however differ across national innovation systems and we find a strong relationship for British, Dutch, French, and Italian firms but not for German and Spanish entities. We discuss differences in the national systems of innovation and financing which contextualize the variations in the findings and thus make a nuanced contribution to the research in innovation financing. The cross-country differences calls for differentiated advice to managers, institutions, and researchers depending on the national context.Keywords: innovation, R&D, national innovation systems, financing
Procedia PDF Downloads 529823 Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber
Authors: Sultan Husein Bayqra, Ali Mardani Aghabaglou, Zia Ahmad Faqiri, Hassane Amidou Ouedraogo
Abstract:
In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers.Keywords: compressive strength, splitting tensile strength, fiber reinforced concrete, size effect, shape effect
Procedia PDF Downloads 175822 Effect of Anisotropy on Steady Creep in a Whisker Reinforced Functionally Graded Composite Disc
Authors: V. K. Gupta, Tejeet Singh
Abstract:
In many whisker reinforced composites, anisotropy may result due to material flow during processing operations such as forging, extrusion etc. The consequence of anisotropy, introduced during processing of disc material, has been investigated on the steady state creep deformations of the rotating disc. The disc material is assumed to undergo plastic deformations according to Hill’s anisotropic criterion. Steady state creep has been analyzed in a constant thickness rotating disc made of functionally graded 6061Al-SiCw (where the subscript ‘w’ stands for whisker) using Hill’s The content of reinforcement (SiCw) in the disc is assumed to decrease linearly from the inner to outer radius. The stresses and strain rates in the disc are estimated by solving the force equilibrium equation along with the constitutive equations describing multi-axial creep. The results obtained for anisotropic FGM disc have been compared with those estimated for isotropic FGM disc having the same average whisker content. The anisotropic constants, appearing in Hill’s yield criterion, have been obtained from the available experimental results. The results show that the presence of anisotropy reduces the tangential stress in the middle of the disc but near the inner and outer radii the tangential stress is higher when compared to isotropic disc. On the other hand, the steady state creep rates in the anisotropic disc are reduced significantly over the entire disc radius, with the maximum reduction observed at the inner radius. Further, in the presence of anisotropy the distribution of strain rate becomes relatively uniform over the entire disc, which may be responsible for reducing the extent of distortion in the disc.Keywords: anisotropy, creep, functionally graded composite, rotating disc
Procedia PDF Downloads 388821 Building on Previous Microvalving Approaches for Highly Reliable Actuation in Centrifugal Microfluidic Platforms
Authors: Ivan Maguire, Ciprian Briciu, Alan Barrett, Dara Kervick, Jens Ducrèe, Fiona Regan
Abstract:
With the ever-increasing myriad of applications of which microfluidic devices are capable, reliable fluidic actuation development has remained fundamental to the success of these microfluidic platforms. There are a number of approaches which can be taken in order to integrate liquid actuation on microfluidic platforms, which can usually be split into two primary categories; active microvalves and passive microvalves. Active microvalves are microfluidic valves which require a physical parameter change by external, or separate interaction, for actuation to occur. Passive microvalves are microfluidic valves which don’t require external interaction for actuation due to the valve’s natural physical parameters, which can be overcome through sample interaction. The purpose of this paper is to illustrate how further improvements to past microvalve solutions can largely enhance systematic reliability and performance, with both novel active and passive microvalves demonstrated. Covered within this scope will be two alternative and novel microvalve solutions for centrifugal microfluidic platforms; a revamped pneumatic-dissolvable film active microvalve (PAM) strategy and a spray-on Sol-Gel based hydrophobic passive microvalve (HPM) approach. Both the PAM and the HPM mechanisms were demonstrated on a centrifugal microfluidic platform consisting of alternating layers of 1.5 mm poly(methyl methacrylate) (PMMA) (for reagent storage) sheets and ~150 μm pressure sensitive adhesive (PSA) (for microchannel fabrication) sheets. The PAM approach differs from previous SOLUBON™ dissolvable film methods by introducing a more reliable and predictable liquid delivery mechanism to microvalve site, thus significantly reducing premature activation. This approach has also shown excellent synchronicity when performed in a multiplexed form. The HPM method utilises a new spray-on and low curing temperature (70°C) sol-gel material. The resultant double layer coating comprises a PMMA adherent sol-gel as the bottom layer and an ultra hydrophobic silica nano-particles (SNPs) film as the top layer. The optimal coating was integrated to microfluidic channels with varying cross-sectional area for assessing microvalve burst frequencies consistency. It is hoped that these microvalving solutions, which can be easily added to centrifugal microfluidic platforms, will significantly improve automation reliability.Keywords: centrifugal microfluidics, hydrophobic microvalves, lab-on-a-disc, pneumatic microvalves
Procedia PDF Downloads 187820 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance
Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow
Abstract:
This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.Keywords: cable direct driven robot, haptics, parallel plates, bone drilling
Procedia PDF Downloads 257819 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic
Procedia PDF Downloads 162818 Irregular Meal Pattern: What Is the Impact on Weight
Authors: Maha Alhussain, Moira A Taylor, Ian A. Macdonald
Abstract:
Background: It is well established that dietary composition has effects on metabolism and therefore impacts on health; however other aspects of diet, such as meal pattern, could also be important in both obesity management and promoting health. The present study investigated the effect of irregular meal frequency on anthropometric measurements and energy expenditure (EE) in healthy women. Design: 11 healthy weight women (18–40 years) were studied in a randomized crossover trial with two phases of 2 weeks each. In Phase 1, participants consumed either a regular meal pattern (6 meals/day) or an irregular meal pattern (varying from 3 to 9 meals/day). In Phase 2, participants followed the alternative meal pattern to that followed in Phase 1, after a 2-weeks washout period. In the two phases, identical foods were provided to a participant in amounts designed to keep body weight constant. Participants came to the laboratory after an overnight fast at the start and end of each phase. EE was measured in fasting state by indirect calorimetry. Postprandial EE was measured during the 3 h period after consumption of a milkshake, test drink. Results: There were no significant changes in body weight and anthropometric measurements after both meal pattern interventions. There was also no significant difference in mean daily energy intake between the regular and irregular meal pattern (2043 ±31 and 2099 ±33 respectively). EE in the fasting state showed no significant differences cross the experiment visits. There was a significant difference in Postprandial EE (measured for 3 h) by visit (P=0.04). Postprandial EE after the regular meal pattern was significantly higher than at baseline (P=0.002) or than after the irregular meal pattern (P= 0.04). Conclusion: Eating regularly for 14-day period significantly increases Postprandial EE which may contribute to weight loss and obesity management.Keywords: energy expenditure, energy intake, meal pattern, weight loss
Procedia PDF Downloads 412817 Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger
Authors: Pratibha Biswal, Suyash Morchhale, Anshuman Singh Yadav, Shubham Sanjay Chobe
Abstract:
Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fractionKeywords: heat exchanger, thermal energy storage, phase change material, CFD, latent heat
Procedia PDF Downloads 152816 Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator
Authors: Sharib Ahmed, Mansoor Rafi, Kamran Ali Awan, Faraz Khaskhali, Amir Maqbool, Altaf Hashmi
Abstract:
Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons.Keywords: equivalent doses, neutron contamination, neutron detector, photon energy
Procedia PDF Downloads 448815 Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece
Authors: K. Vallianou, T. Alexopoulos, V. Plaka, M. K. Seleventi, V. Skanavis, C. Skanavis
Abstract:
The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.Keywords: community resilience, natural disasters, place attachment, wildfire
Procedia PDF Downloads 101814 Synthesis, Characterization of Organic and Inorganic Zn-Al Layered Double Hydroxides and Application for the Uptake of Methyl Orange from Aqueous Solution
Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohammed Abdennouri, Noureddine Barka
Abstract:
Zn-Al layered double hydroxides containing carbonate, nitrate and dodecylsulfate as the interlamellar anions have been prepared through a coprecipitation method. The resulting compounds were characterized using XRD, ICP, FTIR, TGA/DTA, TEM/EDX and pHPZC analysis. The XRD patterns revealed that carbonate and nitrate could be intercalated into the interlayer structure with basal spacing of 22.74 and 26.56 Å respectively. Bilayer intercalation of dodecylsulfate molecules was achieved in Zn-Al LDH with a basal spacing of 37.86 Å. The TEM observation indicated that the materials synthesized via coprecipitation present nanoscale LDH particle. The average particle size of Zn-AlCO3 is 150 to 200 nm. Irregular circular to hexagonal shaped particles with 30 to 40 nm in diameter was observed in the Zn-AlNO3 morphology. TEM image of Zn-AlDs display nanostructured sheet like particles with size distribution between 5 to 10 nm. The sorption characteristics and mechanisms of methyl orange dye on organic LDH were investigated and were subsequently compared with that on the inorganic Zn-Al layered double hydroxides. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. The adsorption behavior onto inorganic LDHs was obviously influenced by initial pH. However, the adsorption capacity of organic LDH was influenced indistinctively by initial pH and the removal percentage of MO was practically constant at various value of pH. As the MO concentration increased, the curve of adsorption capacity became L-type onto LDHs. The adsorption behavior for Zn-AlDs was proposed by the dissolution of dye in a hydrophobic interlayer region (i.e., adsolubilization). The results suggested that Zn-AlDs could be applied as a potential adsorbent for MO removal in a wide range of pH.Keywords: adsorption, dodecylsulfate, kinetics, layered double hydroxides, methyl orange removal
Procedia PDF Downloads 292813 The Determination of Pb and Zn Phytoremediation Potential and Effect of Interaction between Cadmium and Zinc on Metabolism of Buckwheat (Fagopyrum Esculentum)
Authors: Nurdan Olguncelik Kaplan, Aysen Akay
Abstract:
Nowadays soil pollution has become a global problem. External added polluters to the soil are destroying and changing the structure of the soil and the problems are becoming more complex and in this sense the correction of these problems is going to be harder and more costly. Cadmium has got a fast mobility in the soil and plant system because of that cadmium can interfere very easily to the human and animal food chain and in the same time this can be very dangerous. The cadmium which is absorbed and stored by the plants is causing to many metabolic changes of the plants like; protein synthesis, nitrogen and carbohydrate metabolism, enzyme (nitrate reductase) activation, photo and chlorophyll synthesis. The biological function of cadmium is not known over the plants and it is not a necessary element. The plant is generally taking in small amounts the cadmium and this element is competing with the zinc. Cadmium is causing root damages. Buckwheat (Fagopyrum esculentum) is an important nutraceutical because of its high content of flavonoids, minerals and vitamins, and their nutritionally balanced amino-acid composition. Buckwheat has relatively high biomass productivity, is adapted to many areas of the world, and can flourish in sterile fields; therefore buckwheat plants are widely used for the phytoremediation process.The aim of this study were to evaluate the phytoremediation capacity of the high-yielding plant Buckwheat (Fagopyrum esculentum) in soils contaminated with Cd and Zn. The soils were applied to differrent doses cd(0-12.5-25-50-100 mg Cd kg−1 soil in the form of 3CdSO4.8H2O ) and Zn (0-10-30 mg Zn kg−1 soil in the form of ZnSO4.7H2O) and incubated about 60 days. Later buckwheat seeds were sown and grown for three mounth under greenhouse conditions. The test plants were irrigated by using pure water after the planting process. Buckwheat seeds (Gunes and Aktas species) were taken from Bahri Dagdas International Agricultural Research. After harvest, Cd and Zn concentrations of plant biomass and grain, yield and translocation factors (TFs) for Cd and Cd were determined. Cadmium accumulation in biomass and grain significantly increased in dose-dependent manner. Long term field trials are required to further investigate the potential of buckwheat to reclaimed the soil. But this could be undertaken in conjunction with actual remediation schemes. However, the differences in element accumulation among the genotypes were affected more by the properties of genotypes than by the soil properties. Gunes genotype accumulated higher lead than Aktas genotypes.Keywords: buckwheat, cadmium, phytoremediation, zinc
Procedia PDF Downloads 416812 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 56811 Retrospective Analysis of 142 Cases of Incision Infection Complicated with Sternal Osteomyelitis after Cardiac Surgery Treated by Activated PRP Gel Filling
Authors: Daifeng Hao, Guang Feng, Jingfeng Zhao, Tao Li, Xiaoye Tuo
Abstract:
Objective: To retrospectively analyze the clinical characteristics of incision infection with sternal osteomyelitis sinus tract after cardiac surgery and the operation method and therapeutic effect of filling and repairing with activated PRP gel. Methods: From March 2011 to October 2022, 142 cases of incision infection after cardiac surgery with sternal osteomyelitis sinus were retrospectively analyzed, and the causes of poor wound healing after surgery, wound characteristics, perioperative wound management were summarized. Treatment during operation, collection and storage process of autologous PRP before debridement surgery, PRP filling repair and activation method after debridement surgery, effect of anticoagulant drugs on surgery, postoperative complications and average wound healing time, etc.. Results: Among the cases in this group, 53.3% underwent coronary artery bypass grafting, 36.8% underwent artificial heart valve replacement, 8.2% underwent aortic artificial vessel replacement, and 1.7% underwent allogeneic heart transplantation. The main causes of poor incision healing were suture reaction, fat liquefaction, osteoporosis, diabetes, and metal allergy in sequence. The wound is characterized by an infected sinus tract. Before the operation, 100-150ml of PRP with 4 times the physiological concentration was collected separately with a blood component separation device. After sinus debridement, PRP was perfused to fill the bony defect in the middle of the sternum, activated with thrombin freeze-dried powder and calcium gluconate injection to form a gel, and the outer skin and subcutaneous tissue were sutured freely. 62.9% of patients discontinued warfarin during the perioperative period, and 37.1% of patients maintained warfarin treatment. There was no significant difference in the incidence of postoperative wound hematoma. The average postoperative wound healing time was 12.9±4.7 days, and there was no obvious postoperative complication. Conclusions: Application of activated PRP gel to fill incision infection with sternal osteomyelitis sinus after cardiac surgery has a less surgical injury and satisfactory and stable curative effect. It can completely replace the previously used pectoralis major muscle flap transplantation operation scheme.Keywords: platelet-rich plasma, negative-pressure wound therapy, sternal osteomyelitis, cardiac surgery
Procedia PDF Downloads 75810 Microstructure Evolution and Modelling of Shear Forming
Authors: Karla D. Vazquez-Valdez, Bradley P. Wynne
Abstract:
In the last decades manufacturing needs have been changing, leading to the study of manufacturing methods that were underdeveloped, such as incremental forming processes like shear forming. These processes use rotating tools in constant local contact with the workpiece, which is often also rotating, to generate shape. This means much lower loads to forge large parts and no need for expensive special tooling. Potential has already been established by demonstrating manufacture of high-value products, e.g., turbine and satellite parts, with high dimensional accuracy from difficult to manufacture materials. Thus, huge opportunities exist for these processes to replace the current method of manufacture for a range of high value components, e.g., eliminating lengthy machining, reducing material waste and process times; or the manufacture of a complicated shape without the development of expensive tooling. However, little is known about the exact deformation conditions during processing and why certain materials are better than others for shear forming, leading to a lot of trial and error before production. Three alloys were used for this study: Ti-54M, Jethete M154, and IN718. General Microscopy and Electron Backscatter Diffraction (EBSD) were used to measure strains and orientation maps during shear forming. A Design of Experiments (DOE) analysis was also made in order to understand the impact of process parameters in the properties of the final workpieces. Such information was the key to develop a reliable Finite Element Method (FEM) model that closely resembles the deformation paths of this process. Finally, the potential of these three materials to be shear spun was studied using the FEM model and their Forming Limit Diagram (FLD) which led to the development of a rough methodology for testing the shear spinnability of various metals.Keywords: shear forming, damage, principal strains, forming limit diagram
Procedia PDF Downloads 162809 Aspergillus micromycetes as Producers of Hemostatically Active Proteases
Authors: Alexander A. Osmolovskiy, Anastasia V. Orekhova, Daria M. Bednenko, Yelyzaveta Boiko
Abstract:
Micromycetes from Aspergillus genus can produce proteases capable of promoting proteolysis of hemostasis proteins or, along with hydrolytic activity, to show the ability to convert proenzymes of this system activating them into an active form. At the same time, practical medicine needs specific activators for quantitation of the level of some plasma enzymes, especially protein C and factor X, the lack of which leads to the development of thromboembolic diseases. Thus, some micromycetes of the genus Aspergillus were screened for the ability to synthesize extracellular proteases with promising activity for designing anti-thrombotic and diagnostic preparations. Such standard methods like salting out, electrophoresis, isoelectrofocusing were used for isolation, purification and study of physicochemical properties of proteases. Enzyme activity was measured spectrophotometrically fibrin as a substrate of the reaction and chromogenic peptide substrates of different proteases of the human hemostasis system. As a result of the screening, four active producers were selected: Aspergillus janus 301, A. flavus 1, A. terreus 2, and A. ochraceus L-1. The enzyme of A. janus 301 showed the greatest fibrinolytic activity (around 329.2 μmol Tyr/(ml × min)). The protease produced by A. terreus 2 had the highest plasmin-like activity (54.1 nmol pNA/(ml × min)), but fibrinolytic activity was lower than A. janus 301 demonstrated (25.2 μmol Tyr/(ml × min)). For extracellular protease of micromycete A. flavus a high plasmin-like activity was also shown (39.8 nmol pNA / (ml × min)). Moreover, according to our results proteases one of the fungi - A. terreus 2 were able to activate protein C of human plasma - the key factor of the human anticoagulant hemostasis system. This type of activity was 39.8 nmol pNA/(ml × min)). It was also shown that A. ochraceus L-1 could produce extracellular proteases with protein C and factor X activator activities (65.9 nmol pNA/(ml × min) and 34.6 nmol pNA/(ml × min) respectively). The maximum accumulation of the proteases falls on the 4th day of cultivation. Using isoelectrofocusing was demonstrated that the activation of both proenzymes might proceed via limited proteolysis induced by proteases of A. ochraceus L-1. The activatory activity of A. ochraceus L-1 proteases toward essential hemostatic proenzymes, protein C and X factor may be useful for practical needs. It is well known that similar enzymes, activators of protein C and X factor isolated from snake venom, South American copperhead Agkistrodon contortrix contortrix and Russell’s viper Daboia russelli russeli, respectively, are used for the in vitro diagnostics of the functional state of these proteins in blood plasma. Thus, the proteases of Aspergillus genus can be used as cheap components for enzyme thrombolytic preparations.Keywords: anti-trombotic drugs, fibrinolysis, diagnostics, proteases, micromycetes
Procedia PDF Downloads 131808 Kou Jump Diffusion Model: An Application to the SP 500; Nasdaq 100 and Russell 2000 Index Options
Authors: Wajih Abbassi, Zouhaier Ben Khelifa
Abstract:
The present research points towards the empirical validation of three options valuation models, the ad-hoc Black-Scholes model as proposed by Berkowitz (2001), the constant elasticity of variance model of Cox and Ross (1976) and the Kou jump-diffusion model (2002). Our empirical analysis has been conducted on a sample of 26,974 options written on three indexes, the S&P 500, Nasdaq 100 and the Russell 2000 that were negotiated during the year 2007 just before the sub-prime crisis. We start by presenting the theoretical foundations of the models of interest. Then we use the technique of trust-region-reflective algorithm to estimate the structural parameters of these models from cross-section of option prices. The empirical analysis shows the superiority of the Kou jump-diffusion model. This superiority arises from the ability of this model to portray the behavior of market participants and to be closest to the true distribution that characterizes the evolution of these indices. Indeed the double-exponential distribution covers three interesting properties that are: the leptokurtic feature, the memory less property and the psychological aspect of market participants. Numerous empirical studies have shown that markets tend to have both overreaction and under reaction over good and bad news respectively. Despite of these advantages there are not many empirical studies based on this model partly because probability distribution and option valuation formula are rather complicated. This paper is the first to have used the technique of nonlinear curve-fitting through the trust-region-reflective algorithm and cross-section options to estimate the structural parameters of the Kou jump-diffusion model.Keywords: jump-diffusion process, Kou model, Leptokurtic feature, trust-region-reflective algorithm, US index options
Procedia PDF Downloads 427807 Selection of Potential Starter Using Their Transcription Level
Authors: Elif Coskun Daggecen, Seyma Dokucu, Yekta Gezginc, Ismail Akyol
Abstract:
Fermented dairy food quality is mainly determined by the sensory perception and influenced by many factors. Today, starter cultures for fermented foods are being developed to have a constant quality in these foods. Streptococcus thermophilus is one of the main species of most a starter cultures of yogurt fermentation. This species produces lactate by lactose fermentation from pyruvate. On the other hand, a small amount of pyruvate can alternatively be converted to various typical yoghurt flavor compounds such as diacetyl, acetoin, acetaldehyde, or acetic acid, for which the activity of three genes are shown to be especially important; ldh, nox and als. Up to date, commercially produced yoghurts have not yet met the desired aromatic properties that Turkish consumers find in traditional homemade yoghurts. Therefore, it is important to select starters carrying favorable metabolic characteristics from natural isolates. In this study, 30 strains of Str. Thermophilus were isolated from traditional Turkish yoghurts obtained from different regions of the country. In these strains, transcriptional levels of ldh, nox and als genes were determined via a newly developed qPCR protocol, which is a more reliable and precision method for analyzing the quantitative and qualitative expression of specific genes in different experimental conditions or in different organisms compared to conventional analytical methods. Additionally, the metabolite production potentials of the isolates were measured. Of all the strains examined, 60% were found to carry the metabolite production potential and the gene activity which appeared to be suitable to be used as a starter culture. Probable starter cultures were determined according to real-time PCR results.Keywords: gene expression, RT-PCR, starter culture, Streptococcus thermophilus
Procedia PDF Downloads 187806 Delamination Fracture Toughness Benefits of Inter-Woven Plies in Composite Laminates Produced through Automated Fibre Placement
Authors: Jayden Levy, Garth M. K. Pearce
Abstract:
An automated fibre placement method has been developed to build through-thickness reinforcement into carbon fibre reinforced plastic laminates during their production, with the goal of increasing delamination fracture toughness while circumventing the additional costs and defects imposed by post-layup stitching and z-pinning. Termed ‘inter-weaving’, the method uses custom placement sequences of thermoset prepreg tows to distribute regular fibre link regions in traditionally clean ply interfaces. Inter-weaving’s impact on mode I delamination fracture toughness was evaluated experimentally through double cantilever beam tests (ASTM standard D5528-13) on [±15°]9 laminates made from Park Electrochemical Corp. E-752-LT 1/4” carbon fibre prepreg tape. Unwoven and inter-woven automated fibre placement samples were compared to those of traditional laminates produced from standard uni-directional plies of the same material system. Unwoven automated fibre placement laminates were found to suffer a mostly constant 3.5% decrease in mode I delamination fracture toughness compared to flat uni-directional plies. Inter-weaving caused significant local fracture toughness increases (up to 50%), though these were offset by a matching overall reduction. These positive and negative behaviours of inter-woven laminates were respectively found to be caused by fibre breakage and matrix deformation at inter-weave sites, and the 3D layering of inter-woven ply interfaces providing numerous paths of least resistance for crack propagation.Keywords: AFP, automated fibre placement, delamination, fracture toughness, inter-weaving
Procedia PDF Downloads 182805 Didactics of Literature within the Brechtian Theatre in Edward Albee's Who's Afraid of Virginia Woolf? and Ernest Lehman's Screenplay Adaptation from an Audiovisual Perspective
Authors: Angel Mauricio Castillo
Abstract:
The background to the way theatrical performances and music dramas- as they were known in the mid-nineteenth century, provided the audience with a complete immersion into the feelings of the characters through poetry, music and other artistic representations which create a false sense of reality. However, a novel representation on stage some eighty years later, which is non-cathartic, is significant because it represents the antithesis to the common creations of the period and is originated by the separation of the elements as a dominant. A succinct description of the basic methodologies includes the sense of defamiliarization that results as a near translation of the German word Verfremdung will be referred to along this work as the V-effect (also known as the ‘alienation effect’) and will embody the representation of the performing techniques that enables the audience to watch a play being fully aware of its nature. A play might sometimes present the audience with a constant reminder that it is only a play; therefore, all elements will be introduced to provoke dissimilar reactions and opinions. A clear indication of the major findings of the study is that there is a strong correlation between Hegel, Marx and Brecht as it is disclosed how the didactics of Literature have been influencing not only Brecht’s productions but also every educational context in which these ideas are intertwined. The result is a new dialectical process that is to say, a new thesis that creates independent thinking skills on the part of the audience. Therefore, this model opposes to the Hegelian formula thesis-antithesis-synthesis in that the synthesis in the Brechtian theatre will inevitably fall into the category of a different thesis within an enlightening type of discourse. The confronting ideas of illusion versus reality will create a new dialectical thesis instead of resulting into a synthesis.Keywords: Brechtian theatre, didactics, literature, education
Procedia PDF Downloads 177804 Experiences of Family Carers of People Intellectual Disabilities During the COVID-19 Pandemic
Authors: Mark Linden, Michael Brown, Lynne Marsh, Maria Truesdale, Stuart Todd, Nathan Hughes, Trisha Forbes, Rachel Leonard
Abstract:
Background: The COVID-19 pandemic exacerbated the already significant strain placed on family carers of people with profound and multiple intellectual disabilities (PMID), given the withdrawal of many services during lockdown. The aim of this study was to explore the experiences of family carers of people with PMID during the COVID-19 pandemic. Methods: Online focus groups were conducted with family carers (n=126) from across the UK and the Republic of Ireland. Participants were asked about their experiences of the COVID-19 pandemic, coping strategies, and challenges faced. Focus groups were audio recorded, transcribed verbatim and analyzed through thematic analysis. Findings: Three themes emerged from our analysis of the data: (i) COVID-19 as a double-edged sword, (ii) The struggle for support (iii) the Constant nature of caring. These included 11 subthemes: (i) ‘COVID-19 as a catalyst for change’, ‘Challenges during COVID-19: dealing with change’, ‘Challenges during COVID-19: fear of COVID-19’, ‘The online environment: the new normal’ (ii) ‘Invisibility of male carers’, ‘Carers supporting carers’, ‘The only service you get is lip service: non-existent services’, ‘Knowing your rights’ (iii) ‘Emotional response to the caring role: Feeling devalued’, ‘Emotional response to the caring role: Desperation of caring’, ‘Multiple demands of the caring role.’ Conclusions: Poor or inconsistent access to services and support has been an ongoing difficulty for many family carers. The COVID-19 pandemic has only further intensified these difficulties, increasing family carers' stress. There is an urgent need to design services, such as online support programs, in partnership with family carers that adequately address their needs.Keywords: intellectual disabilities, family carer, COVID-19, disability
Procedia PDF Downloads 78803 Analysis of Knowledge Circulation in Digital Learning Environments: A Case Study of the MOOC 'Communication des Organisations'
Authors: Hasna Mekkaoui Alaoui, Mariem Mekkaoui Alaoui
Abstract:
In a context marked by a growing and pressing demand for online training within Moroccan universities, massive open online courses (Moocs) are undergoing constant evolution, amplified by the widespread use of digital technology and accentuated by the Coronavirus pandemic. However, despite their growing popularity and expansion, these courses are still lacking in terms of tools, enabling teachers and researchers to carry out a fine-grained analysis of the learning processes taking place within them. What's more, the circulation and sharing of knowledge within these environments is becoming increasingly important. The crucial aspect of traceability emerges here, as MOOCs record and generate traces from the most minute to the most visible. This leads us to consider traceability as a valuable approach in the field of educational research, where the trace is envisaged as a research tool in its own right. In this exploratory research project, we are looking at aspects of community knowledge sharing based on traces observed in the "Communication des organisations" Mooc. Focusing in particular on the mediating trace and its impact in identifying knowledge circulation processes in this learning space, we have mobilized the traces of video capsules as an index of knowledge circulation in the Mooc device. Our study uses a methodological approach based on thematic analysis, and although the results show that learners reproduce knowledge from different video vignettes in almost identical ways, they do not limit themselves to the knowledge provided to them. This research offers concrete perspectives for improving the dynamics of online devices, with a potentially positive impact on the quality of online university teaching.Keywords: circulation, index, digital environments, mediation., trace
Procedia PDF Downloads 61802 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction
Authors: Sandeep Kaushal
Abstract:
Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS
Procedia PDF Downloads 105801 An Advanced Method of Plant Preservation and Colour Retention of Herbarium Specimens
Authors: Abduraheem K., Suboohi Nasrin
Abstract:
Herbaria are specimens of preserved plants, which are very delicate and cellulosic in nature. While these collections are very useful for the enrichment of knowledge and are considered as natural heritage of our entire world, it is very important to preserve and conserve them. The significance is not only to prevent the herbaria from the deterioration of biological agencies but also to preserve its colours and retain natural colour. Colour is not only characteristic of a plant, but it can also help to identify closely related species or to distinguish a plant from a collection of herbaria. Keeping this in mind, a selective solution has been prepared for the conservation and preservation of herbarium in the present study. In this, the quantity of all the selected chemicals, i.e., formaldehyde and copper sulphate was kept constant, and the solution was prepared by dissolving it in distilled water by increasing the amount of picric acid (1, 2, 3, 4, and 5 ml). Fresh specimens of roses and bougainvillea were washed with distilled water and kept in the above solution for 10 to 15 minutes at room temperature. After 10 minutes, the specimen was removed from the solution, dried with the help of paper, and then pressed under the plant press. Blotting sheets were used to absorb the moisture content and were changed every 2 to 3 days to protect against fungal growth. The results revealed that all solutions had insecticidal properties and protected the herbarium specimen against pests. While in the case of colour retention, solution-1 and 2 were not satisfactory colour preservation, and solutions-3 and 5 maintained the colour of rose and bougainvillea leaves for 15 to 20 days and for a month, respectively. After that, the colour begins to fade, and the process is faster in rose leaves than in bougainvillea. And it was also observed that the colour of young leaves started to fade before that of older leaves. When the leaves of rose and bougainvillea are treated with Solution-4, then the colour of rose leaves is maintained for six months.Keywords: solutions, colour retention, preservation and conservation, leaves of roses and bougainvillea
Procedia PDF Downloads 92800 Effect of Extrusion Processing Parameters on Protein in Banana Flour Extrudates: Characterisation Using Fourier-Transform Infrared Spectroscopy
Authors: Surabhi Pandey, Pavuluri Srinivasa Rao
Abstract:
Extrusion processing is a high-temperature short time (HTST) treatment which can improve protein quality and digestibility together with retaining active nutrients. In-vitro protein digestibility of plant protein-based foods is generally enhanced by extrusion. The current study aimed to investigate the effect of extrusion cooking on in-vitro protein digestibility (IVPD) and conformational modification of protein in green banana flour extrudates. Green banana flour was extruded through a co-rotating twin-screw extruder varying the moisture content, barrel temperature, screw speed in the range of 10-20 %, 60-80 °C, 200-300 rpm, respectively, at constant feed rate. Response surface methodology was used to optimise the result for IVPD. Fourier-transform infrared spectroscopy (FTIR) analysis provided a convenient and powerful means to monitor interactions and changes in functional and conformational properties of extrudates. Results showed that protein digestibility was highest in extrudate produced at 80°C, 250 rpm and 15% feed moisture. FTIR analysis was done for the optimised sample having highest IVPD. FTIR analysis showed that there were no changes in primary structure of protein while the secondary protein structure changed. In order to explain this behaviour, infrared spectroscopy analysis was carried out, mainly in the amide I and II regions. Moreover, curve fitting analysis showed the conformational changes produced in the flour due to protein denaturation. The quantitative analysis of the changes in the amide I and II regions provided information about the modifications produced in banana flour extrudates.Keywords: extrusion, FTIR, protein conformation, raw banana flour, SDS-PAGE method
Procedia PDF Downloads 160799 Analysis of Splicing Methods for High Speed Automated Fibre Placement Applications
Authors: Phillip Kearney, Constantina Lekakou, Stephen Belcher, Alessandro Sordon
Abstract:
The focus in the automotive industry is to reduce human operator and machine interaction, so manufacturing becomes more automated and safer. The aim is to lower part cost and construction time as well as defects in the parts, sometimes occurring due to the physical limitations of human operators. A move to automate the layup of reinforcement material in composites manufacturing has resulted in the use of tapes that are placed in position by a robotic deposition head, also described as Automated Fibre Placement (AFP). The process of AFP is limited with respect to the finite amount of material that can be loaded into the machine at any one time. Joining two batches of tape material together involves a splice to secure the ends of the finishing tape to the starting edge of the new tape. The splicing method of choice for the majority of prepreg applications is a hand stich method, and as the name suggests requires human input to achieve. This investigation explores three methods for automated splicing, namely, adhesive, binding and stitching. The adhesive technique uses an additional adhesive placed on the tape ends to be joined. Binding uses the binding agent that is already impregnated onto the tape through the application of heat. The stitching method is used as a baseline to compare the new splicing methods to the traditional technique currently in use. As the methods will be used within a High Speed Automated Fibre Placement (HSAFP) process, this meant the parameters of the splices have to meet certain specifications: (a) the splice must be able to endure a load of 50 N in tension applied at a rate of 1 mm/s; (b) the splice must be created in less than 6 seconds, dictated by the capacity of the tape accumulator within the system. The samples for experimentation were manufactured with controlled overlaps, alignment and splicing parameters, these were then tested in tension using a tensile testing machine. Initial analysis explored the use of the impregnated binding agent present on the tape, as in the binding splicing technique. It analysed the effect of temperature and overlap on the strength of the splice. It was found that the optimum splicing temperature was at the higher end of the activation range of the binding agent, 100 °C. The optimum overlap was found to be 25 mm; it was found that there was no improvement in bond strength from 25 mm to 30 mm overlap. The final analysis compared the different splicing methods to the baseline of a stitched bond. It was found that the addition of an adhesive was the best splicing method, achieving a maximum load of over 500 N compared to the 26 N load achieved by a stitching splice and 94 N by the binding method.Keywords: analysis, automated fibre placement, high speed, splicing
Procedia PDF Downloads 153798 Lactobacillus rhamnosus GG Increases the Re-Epithelialization Rate of Model Wounds by Stimulating Keratinocyte Migration in Ex-Vivo
Authors: W. Mohammedsaeed, A. J. Mcbain, S. M. Cruickshank, C. A. O’Neill
Abstract:
Many studies have demonstrated the importance of probiotics and their potential therapeutic effects within the gut. Recently, the possible therapeutic effects of probiotics in other tissues have also begun to be investigated. Comparatively few studies have evaluated the use of topical probiotics in relation to the skin. In this study, we have conducted preliminary investigations into whether a well-known probiotic, Lactobacillus rhamnosus GG (LGG), can increase the rate of re-epithelialization in a model wound. Full-thickness skin was obtained from individuals undergoing elective cosmetic surgery. This skin was wounded using excisional punch and cultured using a serum-free medium, either in the presence or absence of L. rhamnosus GG lysate. Histological staining of the sections was performed with Haematoxylin& Eosin E to quantify “epithelial tongue length”. This is the length of the new epithelial ‘tongue’ that grows and covers the exposed dermis at the inner wound edges. The length of the new epithelial ‘tongue’ was compared in untreated section and section treated with and L. rhamnosus GG made using108CFU/ml bacterial cells. L. rhamnosus GG lysate enhanced significantly the re-epithelialisation of treated wounds compared with that of untreated wounds (P=0.005, n=3). Tongue length, at day 1 was 7.55μm 0.15, at day 3 it was 18.5μm 0.25 and at day 7 was 22.9μm 0.35. These results can be compared with untreated cultures in which tongue length was 3.25μm 0.35, day 3 was 9.65μm 0.25 and day 7 was 13.5μm 0.15 post-wounding. In ex-vivo proliferation and migration cells were measured by determining the expression of nuclear proliferation marker Ki-67 and the expression of Phosphorylated cortactin respectively demonstrated that L. rhamnosus GG significantly increased NHEK proliferation and migration rates relative to controls. However, the dominant mechanism was migration because in ex-vivo skin treated with the L. rhamnosus GG up-regulated the gene expression of the chemokine receptor and ligands CXCR2 and CXCL2 comparing with controls (P=0.02, P=0.03 respectively, n=3). High levels of CXCL2/CXCL2 have already been implicated in multiple aspects of stimulation of wound healing through activation of keratinocyte migration. These data demonstrate that lysates from Lactobacillus rhamnosus GG increase re-epithelialization by stimulation of keratinocyte migration. The current study identifies the partial mechanism that contribute to stimulating the wound-healing process ex vivo in response to L. rhamnosus GG lysate is an increase in the production of CXCL2/ CXCR2 in ex vivo models. The use of probiotic lysates potentially offers new options to develop treatments that could improve wound healing.Keywords: Lactobacillus rhamnosus GG, wounds, migration, lysate
Procedia PDF Downloads 327797 Sea Protection: Using Marine Algae as a Natural Method of Absorbing Dye Textile Waste
Authors: Ariana Kilic, Serena Arapyan
Abstract:
Water pollution is a serious concern in all seas around the world and one major cause of it is dye textile wastes mixing with seawater. This common incident alters aquatic life, putting organisms’ lives in danger and deteriorating the water's nature. There is a significant need for a natural approach to reduce the amount of dye textile waste in seawater and ensure marine organisms' safety. Consequently, using marine algae is a viable solution since it can eliminate the excess waste by absorbing the dye. Also, marine algae are non-vascular that absorb water and nutrients, meaning that having them as absorbers is a natural process and no inorganic matters will be added to the seawater that could result in further pollution. To test the efficiency of this approach, the optical absorbance of the seawater samples was measured before and after the addition of marine algae by utilizing colorimetry. A colorimeter is used to find the concentration of a chemical compound in a solution by measuring the absorbance of the compound at a specific wavelength. Samples of seawater that have equal amounts of water were used and textile dye was added as the constant variables. The initial and final absorbances, the dependent variable, of the water were measured before and after the addition of marine algae, the independent variable, and observed. The lower the absorbance showed us that there is lower dye concentration and therefore, the marine algae had done its job by using and absorbing the dye. The same experiment was repeated with same amount of water but with different concentrations of dye in order to determine the maximum concentration of dye the marine algae can completely absorb. The diminished concentration of dye demonstrated that pollution caused by factories’ dye wastes could be prevented with the natural method of marine algae. The involvement of marine algae is an optimal strategy for having an organic solution to absorbing the dye wastes in seas and obstructing water pollution.Keywords: water pollution, dye textile waste, marine algae, absorbance, colorimetry
Procedia PDF Downloads 19796 Platelet Volume Indices: Emerging Markers of Diabetic Thrombocytopathy
Authors: Mitakshara Sharma, S. K. Nema
Abstract:
Diabetes mellitus (DM) is metabolic disorder prevalent in pandemic proportions, incurring significant morbidity and mortality due to associated vascular angiopathies. Platelet related thrombogenesis plays key role in pathogenesis of these complications. Most patients with type II DM suffer from preventable vascular complications and early diagnosis can help manage these successfully. These complications are attributed to platelet activation which can be recognised by the increase in Platelet Volume Indices(PVI) viz. Mean Platelet Volume(MPV) and Platelet Distribution Width(PDW). This study was undertaken with the aim of finding a relationship between PVI and vascular complications of Diabetes mellitus, their importance as a causal factor in these complications and use as markers for early detection of impending vascular complications in patients with poor glycaemic status. This is a cross-sectional study conducted for 2 years with total 930 subjects. The subjects were segregated in 03 groups on basis of glycosylated haemoglobin (HbA1C) as: - (a) Diabetic, (b) Non-Diabetic and (c) Subjects with Impaired fasting glucose(IFG) with 300 individuals in IFG and non-diabetic group & 330 individuals in diabetic group. The diabetic group was further divided into two groups: - (a) Diabetic subjects with diabetes related vascular complications (b) Diabetic subjects without diabetes related vascular complications. Samples for HbA1C and platelet indices were collected using Ethylene diamine tetracetic acid(EDTA) as anticoagulant and processed on SYSMEX-XS-800i autoanalyser. The study revealed stepwise increase in PVI from non-diabetics to IFG to diabetics. MPV and PDW of diabetics, IFG and non diabetics were 17.60 ± 2.04, 11.76 ± 0.73, 9.93 ± 0.64 and 19.17 ± 1.48, 15.49 ± 0.67, 10.59 ± 0.67 respectively with a significant p value 0.00 and a significant positive correlation (MPV-HbA1c r = 0.951; PDW-HbA1c r = 0.875). However, significant negative correlation was found between glycaemic levels and total platelet count (PC- HbA1c r =-0.164). MPV & PDW of subjects with and without diabetes related complications were (15.14 ± 1.04) fl & (17.51±0.39) fl and (18.96 ± 0.83) fl & (20.09 ± 0.98) fl respectively with a significant p value 0.00.The current study demonstrates raised platelet indices & reduced platelet counts in association with rising glycaemic levels and diabetes related vascular complications across various study groups & showed that platelet morphology is altered with increasing glycaemic levels. These changes can be known by measurements of PVI which are important, simple, cost effective, effortless tool & indicators of impending vascular complications in patients with deranged glycaemic control. PVI should be researched and explored further as surrogate markers to develop a clinical tool for early recognition of vascular changes related to diabetes and thereby help prevent them. They can prove to be more useful in developing countries with limited resources. This study is multi-parameter, comprehensive with adequately powered study design and represents pioneering effort in India on account of the fact that both Platelet indices (MPV & PDW) along with platelet count have been evaluated together for the first time in Diabetics, non diabetics, patients with IFG and also in the diabetic patients with and without diabetes related vascular complications.Keywords: diabetes, HbA1C, IFG, MPV, PDW, PVI
Procedia PDF Downloads 236795 Thermal Performance of an Air-Water Heat Exchanger (AWHE) Operating in Groundwater and Hot-Humid Climate
Authors: César Ramírez-Dolores, Jorge Wong-Loya, Jorge Andaverde, Caleb Becerra
Abstract:
Low-depth geothermal energy can take advantage of the use of the subsoil as an air conditioning technique, being used as a passive system or coupled to an active cooling and/or heating system. This source of air conditioning is possible because at a depth less than 10 meters, the subsoil temperature is practically homogeneous and tends to be constant regardless of the climatic conditions on the surface. The effect of temperature fluctuations on the soil surface decreases as depth increases due to the thermal inertia of the soil, causing temperature stability; this effect presents several advantages in the context of sustainable energy use. In the present work, the thermal behavior of a horizontal Air-Water Heat Exchanger (AWHE) is evaluated, and the thermal effectiveness and temperature of the air at the outlet of the prototype immersed in groundwater is experimentally determined. The thermohydraulic aspects of the heat exchanger were evaluated using the Number of Transfer Units-Efficiency (NTU-ε) method under conditions of groundwater flow in a coastal region of sandy soil (southeastern Mexico) and air flow induced by a blower, the system was constructed of polyvinyl chloride (PVC) and sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger operates in groundwater, it shows high thermal gains allowing better heat transfer, therefore, it significantly reduces the air temperature at the outlet of the system, which increases the thermal effectiveness of the system in values > 80%, this passive technique is relevant for building cooling applications and could represent a significant development in terms of thermal comfort for hot locations in emerging economy countries.Keywords: convection, earth, geothermal energy, thermal comfort
Procedia PDF Downloads 72