Search results for: AI-driven vehicle recognition
891 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 187890 Hybrid Graphene Based Nanomaterial as Highly Efficient Catalyst for the Electrochemical Determination of Ciprofloxacin
Authors: Tien S. H. Pham, Peter J. Mahon, Aimin Yu
Abstract:
The detection of drug molecules by voltammetry has attracted great interest over the past years. However, many drug molecules exhibit poor electrochemical signals at common electrodes which result in low sensitivity in detection. An efficient way to overcome this problem is to modify electrodes with functional materials. Since discovered in 2004, graphene (or reduced graphene oxide) has emerged as one of the most studied two-dimensional carbon materials in condensed matter physics, electrochemistry, and so on due to its exceptional physicochemical properties. Additionally, the continuous development of technology has opened the new window for the successful fabrications of many novel graphene-based nanomaterials to serve in electrochemical analysis. This research aims to synthesize and characterize gold nanoparticle coated beta-cyclodextrin functionalized reduced graphene oxide (Au NP–β-CD–RGO) nanocomposites with highly conductive and strongly electro-catalytic properties as well as excellent supramolecular recognition abilities for the modification of electrodes. The electrochemical responses of ciprofloxacin at the as-prepared nanocomposite modified electrode was effectively amplified was much higher in comparison with that at the bare electrode. The linear concentration range was from 0.01 to 120 µM, with a detection limit of 2.7 nM using differential pulse voltammetry. Thus, Au NP–β-CD–RGO nanocomposite has great potential as an ideal material to construct sensitive sensors for the electrochemical determination of ciprofloxacin or similar antibacterial drugs in the future based on its excellent stability, selectivity, and reproducibility.Keywords: Au nanoparticles, β-CD, ciprofloxacin, electrochemical determination, graphene based nanomaterials
Procedia PDF Downloads 189889 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination
Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini
Abstract:
This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.Keywords: impersonation, image registration, incrimination, object detection, threshold evaluation
Procedia PDF Downloads 231888 Present and Future of Micromobility in the City of Medellin
Authors: Saul Emilio Rivero Mejia, Estefanya Marin Tabares, Carlos Andres Rodriguez Toro, Katherine Bolano Restrepo, Sarita Santa Cortes
Abstract:
Medellin is the Colombian city with the best public transportation system in the country, which is composed of two subway lines, five metro cables, two Bus Rapid Transit lines, and a streetcar. But despite the above, the Aburra Valley, the area in which the city is located, comparatively speaking, has a lower number of urban roads per inhabitant built, compared to the national average. In addition, since there is approximately one vehicle for every three inhabitants in Medellin, the problems of congestion and environmental pollution have become more acute over the years, and it has even been necessary to implement restrictive measures to the use of private vehicles on a permanent basis. In that sense, due to the limitations of physical space, the low public investment in road infrastructure, it is necessary to opt for mobility alternatives according to the above. Within the options for the city, there is what is known as micromobility. Micromobility is understood as those small and light means of transport used to travel short distances, which use electrical energy, such as skateboards and bicycles. These transport alternatives have a high potential for use by the city's young population, but this requires an adequate infrastructure and also state regulation. Taking into account the above, this paper will analyze the current state and future of micro mobility in the city of Medellin, making a prospective analysis, supported by a PEST (political, economic, social and technological) analysis. Based on the above, it is expected to identify the growth of demand for these alternative means and its impact on the mobility of the city in the medium and short term.Keywords: electric, micromobility, transport, sustainable
Procedia PDF Downloads 127887 Accounting Quality and The Adoption of IFRS: Evidence from China
Authors: Khaldoon G. Albitar, Hassan Y. Kikhia, Jin P. Zhang
Abstract:
Since 2007, all companies listed on both Shanghai Stock Exchange and Shenzhen Stock Exchange are required to prepare their consolidated financial statements in accordance with International Financial Reporting Standards (IFRS). This study investigates the impact of adopting IFRS on accounting quality for a sample of listed on Chinese companies during the period 2003-2013 with sample of 10846 observations over a four-year period before and a five-year period after the adoption of IFRS. This study tests whether the level of earnings management is significantly lower after the adoption of IFRS, and reported earnings is more value relevant during the IFRS period by using the Ohlson model and Jones model, as modified by Dechow. The empirical results show that accounting quality improved with lower earnings management and higher value relevant after the adoption of IFRS in China. The current study contributes to the literature on IFRS adoption and earning quality in two ways. First, As most of the existing studies on earnings quality and IFRS have been conducted on data from the U.S and European countries, this study fills a gap in the existing literature by studying the effect of adoption of IFRS on earnings quality in an emerging market. Second, the findings of our study have important implications for policymakers, auditors, multinational firms, and users of financial reports. As the rapid growth of China's economy gains global recognition, the Chinese stock market is capturing the attention of international investor.Keywords: international financial reporting standards (ifrs), accounting quality, earnings management, value relevance, china
Procedia PDF Downloads 338886 Nation Branding: Guidelines for Identity Development and Image Perception of Thailand Brand in Health and Wellness Tourism
Authors: Jiraporn Prommaha
Abstract:
The purpose of this research is to study the development of Thailand Brand Identity and the perception of its image in order to find any guidelines for the identity development and the image perception of Thailand Brand in Health and Wellness Tourism. The paper is conducted through mixed methods research, both the qualitative and quantitative researches. The qualitative focuses on the in-depth interview of executive administrations from public and private sectors involved scholars and experts in identity and image issue, main 11 people. The quantitative research was done by the questionnaires to collect data from foreign tourists 800; Chinese tourists 400 and UK tourists 400. The technique used for this was the Exploratory Factor Analysis (EFA), this was to determine the relation between the structures of the variables by categorizing the variables into group by applying the Varimax rotation technique. This technique showed recognition the Thailand brand image related to the 2 countries, China and UK. The results found that guidelines for brand identity development and image perception of health and wellness tourism in Thailand; as following (1) Develop communication in order to understanding of the meaning of the word 'Health and beauty tourism' throughout the country, (2) Develop human resources as a national agenda, (3) Develop awareness rising in the conservation and preservation of natural resources of the country, (4) Develop the cooperation of all stakeholders in Health and Wellness Businesses, (5) Develop digital communication throughout the country and (6) Develop safety in Tourism.Keywords: brand identity, image perception, nation branding, health and wellness tourism, mixed methods research
Procedia PDF Downloads 202885 Mobile Augmented Reality for Collaboration in Operation
Authors: Chong-Yang Qiao
Abstract:
Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.Keywords: mobile augmented reality, remote collaboration, user experience, cognition model
Procedia PDF Downloads 198884 Memory and Narratives Rereading before and after One Week
Authors: Abigail M. Csik, Gabriel A. Radvansky
Abstract:
As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals.Keywords: memory, event cognition, distributed practice, consolidation
Procedia PDF Downloads 226883 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled
Authors: Rishabh Ambavanekar
Abstract:
Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis
Procedia PDF Downloads 120882 Contemporary Challenges in Public Relations in the Context of Globalization
Authors: Marine Kobalava, Eter Narimanishvili, Nino Grigolaia
Abstract:
The paper analyzes the contemporary problems of public relations in Georgia. The approaches to public attitudes towards the relationship with the population of the country are studied on a global scale, the importance of forming the concept of public relations in Georgia in terms of globalization is justified. The basic components of public relations are characterized by the RACE system, namely analyzing research, action, communication, evaluation. The main challenges of public relations are identified in the research process; taking into consideration the scope of globalization, the influence of social, economic, and political changes in Georgia on PR development are identified. The article discusses the public relations as the strategic management function that facilitates communication with the society, recognition of public interests, and their prediction. In addition, the feminization of the sector is considered to be the most important achievement of public relations in the modern world. The conclusion is that the feminization indicator of the field is an unconditional increase in the employment rates of women. In the paper, the problems of globalization and public relations in the industrial countries are studied, the directions of improvement of public relations with the background of peculiarities of different countries and globalization process are proposed. Public relations under globalization are assessed in accordance with the theory of benefits and requirements, and the requirements are classified according to informational, self-identification, integration, social interaction, and other types of signs. In the article, conclusions on the current challenges of public relations in Georgia are made, and the recommendations for their solution, taking into consideration globalization processes in the world, are proposed.Keywords: public relations, globalization, RACE system, public relationship concept, feminization
Procedia PDF Downloads 173881 Using Demonstration Method of Teaching Sewing to Improve the Skills of Form 3 Fashion Designing Students: A Case of Baworo Integrated Community Center for Employable Skills (Bicces)
Authors: Aboagye Boye Gilbert
Abstract:
Teaching and learning (Education), not only in Ghana but the whole world is regarded as the (Stepping stone) vehicle to accelerate the country’s economy, development and social growth. Basically the ingredients for human development and the country in general is Vocational and Technical education and this has been stressed in Ghana’s education system since Pre-independence. To this effect, this research seeks to determine using demonstration method of Teachings sewing to improve the skills of form 3 Fashion Designing students of Baworo Integrated Community Centre for Employable Skills. In this research, reviewed literature on opinions of other researchers and what other people have done and said on related articles or topics, analyzed the research design used, translate the data gathered in the study. The study was design to gather information from the school on how they use Teaching methods to teach sewing. The targeted respondent contacted to give assistance Consist of students from BICCES, fashion teachers and tailored garment makers. The sample size consisted of 5 teachers, 20 students and 5 tailors were selected to answer questionnaire items that were used to gather the data for the study. The study revealed that most teachers and students agreed to the fact that demonstration, teaching and learning materials had a positive attitude towards the students in learning sewing. The study recommends that there should be more mechanisms in place to serve as a guide.Keywords: VOTEC, BECE, BICCES, SHS
Procedia PDF Downloads 79880 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 65879 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging
Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali
Abstract:
A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models
Procedia PDF Downloads 326878 Conflict, Confusion or Compromise: Violence against Women, A Case Study of Pakistan
Authors: Farhat Jabeen, Syed Asfaq Hussain Bukhari
Abstract:
In the wake of the contemporary period the basic objective of the research paper points out that socio-cultural scenario of Pakistan reveals that gender-based violence is deep rooted in the society irrespective of language and ethnicity. This paper would reconnaissance the possibility reforms in Pakistan for diminishing of violence. Women are not given their due role, rights, and respect. Furthermore, they are treated as chattels. This presentation will cover the socio-customary practices in the context of discrimination, stigmatization, and violence against women. This paper envisages justice in a broader sense of recognition of rights for women, and masculine structure of society, socio-customary practices and discrimination against women are a very serious concern which needs to be understood as a multidimensional problem. The paper will specially focus on understanding the existing obstacles of women in Pakistan in the constitutional scenario. Women stumble across discrimination and human rights manipulations, voluptuous violation and manipulation including domestic viciousness and are disadvantaged by laws, strategies, and programming that do not take their concerns into considerations. This presentation examines the role of honour killings among Pakistani community. This affects their self-assurance and capability to elevation integrity campaign where gender inequalities and discrimination in social, legal domain are to be put right. This paper brings to light the range of practices, laws and legal justice regarding the status of women and also covers attitude towards compensations for murders/killings, domestic violence, rape, adultery, social behavior and recourse to justice.Keywords: discrimination, cultural, women, violence
Procedia PDF Downloads 326877 Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study
Authors: Chun-Wei Yeh, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature.Keywords: DFT study, copper oxide cluster, MOFs, methane conversion
Procedia PDF Downloads 85876 Internal Combustion Engine Fuel Composition Detection by Analysing Vibration Signals Using ANFIS Network
Authors: M. N. Khajavi, S. Nasiri, E. Farokhi, M. R. Bavir
Abstract:
Alcohol fuels are renewable, have low pollution and have high octane number; therefore, they are important as fuel in internal combustion engines. Percentage detection of these alcoholic fuels with gasoline is a complicated, time consuming, and expensive process. Nowadays, these processes are done in equipped laboratories, based on international standards. The aim of this research is to determine percentage detection of different fuels based on vibration analysis of engine block signals. By doing, so considerable saving in time and cost can be achieved. Five different fuels consisted of pure gasoline (G) as base fuel and combination of this fuel with different percent of ethanol and methanol are prepared. For example, volumetric combination of pure gasoline with 10 percent ethanol is called E10. By this convention, we made M10 (10% methanol plus 90% pure gasoline), E30 (30% ethanol plus 70% pure gasoline), and M30 (30% Methanol plus 70% pure gasoline) were prepared. To simulate real working condition for this experiment, the vehicle was mounted on a chassis dynamometer and run under 1900 rpm and 30 KW load. To measure the engine block vibration, a three axis accelerometer was mounted between cylinder 2 and 3. After acquisition of vibration signal, eight time feature of these signals were used as inputs to an Adaptive Neuro Fuzzy Inference System (ANFIS). The designed ANFIS was trained for classifying these five different fuels. The results show suitable classification ability of the designed ANFIS network with 96.3 percent of correct classification.Keywords: internal combustion engine, vibration signal, fuel composition, classification, ANFIS
Procedia PDF Downloads 404875 Jelly and Beans: Appropriate Use of Ultrasound in Acute Kidney Injury
Authors: Raja Ezman Raja Shariff
Abstract:
Acute kidney injury (AKI) is commonly seen in inpatients, and places a great cost on the NHS and patients. Timely and appropriate management is both nephron sparing and potentially life-saving. Ultrasound scanning (USS) is a well-recognised method for stratifying patients. Subsequently, the NICE AKI guidance has defined groups in whom scanning is recommended within 6 hours of request (pyonephrosis), within 24 hours (obstruction/cause unknown), and in whom routine scanning isn't recommended (cause for AKI identified). The audit looks into whether Stockport NHS Trust USS practice was in line with such recommendations. The audit evaluated 92 patients with AKI who had USS, between 01/01/14 to 30/04/14. Data collection was divided into 2 parts. Firstly, radiology request cards and the online imaging software (PACS) were evaluated. Then, the electronic case notes (ADVANTIS) was evaluated further. Based on request cards, 10% of requests were for pyonephrosis. Only 33% were scanned within 6hours and a further 33% within 24hours. 75% were requested for possible obstructions and unknown cause collectively. Of those due to possible obstruction, 71% of patients were scanned within 24 hours. Of those with unknown cause, 50% were scanned within 24 hours. 15% of requests had a cause declared and so potentially did not require scanning. Evaluation of the patients’ notes suggested further interesting findings. Firstly, potentially 39% of patients had a known cause for AKI, therefore, did not need USS. Subsequently, the cohort of unknown cause and possible obstruction was collectively reduced to 45%. Alarmingly the patient cohort with possible pyonephrosis went up to 16%, suggesting an under-recognition of this life-threatening condition. We plan to highlight these findings within our institution and make changes to encourage more appropriate requesting and timely scanning. Time will tell if we manage to save or increase our costs in this cost-conscious NHS. Patient benefits, though, seem to be guaranteed.Keywords: AKI, ARF, kidney, renal
Procedia PDF Downloads 402874 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 46873 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 98872 The Teaching and Learning Process and Information and Communication Technologies from the Remote Perspective
Authors: Rosiris Maturo Domingues, Patricia Luissa Masmo, Cibele Cavalheiro Neves, Juliana Dalla Martha Rodriguez
Abstract:
This article reports the experience of the pedagogical consultants responsible for the curriculum development of Senac São Paulo courses when facing the emergency need to maintain the pedagogical process in their schools in the face of the Covid-19 pandemic. The urgent adjustment to distance education resulted in the improvement of the process and the adoption of new teaching and learning strategies mediated by technologies. The processes for preparing and providing guidelines for professional education courses were also readjusted. Thus, a bank of teaching-learning strategies linked to digital resources was developed, categorized, and identified by their didactic-pedagogical potential, having as an intersection didactic planning based on learning objectives based on Bloom's taxonomy (revised), given its convergence with the competency approach adopted by Senac. Methodologically, a relationship was established between connectivity and digital networks and digital evolution in school environments, culminating in new paradigms and processes of educational communication and new trends in teaching and learning. As a result, teachers adhered to the use of digital tools in their practices, transposing face-to-face classroom methodologies and practices to online media, whose criticism was the use of ICTs in an instrumental way, reducing methodologies and practices to teaching only transmissive. There was recognition of the insertion of technology as a facilitator of the educational process in a non-palliative way and the development of a web curriculum, now and fully, carried out in contexts of ubiquity.Keywords: technologies, education, teaching-learning strategies, Bloom taxonomy
Procedia PDF Downloads 92871 Effect of Organizational Competitive Climate on Organizational Prosocial Behavior: Workplace Envy as a Mediator
Authors: Armaghan Eslami, Nasrin Arshadi
Abstract:
Scarce resources are the inseparable part of organization life. This fact that only small number of the employees can have these resources such as promotion, raise, and recognition can cause competition among employees, which create competitive climate. As well as any other competition, small number wins the reward, and a great number loses, one of the possible emotional reactions to this loss is negative emotions like malicious envy. In this case, the envious person may try to harm the envied person by reducing the prosocial behavior. Prosocial behavior is a behavior that aimed to benefit others. The main propose of this action is to maintain and increase well-being and well-fare of others. Therefore, one of the easiest ways for harming envied one is to suppress prosocial behavior. Prosocial behavior has positive and important implication for organizational efficiency. Our results supported our model and suggested that competitive climate has a significant effect on increasing workplace envy and on the other hand envy has significant negative impact on prosocial behavior. Our result also indicated that envy is the mediator in the relation between competitive climate and prosocial behavior. Organizational competitive climate can cause employees respond envy with negative emotion and hostile and damaging behavior toward envied person. Competition can lead employees to look out for proof of their self-worthiness; and, furthermore, they measure their self-worth, value and respect by the superiority that they gain in competitions. As a result, loss in competitions can harm employee’s self-definition and they try to protect themselves by devaluating envied other and being ‘less friendly’ to them. Some employees may find it inappropriate to engage in the harming behavior, but they may believe there is nothing against withholding the prosocial behavior.Keywords: competitive climate, mediator, prosocial behavior, workplace envy
Procedia PDF Downloads 364870 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization
Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh
Abstract:
The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.Keywords: battery characterization, SoH estimation, RLS, BEV
Procedia PDF Downloads 152869 Philippine National Police Strategies in the Implementation of 'Peace and Order Agenda for Transformation and Upholding of the Rule-Of-Law' Plan 2030
Authors: Ruby A. L. Espineli
Abstract:
The study assessed the Philippine National Police strategies in the implementation of ‘Peace and Order Agenda for Transformation and Upholding of the Rule-of-Law’ P.A.T.R.O.L Plan 2030. Its operational roadmap presents four perspectives which include resource management, learning and growth, process excellence; and community. Focused group discussion, observation, and distribution of survey questionnaire to selected PNP officers and community members were done to identify and describe the implementation, problems encountered and measures to address the problems of the PNP P.A.T.R.O.L Plan 2030. In resource management, PNP allocates most sufficient funds in providing service firearms, patrol vehicle, and internet connections. In terms of learning and growth, the attitude of PNP officers is relatively higher than their knowledge and skills. Moreover, in terms of process excellence, the PNP use several crime preventions and crime solution strategies to deliver an immediate response to calls of the community. As regards, community perspective, PNP takes effort in establishing partnership with community. It is also interesting to note that PNP officers and community were both undecided on the existence of problems encountered in the implementation of P.A.T.R.O.L Plan 2030. But, they had proactive behavior as they agreed on all the specified measures to address the problems encountered in implementation of PNP P.A.T.R.O.L. Plan 2030. A strategic framework, based on the findings was formulated in this study that could improve and entrench the harmonious working relationship between the PNP and stakeholders in the enhancement of the implementation of PNP P.A.T.R.O.L. Plan 2030.Keywords: community perspectives, learning and growth, process excellence, resource management
Procedia PDF Downloads 235868 In silico and in vitro Investigation of the Role of Acinetobacter baumannii in the Pathogenesis of Multiple Sclerosis
Authors: Kieren Luellman, Makenzi Rockwell, Eduardo Callegari, Nichole Haag, Chun Wu
Abstract:
Multiple sclerosis (MS) is an autoimmune disorder that damages the myelin sheath of neurons in the central nervous system. The presence of Acinetobacter bacteria and anti-Acinetobacter antibodies in MS patients has led to the hypothesis that the bacteria may contribute to MS pathogenesis. In this study, the protein sequences of Acinetobacter baumannii were compared to five peptides from three mammalian myelin proteins, i.e., Proteolipid Protein (PLP): PLP 139-151, PLP 178-191, Myelin Basic Protein (MBP): MBP 84-104 and Myelin Oligodendrocyte Glycoprotein (MOG): MOG 35-55 and MOG 92-106 respectively, known to induce experimental autoimmune encephalomyelitis (EAE), a condition similar to MS. We found 11 hits (i.e., with five or more amino acid sequence similarity) in Acinetobacter baumannii, which are identical or similar to PLP139-151, 32 hits to PLP178-191, 35 to MBP 84-104, 41 hits to MOG 35-55 and 26 hits to MOG92-106. In addition, Western blotting was used to assess possible interaction between the bacterial proteins and human anti-MBP, anti-MOG, and anti-PLP antibodies produced in rabbits, corresponding to MBP 84-104, MOG 35-55, and PLP 139-151, respectively. We found that both human Polyclonal anti-MOG antibody and anti-PLP antibody recognized a protein or more proteins of the same molecular mass of around 25 kDa. in Acinetobacter baumannii. The results suggested that this/these protein(s) might potentially serve as antigen(s) to induce anti-MOG antibody and anti-PLP antibody production in mammalian B cells. The proteomic study identified 433 hits, among which the sequence of Acinetobacter baumannii protein 491 subunit A matches a previously published enzyme Acinetobacter 3-Oxoadipate CoA-Transferase, in which a fragment of its peptide was observed to recognize MS patient serum via ELISA method. Our findings might pave the road to understanding one of the pathogenesis mechanisms of MS.Keywords: multiple sclerosis, pathogenesis, Acinetobacter baumannii, antibody recognition
Procedia PDF Downloads 121867 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution
Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras
Abstract:
Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions
Procedia PDF Downloads 409866 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network
Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal
Abstract:
This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography
Procedia PDF Downloads 147865 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design
Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao
Abstract:
Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL
Procedia PDF Downloads 232864 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities
Authors: Salman Naseer
Abstract:
One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission
Procedia PDF Downloads 146863 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model
Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You
Abstract:
The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.Keywords: DBSCAN, potential function, speech signal, the UBSS model
Procedia PDF Downloads 138862 Architectural Design Strategies: Enhance Train Station Performance as the Catalyst of Transit Oriented Development in Jakarta, Case Study of Beos Commuter Line Station
Authors: Shinta Ardiana Sari, Dini Puti Angelia
Abstract:
A high number of urban population in Jakarta has been a substantial issue for mobility strategy. Transit Oriented Development (TOD) becomes one of the strategies to improve community livability based on the design of transit place and the system of its context. TOD principle is trying to win over pedestrian motorization habit, makes people would rather transit and travel more than using private vehicle. Train station takes the main role as the catalyst to emerge TOD, in Jakarta this role will be taken by Commuter line and the future MRT. For advancing its development, architectural design perspective is needed to perform evaluation while seeking for the strategies between accessibility transportation modes with convenience and safety for increasing human behavioral intention. This paper discovers design strategy for transit place that appropriates with Jakarta condition use the basic theories of liminal space and transit-oriented development goal. This paper use evidence-based approach with typology method to analyze the present condition of Commuter Line station in Jakarta and precedent of Asian Cities, Tokyo and Seoul, as the secondary sources, and also with numbers of valid questionnaires. Furthermore, the result of this paper aims to the emerging of a transit-oriented community by giving design requirements and suggestion transportation policies preparing for the operational of MRT in the future Jakarta and other similar cities.Keywords: station design, transit place, transit-oriented development, urban
Procedia PDF Downloads 221