Search results for: line search method
213 Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems
Authors: Chen Jiang, Eric Jordan, Maurice Gell, Balakrishnan Nair
Abstract:
Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors.Keywords: breeding blanket, corrosion protection, coating, plasma spray
Procedia PDF Downloads 307212 The Role of the New Silk Road (One Belt, One Road Initiative) in Connecting the Free Zones of Iran and Turkey: A Case Study of the Free Zones of Sarakhs and Maku to Anatolia and Europe
Authors: Morteza Ghourchi, Meraj Jafari, Atena Soheilazizi
Abstract:
Today, with the globalization of communications and the connection of countries within the framework of the global economy, free zones play the most important role as the engine of global economic development and globalization of countries. In this regard, corridors have a fundamental role in linking countries and free zones physically with each other. One of these corridors is the New Silk Road corridor (One Belt, One Road initiative), which is being built by China to connect with European countries. In connecting this corridor to European countries, Iran and Turkey are among the countries that play an important role in linking China to European countries through this corridor. The New Silk Road corridor, by connecting Iran’s free zones (Sarakhs and Maku) and Turkey’s free zones (Anatolia and Europe), can provide the best opportunity for expanding economic cooperation and regional development between Iran and Turkey. It can also provide economic links between Iran and Turkey with Central Asian countries and especially the port of Khorgos. On the other hand, it can expand Iran-Turkey economic relations more than ever before with Europe in a vast economic network. The research method was descriptive-analytical, using library resources, documents of Iranian free zones, and the Internet. In an interview with Fars News Agency, Mohammad Reza Kalaei, CEO of Sarakhs Free Zone, said that the main goal of Sarakhs Special Economic Zone is to connect Iran with the Middle East and create a transit corridor towards East Asian countries, including Turkey. Also, according to an interview with Hussein Gharousi, CEO of Maku Free Zone, the importance of this region is due to the fact that Maku Free Zone, due to its geographical location and its position on the China-Europe trade route, the East-West corridor, which is the closest point to the European Union through railway and transit routes, and also due to its proximity to Eurasian countries, is an ideal opportunity for industrial and technological companies. Creating a transit corridor towards East Asian countries, including Turkey, is one of the goals of this project Free zones between Iran and Turkey can sign an agreement within the framework of the New Silk Road to expand joint investments and economic cooperation towards regional convergence. The purpose of this research is to develop economic links between Iranian and Turkish free zones along the New Silk Road, which will lead to the expansion and development of regional cooperation between the two countries within the framework of neighboring policies. The findings of this research include the development of economic diplomacy between the Secretariat of the Supreme Council of Free Zones of Iran and the General Directorate of Free Zones of Turkey, the agreement to expand cooperation between the free zones of Sarakhs, Maku, Anatolia, and Europe, holding biennial conferences between Iranian free zones along the New Silk Road with Turkish free zones, creating a joint investment fund between Iran and Turkey in the field of developing free zones along the Silk Road, helping to attract tourism between Iranian and Turkish free zones located along the New Silk Road, improving transit infrastructure and transportation to better connect Iranian free zones to Turkish free zones, communicating with China, and creating joint collaborations between China’s dry ports and its free zones with Iranian and Turkish free zones.Keywords: network economy, new silk road (one belt, one road initiative), free zones (Sarakhs, Maku, Anatolia, Europe), regional development, neighborhood policies
Procedia PDF Downloads 64211 Chemical and Electrochemical Syntheses of Two Organic Components of Ginger
Authors: Adrienn Kiss, Karoly Zauer, Gyorgy Keglevich, Rita Molnarne Bernath
Abstract:
Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans.Keywords: ferulic acid, ginger, synthesis, zingerone
Procedia PDF Downloads 175210 The Preliminary Exposition of Soil Biological Activity, Microbial Diversity and Morpho-Physiological Indexes of Cucumber under Interactive Effect of Allelopathic Garlic Stalk: A Short-Term Dynamic Response in Replanted Alkaline Soil
Authors: Ahmad Ali, Muhammad Imran Ghani, Haiyan Ding, Zhihui Cheng, Muhammad Iqbal
Abstract:
Background and Aims: In recent years, protected cultivation trend, especially in the northern parts of China, spread dynamically where production area, structure, and crops diversity have expanded gradually under plastic greenhouse vegetable cropping (PGVC) system. Under this growing system, continuous monoculture with excessive synthetic fertilizers inputs are common cultivation practices frequently adopted by commercial producers. Such long-term cumulative wild exercise year after year sponsor the continuous cropping obstacles in PGVC soil, which have greatly threatened the regional soil eco-sustainability and further impose the continuous assault on soil ecological diversity leading to the exhaustion of agriculture productivity. The aim of this study was to develop new allelopathic insights by exploiting available biological resources in the favor of sustainable PGVC to illuminate the continuous obstacle factors in plastic greenhouse. Method: A greenhouse study was executed under plastic tunnel located at the Horticulture Experimental Station of the College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, one of the prominent regions for intensive commercial PGVC in China. Post-harvest garlic residues (stalk, leaves) mechanically smashed, homogenized into powder size and incorporated at the ratio of 1:100; 3:100; 5:100 as a soil amendment in a replanted soil that have been used for continuous cucumber monoculture for 7 years (annually double cropping system in a greenhouse). Results: Incorporated C-rich garlic stalk significantly influenced the soil condition through various ways; organic matter decomposition and mineralization, moderately adjusted the soil pH, enhanced the soil nutrient availability, increased enzymatic activities, and promoted 20% more cucumber yield in short-time. Using Illumina MiSeq sequencing analysis of bacterial 16S rRNA and fungal 18S rDNA genes, the current study revealed that addition of garlic stalk/residue could also improve the microbial abundance and community composition in extensively exploited soil, and contributed in soil functionality, caused prosper changes in soil characteristics, reinforced to good crop yield. Conclusion: Our study provided evidence that addition of garlic stalk as soil fertility amendment is a feasible, cost-effective and efficient resource utilization way for renovation of degraded soil health, ameliorate soil quality components and improve ecological environment in short duration. Our study may provide a better scientific understanding for efficient crop residue management typically from allelopathic source.Keywords: garlic stalk, microbial community dynamics, plant growth, soil amendment, soil-plant system
Procedia PDF Downloads 134209 Regulation Effect of Intestinal Microbiota by Fermented Processing Wastewater of Yuba
Authors: Ting Wu, Feiting Hu, Xinyue Zhang, Shuxin Tang, Xiaoyun Xu
Abstract:
As a by-product of yuba, processing wastewater of Yuba (PWY) contains many bioactive components such as soybean isoflavones, soybean polysaccharides and soybean oligosaccharides, which is a good source of prebiotics and has a potential of high value utilization. The use of Lactobacillus plantarum to ferment PWY can be considered as a potential biogenic element, which can regulate the balance of intestinal microbiota. In this study, firstly, Lactobacillus plantarum was used to ferment PWY to improve its content of active components and antioxidant activity. Then, the health effect of fermented processing wastewater of yuba (FPWY) was measured in vitro. Finally, microencapsulation technology was used applied to improve the sustained release of FPWY and reduce the loss of active components in the digestion process, as well as to improving the activity of FPWY. The main results are as follows: (1) FPWY presented a good antioxidant capacity with DPPH free radical scavenging ability (0.83 ± 0.01 mmol Trolox/L), ABTS free radical scavenging ability (7.47 ± 0.35 mmol Trolox/L) and iron ion reducing ability (1.11 ± 0.07 mmol Trolox/L). Compared with non-fermented processing wastewater of yuba (NFPWY), there was no significant difference in the content of total soybean isoflavones, but the content of glucoside soybean isoflavones decreased, and aglyconic soybean isoflavones increased significantly. After fermentation, PWY can effectively reduce the soluble monosaccharides, disaccharides and oligosaccharides, such as glucose, fructose, galactose, trehalose, stachyose, maltose, raffinose and sucrose. (2) FPWY can significantly enhance the growth of beneficial bacteria such as Bifidobacterium, Ruminococcus and Akkermansia, significantly inhibit the growth of harmful bacteria E.coli, regulate the structure of intestinal microbiota, and significantly increase the content of short-chain fatty acids such as acetic acid, propionic acid, butyric acid, isovaleric acid. Higher amount of lactic acid in the gut can be further broken down into short chain fatty acids. (3) In order to improve the stability of soybean isoflavones in FPWY during digestion, sodium alginate and chitosan were used as wall materials for embedding. The FPWY freeze-dried powder was embedded by the method of acute-coagulation bath. The results show that when the core wall ratio is 3:1, the concentration of chitosan is 1.5%, the concentration of sodium alginate is 2.0%, and the concentration of calcium is 3%, the embossing rate is 53.20%. In the simulated in vitro digestion stage, the release rate of microcapsules reached 59.36% at the end of gastric digestion and 82.90% at the end of intestinal digestion. Therefore, the core materials with good sustained-release performance of microcapsules were almost all released. The structural analysis results of FPWY microcapsules show that the microcapsules have good mechanical properties. Its hardness, springness, cohesiveness, gumminess, chewiness and resilience were 117.75± 0.21 g, 0.76±0.02, 0.54±0.01, 63.28±0.71 g·sec, 48.03±1.37 g·sec, 0.31±0.01, respectively. Compared with the unembedded FPWY, the infrared spectrum results showed that the microcapsules had embedded effect on the FPWY freeze-dried powder.Keywords: processing wastewater of yuba, lactobacillus plantarum, intestinal microbiota, microcapsule
Procedia PDF Downloads 76208 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 498207 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components
Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia
Abstract:
Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses
Procedia PDF Downloads 54206 Factors Influencing Consumer Adoption of Digital Banking Apps in the UK
Authors: Sevelina Ndlovu
Abstract:
Financial Technology (fintech) advancement is recognised as one of the most transformational innovations in the financial industry. Fintech has given rise to internet-only digital banking, a novel financial technology advancement, and innovation that allows banking services through internet applications with no need for physical branches. This technology is becoming a new banking normal among consumers for its ubiquitous and real-time access advantages. There is evident switching and migration from traditional banking towards these fintech facilities, which could possibly pose a systemic risk if not properly understood and monitored. Fintech advancement has also brought about the emergence and escalation of financial technology consumption themes such as trust, security, perceived risk, and sustainability within the banking industry, themes scarcely covered in existing theoretic literature. To that end, the objective of this research is to investigate factors that determine fintech adoption and propose an integrated adoption model. This study aims to establish what the significant drivers of adoption are and develop a conceptual model that integrates technological, behavioral, and environmental constructs by extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). It proposes integrating constructs that influence financial consumption themes such as trust, perceived risk, security, financial incentives, micro-investing opportunities, and environmental consciousness to determine the impact of these factors on the adoption and intention to use digital banking apps. The main advantage of this conceptual model is the consolidation of a greater number of predictor variables that can provide a fuller explanation of the consumer's adoption of digital banking Apps. Moderating variables of age, gender, and income are incorporated. To the best of author’s knowledge, this study is the first that extends the UTAUT2 model with this combination of constructs to investigate user’s intention to adopt internet-only digital banking apps in the UK context. By investigating factors that are not included in the existing theories but are highly pertinent to the adoption of internet-only banking services, this research adds to existing knowledge and extends the generalisability of the UTAUT2 in a financial services adoption context. This is something that fills a gap in knowledge, as highlighted to needing further research on UTAUT2 after reviewing the theory in 2016 from its original version of 2003. To achieve the objectives of this study, this research assumes a quantitative research approach to empirically test the hypotheses derived from existing literature and pilot studies to give statistical support to generalise the research findings for further possible applications in theory and practice. This research is explanatory or casual in nature and uses cross-section primary data collected through a survey method. Convenient and purposive sampling using structured self-administered online questionnaires is used for data collection. The proposed model is tested using Structural Equation Modelling (SEM), and the analysis of primary data collected through an online survey is processed using Smart PLS software with a sample size of 386 digital bank users. The results are expected to establish if there are significant relationships between the dependent and independent variables and establish what the most influencing factors are.Keywords: banking applications, digital banking, financial technology, technology adoption, UTAUT2
Procedia PDF Downloads 72205 Influence of Water Physicochemical Properties and Vegetation Type on the Distribution of Schistosomiasis Intermediate Host Snails in Nelson Mandela Bay
Authors: Prince S. Campbell, Janine B. Adams, Melusi Thwala, Opeoluwa Oyedele, Paula E. Melariri
Abstract:
Schistosomiasis is an infectious water-borne disease that holds substantial medical and veterinary importance and is transmitted by Schistosoma flatworms. The transmission and spread of the disease are geographically and temporally confined to water bodies (rivers, lakes, lagoons, dams, etc.) inhabited by its obligate intermediate host snails and human water contact. Human infection with the parasite occurs via skin penetration subsequent to exposure to water infested with schistosome cercariae. Environmental factors play a crucial role in the spread of the disease, as the survival of intermediate host snails is dependent on favourable conditions. These factors include physical and chemical components of water, including pH, salinity, temperature, electrical conductivity, dissolved oxygen, turbidity, water hardness, total dissolved solids, and velocity, as well as biological factors such as predator-prey interactions, competition, food availability, and the presence and density of aquatic vegetation. This study evaluated the physicochemical properties of the water bodies, vegetation type, distribution, and habitat presence of the snail intermediate host. A quantitative cross-sectional research design approach was employed in this study. Eight sampling sites were selected based on their proximity to residential areas. Snails and water physicochemical properties were collected over different seasons for 9 months. A simple dip method was used for surface water samples and measurements were done using multiparameter meters. Snails captured using a 300 µm mesh scoop net and predominant plant species were gathered and transported to experts for identification. Vegetation composition and cover were visually estimated and recorded at each sampling point. Data was analysed using R software (version 4.3.1). A total of 844 freshwater snails were collected, with Physa genera accounting for 95.9% of the snails. Bulinus and Biomphalaria snails, which serve as intermediate hosts for the disease, accounted for (0.9%) and (0.6%) respectively. Indicator macrophytes such as Eicchornia crassipes, Stuckenia pectinate, Typha capensis, and floating macroalgae were found in several water bodies. A negative and weak correlation existed between the number of snails and physicochemical properties such as electrical conductivity (r=-0.240), dissolved oxygen (r=-0.185), hardness (r=-0.210), pH (r=-0.235), salinity (r=-0.242), temperature (r=-0.273), and total dissolved solids (r=-0.236). There was no correlation between the number of snails and turbidity (r=-0.070). Moreover, there was a negative and weak correlation between snails and vegetation coverage (r=-0.127). Findings indicated that snail abundance marginally declined with rising physicochemical concentrations, and the majority of snails were located in regions with less vegetation cover. The reduction in Bulinus and Biomphalaria snail populations may also be attributed to other factors, such as competition among the snails. Snails of the Physa genus were abundant due to their noteworthy resilience in difficult environments. These snails have the potential to function as biological control agents in areas where the disease is endemic, as they outcompete other snails, including schistosomiasis intermediate host snails.Keywords: intermediate host snails, physicochemical properties, schistosomiasis, vegetation type
Procedia PDF Downloads 20204 Blended Learning Instructional Approach to Teach Pharmaceutical Calculations
Authors: Sini George
Abstract:
Active learning pedagogies are valued for their success in increasing 21st-century learners’ engagement, developing transferable skills like critical thinking or quantitative reasoning, and creating deeper and more lasting educational gains. 'Blended learning' is an active learning pedagogical approach in which direct instruction moves from the group learning space to the individual learning space, and the resulting group space is transformed into a dynamic, interactive learning environment where the educator guides students as they apply concepts and engage creatively in the subject matter. This project aimed to develop a blended learning instructional approach to teaching concepts around pharmaceutical calculations to year 1 pharmacy students. The wrong dose, strength or frequency of a medication accounts for almost a third of medication errors in the NHS therefore, progression to year 2 requires a 70% pass in this calculation test, in addition to the standard progression requirements. Many students were struggling to achieve this requirement in the past. It was also challenging to teach these concepts to students of a large class (> 130) with mixed mathematical abilities, especially within a traditional didactic lecture format. Therefore, short screencasts with voice-over of the lecturer were provided in advance of a total of four teaching sessions (two hours/session), incorporating core content of each session and talking through how they approached the calculations to model metacognition. Links to the screencasts were posted on the learning management. Viewership counts were used to determine that the students were indeed accessing and watching the screencasts on schedule. In the classroom, students had to apply the knowledge learned beforehand to a series of increasingly difficult set of questions. Students were then asked to create a question in group settings (two students/group) and to discuss the questions created by their peers in their groups to promote deep conceptual learning. Students were also given time for question-and-answer period to seek clarifications on the concepts covered. Student response to this instructional approach and their test grades were collected. After collecting and organizing the data, statistical analysis was carried out to calculate binomial statistics for the two data sets: the test grade for students who received blended learning instruction and the test grades for students who received instruction in a standard lecture format in class, to compare the effectiveness of each type of instruction. Student response and their performance data on the assessment indicate that the learning of content in the blended learning instructional approach led to higher levels of student engagement, satisfaction, and more substantial learning gains. The blended learning approach enabled each student to learn how to do calculations at their own pace freeing class time for interactive application of this knowledge. Although time-consuming for an instructor to implement, the findings of this research demonstrate that the blended learning instructional approach improves student academic outcomes and represents a valuable method to incorporate active learning methodologies while still maintaining broad content coverage. Satisfaction with this approach was high, and we are currently developing more pharmacy content for delivery in this format.Keywords: active learning, blended learning, deep conceptual learning, instructional approach, metacognition, pharmaceutical calculations
Procedia PDF Downloads 172203 Educational Audit and Curricular Reforms in the Arabian Context
Authors: Irum Naz
Abstract:
In the Arabian higher education context, linguistic proficiency in the English language is considered crucial for the developmental sustainability, economic growth, and stability of communities and societies. Qatar’s educational reforms package, through the 2030 vision, identifies the acquisition of English at K-12 as an essential survival communication tool for globalization, believing that Qatari students need better preparation to take on the responsibilities of leadership and to participate effectively in the country’s surging economy. The idea of introducing Qatari students to modern curricula benchmarked to high-student-performance curricula in developed countries is one of the components of reformatory design principles of Education for New Era reform project that is mutually consented to and supported by the Office of Shared Services, Communications Office, and Supreme Education Council. In appreciation of the government’s vision, the English Language Centre (ELC) at the Community College of Qatar ran an internal educational audit and conducted evaluative research to understand and appraise the value, impact, and practicality of the existing ELC language development program. This study sought to identify the type of change that could identify and improve the quality of Foundation Program courses and the manners in which second language learners could be assisted to transit smoothly between (ELC) levels. Following the interpretivist paradigm and mixed research method, the data was gathered through a bicyclic research model and a triangular design. The analyses of the data suggested that there was a need for improvement in the ELC program as a whole, and particularly in terms of curriculum, student learning outcomes, and the general learning environment in the department. Key findings suggest that the target program would benefit from significant revisions, which would include narrowing the focus of the courses, providing sets of specific learning objectives, and preventing repetition between levels. Another promising finding was about the assessment tools and process. The data suggested that a set of standardized assessments that more closely suited the programs of study should be devised. It was also recommended that students undergo a more comprehensive placement process to ensure that they begin the program at an appropriate level and get the maximum benefit from their learning experience. Although this ties into the idea of curriculum revamp, it was expected that students could leave the ELC having had exposure to courses in English for specific purposes. The idea of a more reliable exit assessment for students was raised frequently so ELC could regulate itself and ensure optimum learning outcomes. Another important recommendation was the provision of a Student Learning Center for students that would help them to receive personalized tuition, differentiated instruction, and self-driven and self-evaluated learning experience. In addition, an extra study level was recommended to be added to the program to accommodate the different levels of English language proficiency represented among ELC students. The evidence collected in the course of conducting the study suggests that significant change is needed in the structure of the ELC program, specifically about curriculum, the program learning outcomes, and the learning environment in general.Keywords: educational audit, ESL, optimum learning outcomes, Qatar’s educational reforms, self-driven and self-evaluated learning experience, Student Learning Center
Procedia PDF Downloads 185202 Review of Health Disparities in Migrants Attending the Emergency Department with Acute Mental Health Presentations
Authors: Jacqueline Eleonora Ek, Michael Spiteri, Chris Giordimaina, Pierre Agius
Abstract:
Background: Malta is known for being a key player as a frontline country with regard to irregular immigration from Africa to Europe. Every year the island experiences an influx of migrants as boat movement across the Mediterranean continues to be a humanitarian challenge. Irregular immigration and applying for asylum is both a lengthy and mentally demanding process. Those doing so are often faced with multiple challenges, which can adversely affect their mental health. Between January and August 2020, Malta disembarked 2 162 people rescued at sea, 463 of them between July & August. Given the small size of the Maltese islands, this regulation places a disproportionately large burden on the country, creating a backlog in the processing of asylum applications resulting in increased time periods of detention. These delays reverberate throughout multiple management pathways resulting in prolonged periods of detention and challenging access to health services. Objectives: To better understand the spatial dimensions of this humanitarian crisis, this study aims to assess disparities in the acute medical management of migrants presenting to the emergency department (ED) with acute mental health presentations as compared to that of local and non-local residents. Method: In this retrospective study, 17795 consecutive ED attendances were reviewed to look for acute mental health presentations. These were further evaluated to assess discrepancies in transportation routes to hospital, nature of presenting complaint, effects of language barriers, use of CT brain, treatment given at ED, availability of psychiatric reviews, and final admission/discharge plans. Results: Of the ED attendances, 92.3% were local residents, and 7.7% were non-locals. Of the non-locals, 13.8% were migrants, and 86.2% were other-non-locals. Acute mental health presentations were seen in 1% of local residents; this increased to 20.6% in migrants. 56.4% of migrants attended with deliberate self-harm; this was lower in local residents, 28.9%. Contrastingly, in local residents, the most common presenting complaint was suicidal thought/ low mood 37.3%, the incidence was similar in migrants at 33.3%. The main differences included 12.8% of migrants presenting with refused oral intake while only 0.6% of local residents presented with the same complaints. 7.7% of migrants presented with a reduced level of consciousness, no local residents presented with this same issue. Physicians documented a language barrier in 74.4% of migrants. 25.6% were noted to be completely uncommunicative. Further investigations included the use of a CT scan in 12% of local residents and in 35.9% of migrants. The most common treatment administered to migrants was supportive fluids 15.4%, the most common in local residents was benzodiazepines 15.1%. Voluntary psychiatric admissions were seen in 33.3% of migrants and 24.7% of locals. Involuntary admissions were seen in 23% of migrants and 13.3% of locals. Conclusion: Results showed multiple disparities in health management. A meeting was held between entities responsible for migrant health in Malta, including the emergency department, primary health care, migrant detention services, and Malta Red Cross. Currently, national quality-improvement initiatives are underway to form new pathways to improve patient-centered care. These include an interpreter unit, centralized handover sheets, and a dedicated migrant health service.Keywords: emergency department, communication, health, migration
Procedia PDF Downloads 114201 3D Printing of Polycaprolactone Scaffold with Multiscale Porosity Via Incorporation of Sacrificial Sucrose Particles
Authors: Mikaela Kutrolli, Noah S. Pereira, Vanessa Scanlon, Mohamadmahdi Samandari, Ali Tamayol
Abstract:
Bone tissue engineering has drawn significant attention and various biomaterials have been tested. Polymers such as polycaprolactone (PCL) offer excellent biocompatibility, reasonable mechanical properties, and biodegradability. However, PCL scaffolds suffer a critical drawback: a lack of micro/mesoporosity, affecting cell attachment, tissue integration, and mineralization. It also results in a slow degradation rate. While 3D-printing has addressed the issue of macroporosity through CAD-guided fabrication, PCL scaffolds still exhibit poor smaller-scale porosity. To overcome this, we generated composites of PCL, hydroxyapatite (HA), and powdered sucrose (PS). The latter serves as a sacrificial material to generate porous particles after sucrose dissolution. Additionally, we have incorporated dexamethasone (DEX) to boost the PCL osteogenic properties. The resulting scaffolds maintain controlled macroporosity from the lattice print structure but also develop micro/mesoporosity within PCL fibers when exposed to aqueous environments. The study involved mixing PS into solvent-dissolved PCL in different weight ratios of PS to PCL (70:30, 50:50, and 30:70 wt%). The resulting composite was used for 3D printing of scaffolds at room temperature. Printability was optimized by adjusting pressure, speed, and layer height through filament collapse and fusion test. Enzymatic degradation, porogen leaching, and DEX release profiles were characterized. Physical properties were assessed using wettability, SEM, and micro-CT to quantify the porosity (percentage, pore size, and interconnectivity). Raman spectroscopy was used to verify the absence of sugar after leaching. Mechanical characteristics were evaluated via compression testing before and after porogen leaching. Bone marrow stromal cells (BMSCs) behavior in the printed scaffolds was studied by assessing viability, metabolic activity, osteo-differentiation, and mineralization. The scaffolds with a 70% sugar concentration exhibited superior printability and reached the highest porosity of 80%, but performed poorly during mechanical testing. A 50% PS concentration demonstrated a 70% porosity, with an average pore size of 25 µm, favoring cell attachment. No trace of sucrose was found in Raman after leaching the sugar for 8 hours. Water contact angle results show improved hydrophilicity as the sugar concentration increased, making the scaffolds more conductive to cell adhesion. The behavior of bone marrow stromal cells (BMSCs) showed positive viability and proliferation results with an increasing trend of mineralization and osteo-differentiation as the sucrose concentration increased. The addition of HA and DEX also promoted mineralization and osteo-differentiation in the cultures. The integration of PS as porogen at a concentration of 50%wt within PCL scaffolds presents a promising approach to address the poor cell attachment and tissue integration issues of PCL in bone tissue engineering. The method allows for the fabrication of scaffolds with tunable porosity and mechanical properties, suitable for various applications. The addition of HA and DEX further enhanced the scaffolds. Future studies will apply the scaffolds in an in-vivo model to thoroughly investigate their performance.Keywords: bone, PCL, 3D printing, tissue engineering
Procedia PDF Downloads 58200 Adjusting Mind and Heart to Ovarian Cancer: Correlational Study on Italian Women
Authors: Chiara Cosentino, Carlo Pruneti, Carla Merisio, Domenico Sgromo
Abstract:
Introduction – Psychoneuroimmunology as approach clearly showed how psychological features can influence health through specific physiological pathways linked to the stress reaction. This can be true also in cancer, in its latter conceptualization seen as a chronic disease. Therefore, it is still not clear how the psychological features can combine with a physiological specific path, for a better adjustment to cancer. The aim of this study is identifying how in Italian survivors, perceived social support, body image, coping and quality of life correlate with or influence Heart Rate Variability (HRV), the physiological parameter that can mirror a condition of chronic stress or a good relaxing capability. Method - The study had an exploratory transversal design. The final sample was made of 38 ovarian cancer survivors aged from 29 to 80 (M= 56,08; SD=12,76) following a program for Ovarian Cancer at the Oncological Clinic, University Hospital of Parma, Italy. Participants were asked to fill: Multidimensional Scale of Perceived Social Support (MSPSS); Derridford Appearance Scale-59 (DAS-59); Mental Adjustment to Cancer (MAC); Quality of Life Questionnaire (EORTC). For each participant was recorded Short-Term HRV (5 minutes) using emWavePro. Results– Data showed many interesting correlations within the psychological features. EORTC scores have a significant correlation with DAS-59 (r =-.327 p <.05), MSPSS (r =.411 p<.05), and MAC scores, in particular with the strategy Fatalism (r =.364 p<.05). A good social support improves HRV (F(1,33)= 4.27 p<.05). Perceiving themselves as effective in their environment, preserving a good role functioning (EORTC), positively affects HRV (F(1,33)=9.810 p<.001). Women admitting concerns towards body image seem prone to emotive disclosure, reducing emotional distress and improving HRV (β=.453); emotional avoidance worsens HRV (β=-.391). Discussion and conclusion - Results showed a strong relationship between body image and Quality of Life. These data suggest that higher concerns on body image, in particular, the negative self-concept linked to appearance, was linked to the worst functioning in everyday life. The relation between the negative self-concept and a reduction in emotional functioning is understandable in terms of possible distress deriving from the perception of body appearance. The relationship between a high perceived social support and a better functioning in everyday life was also confirmed. In this sample fatalism, was associated with a better physical, role and emotional functioning. In these women, the presence of a good support may activate the physiological Social Engagement System improving their HRV. Perceiving themselves effective in their environment, preserving a good role functioning, also positively affects HRV, probably following the same physiological pathway. A higher presence of concerns about appearance contributes to a higher HRV. Probably women admitting more body concerns are prone to a better emotive disclosure. This could reduce emotional distress improving HRV and global health. This study reached preliminary demonstration of an ‘Integrated Model of Defense’ in these cancer survivors. In these model, psychological features interact building a better quality of life and a condition of psychological well-being that is associated and influence HRV, then the physiological condition.Keywords: cancer survivors, heart rate variability, ovarian cancer, psychophysiological adjustment
Procedia PDF Downloads 188199 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage
Authors: Andrew Laming, John Hattie, Mark Wilson
Abstract:
Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean
Procedia PDF Downloads 68198 Absenteeism in Polytechnical University Studies: Quantification and Identification of the Causes at Universitat Politècnica de Catalunya
Authors: E. Mas de les Valls, M. Castells-Sanabra, R. Capdevila, N. Pla, Rosa M. Fernandez-Canti, V. de Medina, A. Mujal, C. Barahona, E. Velo, M. Vigo, M. A. Santos, T. Soto
Abstract:
Absenteeism in universities, including polytechnical universities, is influenced by a variety of factors. Some factors overlap with those causing absenteeism in schools, while others are specific to the university and work-related environments. Indeed, these factors may stem from various sources, including students, educators, the institution itself, or even the alignment of degree curricula with professional requirements. In Spain, there has been an increase in absenteeism in polytechnical university studies, especially after the Covid crisis, posing a significant challenge for institutions to address. This study focuses on Universitat Politècnica de Catalunya• BarcelonaTech (UPC) and aims to quantify the current level of absenteeism and identify its main causes. The study is part of the teaching innovation project ASAP-UPC, which aims to minimize absenteeism through the redesign of teaching methodologies. By understanding the factors contributing to absenteeism, the study seeks to inform the subsequent phases of the ASAP-UPC project, which involve implementing methodologies to minimize absenteeism and evaluating their effectiveness. The study utilizes surveys conducted among students and polytechnical companies. Students' perspectives are gathered through both online surveys and in-person interviews. The surveys inquire about students' interest in attending classes, skill development throughout their UPC experience, and their perception of the skills required for a career in a polytechnical field. Additionally, polytechnical companies are surveyed regarding the skills they seek in prospective employees. The collected data is then analyzed to identify patterns and trends. This analysis involves organizing and categorizing the data, identifying common themes, and drawing conclusions based on the findings. This mixed-method approach has revealed that higher levels of absenteeism are observed in large student groups at both the Bachelor's and Master's degree levels. However, the main causes of absenteeism differ between these two levels. At the Bachelor's level, many students express dissatisfaction with in-person classes, perceiving them as overly theoretical and lacking a balance between theory, experimental practice, and problem-solving components. They also find a lack of relevance to professional needs. Consequently, they resort to using online available materials developed during the Covid crisis and attending private academies for exam preparation instead. On the other hand, at the Master's level, absenteeism primarily arises from schedule incompatibility between university and professional work. There is a discrepancy between the skills highly valued by companies and the skills emphasized during the studies, aligning partially with students' perceptions. These findings are of theoretical importance as they shed light on areas that can be improved to offer a more beneficial educational experience to students at UPC. The study also has potential applicability to other polytechnic universities, allowing them to adapt the surveys and apply the findings to their specific contexts. By addressing the identified causes of absenteeism, universities can enhance the educational experience and better prepare students for successful careers in polytechnical fields.Keywords: absenteeism, polytechnical studies, professional skills, university challenges
Procedia PDF Downloads 68197 Flood Early Warning and Management System
Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare
Abstract:
The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.Keywords: flood, modeling, HPC, FOSS
Procedia PDF Downloads 89196 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer
Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller
Abstract:
Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine
Procedia PDF Downloads 115195 Addressing the Biocide Residue Issue in Museum Collections Already in the Planning Phase: An Investigation Into the Decontamination of Biocide Polluted Museum Collections Using the Temperature and Humidity Controlled Integrated Contamination Manageme
Authors: Nikolaus Wilke, Boaz Paz
Abstract:
Museum staff, conservators, restorers, curators, registrars, art handlers but potentially also museum visitors are often exposed to the harmful effects of biocides, which have been applied to collections in the past for the protection and preservation of cultural heritage. Due to stable light, moisture, and temperature conditions, the biocidal active ingredients were preserved for much longer than originally assumed by chemists, pest controllers, and museum scientists. Given the requirements to minimize the use and handling of toxic substances and the obligations of employers regarding safe working environments for their employees, but also for visitors, the museum sector worldwide needs adequate decontamination solutions. Today there are millions of contaminated objects in museums. This paper introduces the results of a systematic investigation into the reduction rate of biocide contamination in various organic materials that were treated with the humidity and temperature controlled ICM (Integrated Contamination Management) method. In the past, collections were treated with a wide range, at times even with a combination of toxins, either preventively or to eliminate active insect or fungi infestations. It was only later that most of those toxins were recognized as CMR (cancerogenic mutagen reprotoxic) substances. Among them were numerous chemical substances that are banned today because of their toxicity. While the biocidal effect of inorganic salts such as arsenic (arsenic(III) oxide), sublimate (mercury(II) chloride), copper oxychloride (basic copper chloride) and zinc chloride was known very early on, organic tar distillates such as paradichlorobenzene, carbolineum, creosote and naphthalene were increasingly used from the 19th century onwards, especially as wood preservatives. With the rapid development of organic synthesis chemistry in the 20th century and the development of highly effective warfare agents, pesticides and fungicides, these substances were replaced by chlorogenic compounds (e.g. γ-hexachlorocyclohexane (lindane), dichlorodiphenyltrichloroethane (DDT), pentachlorophenol (PCP), hormone-like derivatives such as synthetic pyrethroids (e.g., permethrin, deltamethrin, cyfluthrin) and phosphoric acid esters (e.g., dichlorvos, chlorpyrifos). Today we know that textile artifacts (costumes, uniforms, carpets, tapestries), wooden objects, herbaria, libraries, archives and historical wall decorations made of fabric, paper and leather were also widely treated with toxic inorganic and organic substances. The migration (emission) of pollutants from the contaminated objects leads to continuous (secondary) contamination and accumulation in the indoor air and dust. It is important to note that many of mentioned toxic substances are also material-damaging; they cause discoloration and corrosion. Some, such as DDT, form crystals, which in turn can cause micro tectonic, destructive shifting, for example, in paint layers. Museums must integrate sustainable solutions to address the residual biocide problems already in the planning phase. Gas and dust phase measurements and analysis must become standard as well as methods of decontamination.Keywords: biocides, decontamination, museum collections, toxic substances in museums
Procedia PDF Downloads 114194 Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India
Authors: N. K. Ambujam, V. Sudha
Abstract:
Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll a (Chl a) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl a using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients.Keywords: NPS pollution, nutrients, hyper-eutrophication, krishnagiri reservoir
Procedia PDF Downloads 323193 Social Movements of Yogyakarta South Coastal Area Community against the Ferruginous Sand Quarry Construction
Authors: Muhammad Alhada Fuadilah Habib, Ayla Karina Budita, Cut Rizka Al Usrah, Mukhammad Fatkhullah, Kanita Khoirun Nisa, Siti Muslihatul Mukaromah
Abstract:
In this contemporary era, the term of development often emphasised merely on the economic growth aspect. Development of a program often considered as superior by the government, in fact, it often raises various problems. The problems occur because the development policies determined by the government tend to favor private entrepreneurs and impose on the oppression toward the community. The development promised to prosper the community's life, turn out in fact of harming the community, threatening the survival of the community and damaging the ecosystem of nature where the community hangs their life to it. Nowadays many natural resources should be used for the community’s life prosperity. However, the prosperity is conquered by the private entrepreneurs that are regulated through the free market mechanism and wrapped in democratization. This condition actually is a form of neoliberalism that builds new administration order system which is far from the meaning of the word democracy. The government should play more role in protecting community's life and prosperity, but in fact, the government sides with the private entrepreneurs for the sake of the economic benefits regardless of other aspects of the community’s life. This unjustified condition presents a wide range of social movements from the community in response to the neoliberalis policy that actually eliminates the doctrine of community sovereignty. Social movements performed by Yogyakarta south coastal area community, as the focus of the discussion in this paper, is one of the community’s response toward the government policies related to the construction of the ferruginous sand quarry which is tend to favor on private entrepreneurs and highly prejudicing or even threatening the survival of Yogyakarta south coastal area community. The data collection in this study uses qualitative research methods with in-depth interview data collection techniques and purposive informant determination techniques. This method was chosen in order to obtain the insightful data and detailed information to uncover the injustice policies committed by the government-private entrepreneurs toward Yogyakarta south coastal area community. The brief results of this study show that the conflicts between the community and government-private entrepreneurs occurred because of the differences of interests and paradigm of natural resource management. The resistance movements done by the community to fight back the government-private entrepreneurs was conducted by forming an organization called Paguyupan Petani Lahan Pantai Kulon Progo (PPLP-KP). This organization do the resistances through two ways; firstly, quiet action done through various actions such as; refusing against the socialization, performing discussion to deliberate their argument with the government-private entrepreneurs, complaining the problems to the central government, creating banners or billboards which contain the writing of rejection, performing pray rituals to invoke the justice from the God, as well as instill the resistance ideology to their young generation. Secondly, the rough action also is done through various actions such as; doing roadblocks, conducting rallies, as well as doing clash with the government apparatus. In case the resistances done by the community are seen from the pattern. Actually, the resistances are reaction toward the aggression carried out by the government-private entrepreneurs.Keywords: community resistance, conflict, ferruginous sand quarry construction, social movement
Procedia PDF Downloads 283192 Structural Fluxionality of Luminescent Coordination Compounds with Lanthanide Ions
Authors: Juliana A. B. Silva, Caio H. T. L. Albuquerque, Leonardo L. dos Santos, Cristiane K. Oliveira, Ivani Malvestiti, Fernando Hallwass, Ricardo L. Longo
Abstract:
Complexes with lanthanide ions have been extensively studied due to their applications as luminescent, magnetic and catalytic materials as molecular or extended crystals, thin films, glasses, polymeric matrices, ionic liquids, and in solution. NMR chemical shift data in solution have been reported and suggest fluxional structures in a wide range of coordination compounds with rare earth ions. However, the fluxional mechanisms for these compounds are still not established. This structural fluxionality may affect the photophysical, catalytic and magnetic properties in solution. Thus, understanding the structural interconversion mechanisms may aid the design of coordination compounds with, for instance, improved (electro)luminescence, catalytic and magnetic behaviors. The [Eu(btfa)₃bipy] complex, where btfa= 4,4,4-trifluoro-1-phenyl-1,3-butanedionate and bipy= 2,2’-bipiridyl, has a well-defined X-ray crystallographic structure and preliminary 1H NMR data suggested a structural fluxionality. Thus, we have investigated a series of coordination compounds with lanthanide ions [Ln(btfa)₃L], where Ln = La, Eu, Gd or Yb and L= bipy or phen (phen=1,10-phenanthroline) using a combined theoretical-experimental approach. These complexes were synthesized and fully characterized, and detailed NMR measurements were obtained. They were also studied by quantum chemical computational methods (DFT-PBE0). The aim was to determine the relevant factors in the structure of these compounds that favor or not the fluxional behavior. Measurements of the 1H NMR signals at variable temperature in CD₂Cl₂ of the [Eu(btfa)₃L] complexes suggest that these compounds have a fluxional structure, because the crystal structure has non-equivalent btfa ligands that should lead to non-equivalent hydrogen atoms and thus to more signals in the NMR spectra than those obtained at room temperature, where all hydrogen atoms of the btfa ligands are equivalent, and phen ligand has an effective vertical symmetry plane. For the [Eu(btfa)₃bipy] complex, the broadening of the signals at –70°C provides a lower bound for the coalescence temperature, which indicates the energy barriers involved in the structural interconversion mechanisms are quite small. These barriers and, consequently, the coalescence temperature are dependent upon the radii of the lanthanide ion as well as to their paramagnetic effects. The PBE0 calculated structures are in very good agreement with the crystallographic data and, for the [Eu(btfa)₃bipy] complex, this method provided several distinct structures with almost the same energy. However, the energy barrier for structural interconversion via dissociative pathways were found to be quite high and could not explain the experimental observations. Whereas the pseudo-rotation pathways, involving the btfa and bipy ligands, have very small activation barriers, in excellent agreement with the NMR data. The results also showed an increase in the activation barrier along the lanthanide series due to the decrease of the ionic radii and consequent increase of the steric effects. TD-DFT calculations showed a dependence of the ligand donor state energy with different structures of the complex [Eu(btfa)₃phen], which can affect the energy transfer rates and the luminescence. The energy required to promote the structural fluxionality may also enhance the luminescence quenching in solution. These results can aid in the design of more luminescent compounds and more efficient devices.Keywords: computational chemistry, lanthanide-based compounds, NMR, structural fluxionality
Procedia PDF Downloads 199191 Impact of the 2015 Drought on Rural Livelihood – a Case Study of Masurdi Village in Latur District of Maharashtra, India
Authors: Nitin Bhagat
Abstract:
Drought is a global phenomenon. It has a huge impact on agriculture and allied sector activities. Agriculture plays a substantial role in the economy of developing countries, which mainly depends on rainfall. The present study illustrates the drought conditions in Masurdi village of Latur district in the Marathwada region, Maharashtra. This paper is based on both primary as well as secondary data sources. The multistage sample method was used for primary data collection. The 100 households sample survey data has been collected from the village through a semi-structured questionnaire. The crop production data is collected from the Department of Agriculture, Government of Maharashtra. The rainfall data is obtained from the Department of Revenue, Office of Divisional Commissioner, Aurangabad for the period from 1988 to 2018. This paper examines the severity of drought consequences of the 2015 drought on domestic water supply, crop production, and the effect on children's schooling, livestock assets, bank credit, and migration. The study also analyzed climate variables' impact on the Latur district's total food grain production for 19 years from 2000 to 2018. This study applied multiple regression analysis to check the relationship between climatic variables and the Latur district's total food grain production. The climate variables are annual rainfall, maximum temperature and minimum temperature. The study considered that climatic variables are independent variables and total food grain as the dependent variable. It shows there is a significant relationship between rainfall and maximum temperature. The study also calculated rainfall deviations to find out the drought and normal years. According to drought manual 2016, the rainfall deviation calculated using the following formula. RF dev = {(RFi – RFn) / RFn}*100.Approximately 27.43 % of the workforce migrated from rural to urban areas for searching jobs, and crop production decreased tremendously due to inadequate rainfall in the drought year 2015. Many farm and non-farm labor, some marginal and small cultivators, migrated from rural to urban areas (like Pune, Mumbai, and Western Maharashtra).About 48 % of the households' children faced education difficulties; in the drought period, children were not going to school. They left their school and joined to bring water with their mother and fathers, sometimes they fetched water on their head or using a bicycle, near about 2 km from the village. In their school-going days, drinking water was not available in their schools, so the government declared holidays early in the academic education year 2015-16 compared to another academic year. Some college and 10th class students left their education due to financial problems. Many households benefited from state government schemes, like drought subsidies, crop insurance, and bank loans. Out of 100 households, about 50 (50 %) have obtained financial support from the state government’s subsidy scheme, 58 ( 58 %) have got crop insurance, and 41(41 %) irrigated households have got bank loans from national banks; besides that, only two families have obtained loans from their relatives and moneylenders.Keywords: agriculture, drought, household, rainfall
Procedia PDF Downloads 176190 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 177189 Analysis of Complex Business Negotiations: Contributions from Agency-Theory
Authors: Jan Van Uden
Abstract:
The paper reviews classical agency-theory and its contributions to the analysis of complex business negotiations and gives an approach for the modification of the basic agency-model in order to examine the negotiation specific dimensions of agency-problems. By illustrating fundamental potentials for the modification of agency-theory in context of business negotiations the paper highlights recent empirical research that investigates agent-based negotiations and inter-team constellations. A general theoretical analysis of complex negotiation would be based on a two-level approach. First, the modification of the basic agency-model in order to illustrate the organizational context of business negotiations (i.e., multi-agent issues, common-agencies, multi-period models and the concept of bounded rationality). Second, the application of the modified agency-model on complex business negotiations to identify agency-problems and relating areas of risk in the negotiation process. The paper is placed on the first level of analysis – the modification. The method builds on the one hand on insights from behavior decision research (BRD) and on the other hand on findings from agency-theory as normative directives to the modification of the basic model. Through neoclassical assumptions concerning the fundamental aspects of agency-relationships in business negotiations (i.e., asymmetric information, self-interest, risk preferences and conflict of interests), agency-theory helps to draw solutions on stated worst-case-scenarios taken from the daily negotiation routine. As agency-theory is the only universal approach able to identify trade-offs between certain aspects of economic cooperation, insights obtained provide a deeper understanding of the forces that shape business negotiation complexity. The need for a modification of the basic model is illustrated by highlighting selected issues of business negotiations from agency-theory perspective: Negotiation Teams require a multi-agent approach under the condition that often decision-makers as superior-agents are part of the team. The diversity of competences and decision-making authority is a phenomenon that overrides the assumptions of classical agency-theory and varies greatly in context of certain forms of business negotiations. Further, the basic model is bound to dyadic relationships preceded by the delegation of decision-making authority and builds on a contractual created (vertical) hierarchy. As a result, horizontal dynamics within the negotiation team playing an important role for negotiation success are therefore not considered in the investigation of agency-problems. Also, the trade-off between short-term relationships within the negotiation sphere and the long-term relationships of the corporate sphere calls for a multi-period perspective taking into account the sphere-specific governance-mechanisms already established (i.e., reward and monitoring systems). Within the analysis, the implementation of bounded rationality is closely related to findings from BRD to assess the impact of negotiation behavior on underlying principal-agent-relationships. As empirical findings show, the disclosure and reservation of information to the agent affect his negotiation behavior as well as final negotiation outcomes. Last, in context of business negotiations, asymmetric information is often intended by decision-makers acting as superior-agents or principals which calls for a bilateral risk-approach to agency-relations.Keywords: business negotiations, agency-theory, negotiation analysis, interteam negotiations
Procedia PDF Downloads 139188 Decrease in Olfactory Cortex Volume and Alterations in Caspase Expression in the Olfactory Bulb in the Pathogenesis of Alzheimer’s Disease
Authors: Majed Al Otaibi, Melissa Lessard-Beaudoin, Amel Loudghi, Raphael Chouinard-Watkins, Melanie Plourde, Frederic Calon, C. Alexandre Castellano, Stephen Cunnane, Helene Payette, Pierrette Gaudreau, Denis Gris, Rona K. Graham
Abstract:
Introduction: Alzheimer disease (AD) is a chronic disorder that affects millions of individuals worldwide. Symptoms include memory dysfunction, and also alterations in attention, planning, language and overall cognitive function. Olfactory dysfunction is a common symptom of several neurological disorders including AD. Studying the mechanisms underlying the olfactory dysfunction may therefore lead to the discovery of potential biomarkers and/or treatments for neurodegenerative diseases. Objectives: To determine if olfactory dysfunction predicts future cognitive impairment in the aging population and to characterize the olfactory system in a murine model expressing a genetic factor of AD. Method: For the human study, quantitative olfactory tests (UPSIT and OMT) have been done on 93 subjects (aged 80 to 94 years) from the Quebec Longitudinal Study on Nutrition and Successful Aging (NuAge) cohort accepting to participate in the ORCA secondary study. The telephone Modified Mini Mental State examination (t-MMSE) was used to assess cognition levels, and an olfactory self-report was also collected. In a separate cohort, olfactory cortical volume was calculated using MRI results from healthy old adults (n=25) and patients with AD (n=18) using the AAL single-subject atlas and performed with the PNEURO tool (PMOD 3.7). For the murine study, we are using Western blotting, RT-PCR and immunohistochemistry. Result: Human Study: Based on the self-report, 81% of the participants claimed to not suffer from any problem with olfaction. However, based on the UPSIT, 94% of those subjects showed a poor olfactory performance and different forms of microsmia. Moreover, the results confirm that olfactory function declines with age. We also detected a significant decrease in olfactory cortical volume in AD individuals compared to controls. Murine study: Preliminary data demonstrate there is a significant decrease in expression levels of the proform of caspase-3 and the caspase substrate STK3, in the olfactory bulb of mice expressing human APOE4 compared with controls. In addition, there is a significant decrease in the expression level of the caspase-9 proform and caspase-8 active fragment. Analysis of the mature neuron marker, NeuN, shows decreased expression levels of both isoforms. The data also suggest that Iba-1 immunostaining is increased in the olfactory bulb of APOE4 mice compared to wild type mice. Conclusions: The activation of caspase-3 may be the cause of the decreased levels of STK3 through caspase cleavage and may play role in the inflammation observed. In the clinical study, our results suggest that seniors are unaware of their olfactory function status and therefore it is not sufficient to measure olfaction using the self-report in the elderly. Studying olfactory function and cognitive performance in the aging population will help to discover biomarkers in the early stage of the AD.Keywords: Alzheimer's disease, APOE4, cognition, caspase, brain atrophy, neurodegenerative, olfactory dysfunction
Procedia PDF Downloads 258187 Health Equity in Hard-to-Reach Rural Communities in Abia State, Nigeria: An Asset-Based Community Development Intervention to Influence Community Norms and Address the Social Determinants of Health in Hard-to-Reach Rural Communities
Authors: Chinasa U. Imo, Queen Chikwendu, Jonathan Ajuma, Mario Banuelos
Abstract:
Background: Sociocultural norms primarily influence the health-seeking behavior of populations in rural communities. In the Nkporo community, Abia State, Nigeria, their sociocultural perception of diseases runs counter to biomedical definitions, wherein they rely heavily on traditional medicine and practices. In a state where birth asphyxia and sepsis account for the significant causes of death for neonates, malaria leads to the causes of other mortalities, followed by common preventable diseases such as diarrhea, pneumonia, acute respiratory tract infection, malnutrition, and HIV/AIDS. Most local mothers attribute their health conditions and that of their children to witchcraft attacks, the hand of God, and ancestral underlining. This influences how they see antenatal and postnatal care, choice of place of accessing care and birth delivery, response to children's illnesses, immunization, and nutrition. Method: To implement a community health improvement program, we adopted an asset-based community development model to address health's normative and social determinants. The first step was to use a qualitative approach to conduct a community health needs baseline assessment, involving focus group discussions with twenty-five (25) youths aged 18-25, semi-structured interviews with ten (10) officers-in-charge of primary health centers, eight (8) ward health committee members, and nine (9) community leaders. Secondly, we designed an intervention program. Going forward, we will proceed with implementing and evaluating this program. Result: The priority needs identified by the communities were malaria, lack of clean drinking water, and the need for behavioral change information. The study also highlighted the significant influence of youths on their peers, family, and community as caregivers and information interpreters. Based on the findings, the NGO SieDi-Hub collaborated with the Abia State Ministry of Health, the State Primary Healthcare Agency, and Empower Next Generations to design a one-year "Community Health Youth Champions Pilot Program." Twenty (20) youths in the community were trained and equipped to champion a participatory approach to bridging the gap between access and delivery of primary healthcare, to adjust sociocultural norms to improve health equity for people in Nkporo community – with limited education, lack of access to health information, and quality healthcare facilities using an innovative community-led improvement approach. Conclusion: Youths play a vital role in achieving health equity, being a vulnerable population with significant influence. To ensure effective primary healthcare, strategies must include cultural humility. The asset-based community development model offers valuable tools, and this article will share ongoing lessons from the intervention's behavioral change strategies with young people.Keywords: asset-based community development, community health, primary health systems strengthening, youth empowerment
Procedia PDF Downloads 92186 Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste
Authors: Kuo Chieh Chao, Thishani Amarathunga, Sangam Shrestha
Abstract:
Rainfall induced slope failures are one of the most damaging and disastrous natural hazards which occur frequently in the world. This type of sliding mainly occurs in the zone above the groundwater level in silty/sandy soils. When the rainwater begins to infiltrate into the vadose zone of the soil, the negative pore-water pressure tends to decrease and reduce the shear strength of soil material. Climate change has resulted in excessive and unpredictable rainfall in all around the world, resulting in landslides with dire consequences to human lives and infrastructure. Such problems could be overcome by examining in detail the causes for such slope failures and recommending effective repair plans for vulnerable locations by considering future climatic change. The selected area for this study is located in the road rehabilitation section from Maubara to Mota Ain road in Timor-Leste. Slope failures and cracks have occurred in 2013 and after repairs reoccurred again in 2017 subsequent to heavy rains. Both observed and future predicted climate data analyses were conducted to understand the severe precipitation conditions in past and future. Observed climate data were collected from NOAA global climate data portal. CORDEX data portal was used to collect Regional Climate Model (RCM) future predicted climate data. Both observed and RCM data were extracted to location-based data using ArcGIS Software. Linear scaling method was used for the bias correction of future data and bias corrected climate data were assigned to GeoStudio Software. Precipitations of wet seasons (December to March ) in 2007 to 2013 is higher than 2001-2006 period and it is more than nearly 40% higher precipitation than usual monthly average precipitation of 160mm.The results of seepage analyses which were carried out using SEEP/W model with observed climate, clearly demonstrated that the pore water pressure within the fill slope was significantly increased due to the increase of the infiltration during the wet season of 2013.One main Regional Climate Models (RCM) was analyzed in order to predict future climate variation under two Representative Concentration Pathways (RCPs).In the projected period of 76 years ahead from 2014, shows that the amount of precipitation is considerably getting higher in the future in both RCP 4.5 and RCP 8.5 emission scenarios. Critical pore water pressure conditions during 2014-2090 were used in order to recommend appropriate remediation methods. Results of slope stability analyses indicated that the factor of safety of the fill slopes was reduced from 1.226 to 0.793 during the dry season to wet season in 2013.Results of future slope stability which were obtained using SLOPE/W model for the RCP emissions scenarios depict that, the use of tieback anchors and geogrids in slope protection could be effective in increasing the stability of slopes to an acceptable level during the wet seasons. Moreover, methods and procedures like monitoring of slopes showing signs or susceptible for movement and installing surface protections could be used to increase the stability of slopes.Keywords: climate change, precipitation, SEEP/W, SLOPE/W, unsaturated soil
Procedia PDF Downloads 136185 Formulation of a Submicron Delivery System including a Platelet Lysate to Be Administered in Damaged Skin
Authors: Sergio A. Bernal-Chavez, Sergio Alcalá-Alcalá, Doris A. Cerecedo-Mercado, Adriana Ganem-Rondero
Abstract:
The prevalence of people with chronic wounds has increased dramatically by many factors including smoking, obesity and chronic diseases, such as diabetes, that can slow the healing process and increase the risk of becoming chronic. Because of this situation, the improvement of chronic wound treatments is a necessity, which has led to the scientific community to focus on improving the effectiveness of current therapies and the development of new treatments. The wound formation is a physiological complex process, which is characterized by an inflammatory stage with the presence of proinflammatory cells that create a proteolytic microenvironment during the healing process, which includes the degradation of important growth factors and cytokines. This decrease of growth factors and cytokines provides an interesting strategy for wound healing if they are administered externally. The use of nanometric drug delivery systems, such as polymer nanoparticles (NP), also offers an interesting alternative around dermal systems. An interesting strategy would be to propose a formulation based on a thermosensitive hydrogel loaded with polymeric nanoparticles that allows the inclusion and application of a platelet lysate (PL) on damaged skin, with the aim of promoting wound healing. In this work, NP were prepared by a double emulsion-solvent evaporation technique, using polylactic-co-glycolic acid (PLGA) as biodegradable polymer. Firstly, an aqueous solution of PL was emulsified into a PLGA organic solution, previously prepared in dichloromethane (DCM). Then, this disperse system (W/O) was poured into a polyvinyl alcohol (PVA) solution to get the double emulsion (W/O/W), finally the DCM was evaporated by magnetic stirring resulting in the NP formation containing PL. Once the NP were obtained, these systems were characterized by morphology, particle size, Z-potential, encapsulation efficiency (%EE), physical stability, infrared spectrum, calorimetric studies (DSC) and in vitro release profile. The optimized nanoparticles were included in a thermosensitive gel formulation of Pluronic® F-127. The gel was prepared by the cold method at 4 °C and 20% of polymer concentration. Viscosity, sol-gel phase transition, time of no flow solid-gel at wound temperature, changes in particle size by temperature-effect using dynamic light scattering (DLS), occlusive effect, gel degradation, infrared spectrum and micellar point by DSC were evaluated in all gel formulations. PLGA NP of 267 ± 10.5 nm and Z-potential of -29.1 ± 1 mV were obtained. TEM micrographs verified the size of NP and evidenced their spherical shape. The %EE for the system was around 99%. Thermograms and in infrared spectra mark the presence of PL in NP. The systems did not show significant changes in the parameters mentioned above, during the stability studies. Regarding the gel formulation, the transition sol-gel occurred at 28 °C with a time of no flow solid-gel of 7 min at 33°C (common wound temperature). Calorimetric, DLS and infrared studies corroborated the physical properties of a thermosensitive gel, such as the micellar point. In conclusion, the thermosensitive gel described in this work, contains therapeutic amounts of PL and fulfills the technological properties to be used in damaged skin, with potential application in wound healing and tissue regeneration.Keywords: growth factors, polymeric nanoparticles, thermosensitive hydrogels, tissue regeneration
Procedia PDF Downloads 172184 Investigation of the Possible Beneficial and Protective Effects of an Ethanolic Extract from Sarcopoterium spinosum Fruits
Authors: Hawraa Zbeeb, Hala Khalifeh, Mohamad Khalil, Francesca Storace, Francesca Baldini, Giulio Lupidi, Laura Vergani
Abstract:
Sarcopoterium spinosum, a widely distributed spiny shrub belonging to the Rosaceae family, is rich in essential and beneficial constituents. In fact, S. spinosum fruits and roots are traditionally used as herbal medicine in the eastern Mediterranean landscape, and this shrub is mentioned as a medicinal plant in a large number of ethnobotanical surveys. Aqueous root extracts from S. spinosum are used by traditional medicinal practitioners for weight loss treatment of diabetes and pain. Moreover, the anti-diabetic activity of S. spinosum root extract has been reported in different studies, but the beneficial effects of aerial parts, especially fruits, have not been elucidated yet. The aim of the present study was to investigate the in vitro antioxidant and lipid-lowering properties of an ethanolic extract from S. spinosum fruits using both hepatic (FaO) and endothelial (HECV) cells in an attempt to evaluate its possible employment as a nutraceutical supplement. First of all, in vitro spectrophotometric assays were employed to characterize the extract. The total phenol content (TPC) was evaluated by Folin–Ciocalteu spectrophotometric method and the radical scavenging activity was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. After that, the beneficial effects of the extract were tested on cells. FaO cells treated for 3 hours with 0.75 mM oleate/palmitate mix (1:2 molar ratio) mimic in vitro a moderate hepato-steatosis. HECV cells exposed for 1 hour to 100 µM H₂O₂ mimic an oxidative insult leading to oxidative stress conditions. After the metabolic and oxidative insult, both cell lines were treated with increasing concentrations of the S. spinosum extract (1, 10, 25 µg/mL) for 24 hours. The results showed the S. spinosum ethanolic extract is rather rich in phenols (TPC of 18.6 mgGAE/g dry extracts). Moreover, the extract showed a good scavenging ability in vitro (IC₅₀ 15.9 µg/ml and 10.9 µg/ml measured by DPPH and ABTS assays, respectively). When the extract was tested on cells, the results showed that it could ameliorate some markers of cell dysfunction. The three concentrations of the extract led to a significant decrease in the intracellular triglyceride (TG) content in steatotic FaO cells measured by spectrophotometric assay. On the other hand, HECV cells treated with increasing concentrations of the extract did not result in a significant decrease in both lipid peroxidation measured by the Thiobarbituric Acid Reactive Substances (TBARS) assay, and in reactive oxygen species (ROS) production measured by fluorometric analysis after DCF staining. Interestingly, the ethanolic extract was able to accelerate the wound repair of confluent HECV cells with respect to H₂O₂-insulted cells as measured by T-scratch assay. Taken together, these results seem to indicate that the ethanol extract from S. spinosum fruits is rich in phenol compounds and plays considerable lipid-lowering activity in vitro on steatotic hepatocytes and accelerates wound healing repair on endothelial cells. In light of that, the ethanolic extract from S. spinosum fruits could be a potential candidate for nutraceutical applications.Keywords: antioxidant activity, ethanolic extract, lipid-lowering activity, phenolic compounds, Sarcopoterium spinosum fruits
Procedia PDF Downloads 175