Search results for: training implications
4577 Investigating the Body Paragraphs of English as a Second Language Students' English Academic Essays: Genre Analysis and Needs Analysis
Authors: Chek K. Loi
Abstract:
The present study has two objectives. Firstly, it investigates the rhetorical strategies employed in the body paragraphs of ESL (English as a Second Language) undergraduate students’ English academic essays. Peacock’s (2002) model of the discussion section was used as the starting points in this study to investigate the rhetorical moves employed in the data. Secondly, it investigates the writing problems as perceived by these ESL students through an interview. Interview responses serve as accompanying data to the move analysis. Apart from this, students’ English academic writing problems are diagnosed. The findings have pedagogical implications in an EAP (English for Academic Purposes) classroom.Keywords: academic essays, move analysis, pedagogical implication, rhetorical strategies
Procedia PDF Downloads 2764576 The Relationship between Caregiver Burden and Life Satisfaction of Caregivers of Elderly Individuals
Authors: Guler Duru Asiret, Cemile Kutmec Yilmaz, Gulcan Bagcivan, Tugce Turten Kaymaz
Abstract:
This descriptive study was conducted to determine the relationship between caregiver burden and life satisfaction who give home care to elderly individuals. The sample was recruited from the internal medicine unit and palliative unit of a state hospital located in Turkey on June 2016-2017. The study sample consisted of 231 primary caregiver family member, who met the eligibility criteria and agreed to participate in the study. The inclusion criteria were as follows: inpatient’s caregiver, primary caregiver for at least 3 months, at least 18 years of age, no communication problem or mental disorder. Data were gathered using an Information Form prepared by the researchers based on previous literature, the Zarit Burden Interview (ZBI), and the Satisfaction with Life Scale (SWLS). The data were analyzed using IBM SPSS Statistics software version 20.0 (SPSS, Chicago, IL). The descriptive characteristics of the participant were analyzed using number, percentage, mean and standard deviation. The suitability of normal distribution of scale scores was analyzed using Kolmogorov-Smirnov and Shapiro-Wilk test. Relationships between scales were analyzed using Spearman’s rank-correlation coefficient. P values less than 0.05 were considered to be significant. The average age of the caregivers was 50.11±13.46 (mean±SD) years. Of the caregivers, 76.2% were women, 45% were primary school graduates, 89.2% were married, 38.1% were the daughters of their patients. Among these, 52.4% evaluated their income level to be good. Of them, 53.6% had been giving care less than 2 years. The patients’ average age was 77.1±8.0 years. Of the patients, 55.8% were women, 56.3% were illeterate, 70.6% were married, and 97.4% had at least one chronic disease. The mean Zarit Burden Interview score was 35.4±1.5 and the Satisfaction with Life Scale score was 20.6±6.8. A negative relationship was found between the patients’ score average on the ZBI, and on the SWLS (r= -0.438, p=0.000). The present study determined that the caregivers have a moderate caregiver burden and the life satisfaction. And the life satisfaction of caregivers decreased as their caregiver burden increase. In line with the results obtained from the research, it is recommended that to increase the effectiveness of discharge training, to arrange training and counseling programs for caregivers to cope with the problems they experienced, to monitor the caregivers at regular intervals and to provide necessary institutional support.Keywords: caregiver burden, family caregivers, nurses, satisfaction
Procedia PDF Downloads 1764575 PatchMix: Learning Transferable Semi-Supervised Representation by Predicting Patches
Authors: Arpit Rai
Abstract:
In this work, we propose PatchMix, a semi-supervised method for pre-training visual representations. PatchMix mixes patches of two images and then solves an auxiliary task of predicting the label of each patch in the mixed image. Our experiments on the CIFAR-10, 100 and the SVHN dataset show that the representations learned by this method encodes useful information for transfer to new tasks and outperform the baseline Residual Network encoders by on CIFAR 10 by 12% on ResNet 101 and 2% on ResNet-56, by 4% on CIFAR-100 on ResNet101 and by 6% on SVHN dataset on the ResNet-101 baseline model.Keywords: self-supervised learning, representation learning, computer vision, generalization
Procedia PDF Downloads 894574 Exploring Stakeholders’ Perceptions of the Implementation of the Door-to-Door Vaccination Campaign for the Oral Polio Vaccine (NOPV2) In Uganda: A Qualitative Study
Authors: Elizabeth B. Katana, Brenda N. Simbwa, Josephine Namayanja, Bob O. Amodan, Edirisa J. Nsubuga, Eva A. O. Laker
Abstract:
Background: Understanding stakeholders’ perceptions towards the implementation of a mass vaccination campaign is important to ensure the design of better strategies to address challenges. We explored stakeholders’ perceptions of the implementation of a nationwide door-to-door mass vaccination campaign for the oral polio vaccine (nOPV2) in Uganda for the two rounds that occurred in January and November 2022. Methods: A qualitative study was conducted among stakeholders who participated in the campaign implementation from 8 districts in Uganda using random sampling. We conducted 46 In-depth interviews lasting 30 – 40 minutes with 6 national/central supervisors, 12 district, 14 sub-county, and 14 parish-level supervisors. Stakeholders were asked about their experiences in the campaign implementation, including challenges faced and their opinions of the campaign impact and use of the door-to-door strategy. Data were analyzed thematically in line with the major campaign activities. Results: Most of the stakeholders were primarily concerned about poor planning, inadequate training of vaccination teams, community resistance including schools, challenges with recruitment and teaming of vaccinators, poor and delayed payments, lack of logistics and motivation for vaccination teams, the timing of the activities and implementing amidst COVID-19 and Ebola. The stakeholders believed that the first round was not well planned and implemented, while the second round was leveraged in their previous experiences. On the other hand, some positive experiences were noted with regard to communication, advocacy and mobilization, vaccine delivery and distribution, district readiness assessments, and cold chain management. Conclusion: This study identified many challenges that were faced in the implementation of the door-to-door mass campaign for nOPV2 in Uganda. This study identified that more needs to be done to improve door-to-door mass campaigns with a focus on motivating the implementers. These findings highlight the need for conducting performance reviews, improved planning, especially routine updates and verification of target populations and training in microplanning, and adequate mapping of community resistance to inform the implementation of future mass campaigns.Keywords: mass polio vaccination campaigns, door-to-door strategy, stakeholders' perceptions, implementation challenges
Procedia PDF Downloads 714573 Key Factors for a Smart City
Authors: Marta Christina Suciu, Cristina Andreea Florea
Abstract:
The purpose of this paper is to highlight the relevance of building smart cities in the context of regional development and to analyze the important factors that make a city smart. These cities could be analyzed through the perspective of environment quality, the socio-cultural condition, technological applications and innovations, the vitality of the economic environment and public policies. Starting with these five sustainability domains, we will demonstrate the hypothesis that smart cities are the engine of the regional development. The aim of this paper is to assess the implications of smart cities, in the context of sustainable development, analyzing the benefits of developing creative and innovative cities. Regarding the methodology, it is used the systemic, logical and comparative analysis of important literature and data, also descriptive statistics and correlation analysis. In conclusion, we will define a direction on the regional development and competitiveness increasing.Keywords: creativity, innovation, regional development, smart city, sustainability, triple helix
Procedia PDF Downloads 4924572 Presenting Research-Based Mindfulness Tools for Corporate Wellness
Authors: Dana Zelicha
Abstract:
The objective of this paper is to present innovative mindfulness tools specifically designed by OWBA—The Well Being Agency for organisations and corporate wellness programmes. The OWBA Mindfulness Tools (OWBA-MT) consist of practical mindfulness exercises to educate and train employees and business leaders to think, feel, and act more mindfully. Among these cutting-edge interventions are Mindful Meetings, Mindful Decision Making and Unitasking activities, intended to cultivate mindful communication and compassion in the workplace and transform organisational culture. In addition to targeting CEO’s and leaders within large corporations, OWBA-MT is also directed at the needs of specific populations such as entrepreneurs’ resilience and women empowerment. The goals of the OWBA-MT are threefold: to inform, inspire and implement. The first goal is to inform participants about the relationship between workplace stress, distractibility and miscommunication in the framework of mindfulness. The second goal is for the audience to be inspired to share those practices with other members of their organisation. The final objective is to equip participants with the tools to foster a compassionate, mindful and well-balanced work environment. To assess these tools, a 6-week case study was conducted as part of an employee wellness programme for a large international corporation. The OWBA-MT were introduced in a workshop forum once-a-week, with participants practicing these tools both in the office and at home. The workshops occurred 1 day a week (2 hours each), with themes and exercises varying weekly. To reinforce practice at home, participants received reflection forms and guided meditations online. Materials were sent via-email at the same time each day to ensure consistency and participation. To evaluate the effectiveness of the mindfulness intervention, improvements in four categories were measured: listening skills, mindfulness levels, prioritising skills and happiness levels. These factors were assessed using online self-reported questionnaires administered at the start of the intervention, and then again 4-weeks following completion. The measures included the Mindfulness Attention Awareness Scale (MAAS), Listening Skills Inventory (LSI), Time Management Behaviour Scale (TMBS) and a modified version of the Oxford Happiness Questionnaire (OHQ). All four parameters showed significant improvements from the start of the programme to the 4-week follow-up. Participant testimonials exhibited high levels of satisfaction and the overall results indicate that the OWBA-MT intervention substantially impacted the corporation in a positive way. The implications of these results suggest that OWBA-MT can improve employees’ capacities to listen and work well with others, to manage time effectively, and to experience enhanced satisfaction both at work and in life. Although corporate mindfulness programmes have proven to be effective, the challenge remains the low engagement levels at home in between training sessions and to implement the tools beyond the scope of the intervention. OWBA-MT has offered an innovative approach to enforce engagement levels at home by sending daily online materials outside the workshop forum with a personalised response. The limitations also noteworthy to consider for future research include the afterglow effect and lack of generalisability, as this study was conducted on a small and fairly homogenous sample.Keywords: corporate mindfulness, listening skills, mindful leadership, mindfulness tools, organisational well being
Procedia PDF Downloads 2434571 Perspectives and Challenges a Functional Bread With Yeast Extract to Improve Human Diet
Authors: Cláudia Patrocínio, Beatriz Fernandes, Ana Filipa Pires
Abstract:
Background: Mirror therapy (MT) is used to improve motor function after stroke. During MT, a mirror is placed between the two upper limbs (UL), thus reflecting movements of the non- affected side as if it were the affected side. Objectives: The aim of this review is to analyze the evidence on the effec.tiveness of MT in the recovery of UL function in population with post chronic stroke. Methods: The literature search was carried out in PubMed, ISI Web of Science, and PEDro database. Inclusion criteria: a) studies that include individuals diagnosed with stroke for at least 6 months; b) intervention with MT in UL or comparing it with other interventions; c) articles published until 2023; d) articles published in English or Portuguese; e) randomized controlled studies. Exclusion criteria: a) animal studies; b) studies that do not provide a detailed description of the intervention; c) Studies using central electrical stimulation. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. Studies with < 4 on PEDro scale were excluded. Eighteen studies met all the inclusion criteria. Main results and conclusions: The quality of the studies varies between 5 and 8. One article compared muscular strength training (MST) with MT vs without MT and four articles compared the use of MT vs conventional therapy (CT), one study compared extracorporeal shock therapy (EST) with and without MT and another study compared functional electrical stimulation (FES), MT and biofeedback, three studies compared MT with Mesh Glove (MG) or Sham Therapy, five articles compared performing bimanual exercises with and without MT and three studies compared MT with virtual reality (VR) or robot training (RT). The assessment of changes in function and structure (International Classification of Functioning, Disability and Health parameter) was carried out, in each article, mainly using the Fugl Meyer Assessment-Upper Limb scale, activity and participation (International Classification of Functioning, Disability and Health parameter) were evaluated using different scales, in each study. The positive results were seen in these parameters, globally. Results suggest that MT is more effective than other therapies in motor recovery and function of the affected UL, than these techniques alone, although the results have been modest in most of the included studies. There is also a more significant improvement in the distal movements of the affected hand than in the rest of the UL.Keywords: physical therapy, mirror therapy, chronic stroke, upper limb, hemiplegia
Procedia PDF Downloads 554570 Posterior Acetabular Fractures-Optimizing the Treatment by Enhancing Practical Skills
Authors: Olivera Lupescu, Taina Elena Avramescu, Mihail Nagea, Alexandru Dimitriu
Abstract:
Acetabular fractures represent a real challenge due to their impact upon the long term function of the hip joint, and due to the risk of intra- and peri-operative complications especially that they affect young, active people. That is why treating these fractures require certain skills which must be exercised, regarding the pre-operative planning, as well as the execution of surgery.The authors retrospectively analyse 38 cases with acetabular fractures operated using the posterior approach in our hospital between 01.01.2013- 01.01.2015 for which complete medical records ensure a follow-up of 24 months, in order to establish the main causes of potential errors and to underline the methods for preventing them. This target is included in the Erasmus + project ‘Collaborative learning for enhancing practical skills for patient-focused interventions in gait rehabilitation after orthopedic surgery COR-skills’. This paper analyses the pitfalls revealed by these cases, as well as the measures necessary to enhance the practical skills of the surgeons who perform acetabular surgery. Pre-op planning matched the intra and post-operative outcome in 88% of the analyzed points, from 72% at the beginning to 94% in the last case, meaning that experience is very important in treating this injury. The main problems detected for the posterior approach were: nervous complications - 3 cases, 1 of them a complete paralysis of the sciatic nerve, which recovered 6 months after surgery, and in other 2 cases intra-articular position of the screws was demonstrated by post-operative CT scans, so secondary screw removal was necessary in these cases. We analysed this incident, too, due to lack of information about the relationship between the screws and the joint secondary to this approach. Septic complications appeared in 3 cases, 2 superficial and 1 profound (requiring implant removal). The most important problems were the reduction of the fractures and the positioning of the screws so as not to interfere with the the articular space. In posterior acetabular fractures, pre-op complex planning is important in order to achieve maximum treatment efficacy with minimum of risk; an optimal training of the surgeons insisting on the main points of potential mistakes ensure the success of the procedure, as well as a favorable outcome for the patient.Keywords: acetabular fractures, articular congruency, surgical skills, vocational training
Procedia PDF Downloads 2064569 3D Electrode Carrier and its Implications on Retinal Implants
Authors: Diego Luján Villarreal
Abstract:
Retinal prosthetic devices aim to repair some vision in visual impairment patients by stimulating electrically neural cells in the visual system. In this study, the 3D linear electrode carrier is presented. A simulation framework was developed by placing the 3D carrier 1 mm away from the fovea center at the highest-density cell. Cell stimulation is verified in COMSOL Multiphysics by developing a 3D computational model which includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. Current distribution resulting from low threshold amplitudes produces a small volume equivalent to the volume confined by individual cells at the highest-density cell using small-sized electrodes. Delicate retinal tissue is protected by excessive charge densityKeywords: retinal prosthetic devices, visual devices, retinal implants., visual prosthetic devices
Procedia PDF Downloads 1134568 Employee Perception of Corporate Social Responsibility and Its Impact on Organizational Performance: Evidence from the UAE
Authors: Sherine Farouk, Fauzia Jabeen
Abstract:
The purpose of this study is to examine the role played by ethical climate and CSR on organizational performance in public sector organizations. In particular, the research will shed light on the link between formalized ethical procedures and employee responses including corporate social responsibility, and organizational performance among public sector employees. Data was collected from 425 employees working in public sector organizations in Abu Dhabi, the capital of United Arab Emirates. Structural Equation Modeling will be used to test the proposed hypotheses. The paper contributes to the literature by being one of the first to study CSR and ethical climate within a Middle Eastern context, and will offer important implications for theory and practice.Keywords: corporate social responsibility, ethical climate, organizational performance, United Arab Emirates
Procedia PDF Downloads 3444567 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago
Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu
Abstract:
Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago
Procedia PDF Downloads 504566 A New Scheme for Chain Code Normalization in Arabic and Farsi Scripts
Authors: Reza Shakoori
Abstract:
This paper presents a structural correction of Arabic and Persian strokes using manipulation of their chain codes in order to improve the rate and performance of Persian and Arabic handwritten word recognition systems. It collects pure and effective features to represent a character with one consolidated feature vector and reduces variations in order to decrease the number of training samples and increase the chance of successful classification. Our results also show that how the proposed approaches can simplify classification and consequently recognition by reducing variations and possible noises on the chain code by keeping orientation of characters and their backbone structures.Keywords: Arabic, chain code normalization, OCR systems, image processing
Procedia PDF Downloads 4044565 When Change Is the Only Constant: The Impact of Change Frequency and Diversity on Change Appraisal
Authors: Danika Pieters
Abstract:
Due to changing societal and economic demands, organizational change has become increasingly prevalent in work life. While a long time change research has focused on the effects of single discrete change events on different employee outcomes such as job satisfaction and organizational commitment, a nascent research stream has begun to look into the potential cumulative effects of change in the context of continuous intense reforms. This case study of a large Belgian public organization aims to add to this growing literature by examining how the frequency and diversity of past changes impact employees’ appraisals of a newly introduced change. Twelve hundred survey results were analyzed using standard ordinary least squares regression. Results showed a correlation between high past change frequency and diversity and a negative appraisal of the new change. Implications for practitioners and future research are discussed.Keywords: change frequency, change diversity, organizational changes, change appraisal, change evaluation
Procedia PDF Downloads 1354564 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 2854563 Functional Impairment in South African Children with ADHD: Design, Implementation and Evaluation of a Targeted Intervention
Authors: Mareli Fischer, Kevin G. F. Thomas
Abstract:
Although Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent childhood neurobehavioural disorders, little empirical research has been published on its clinical presentation in Africa, and, globally, few studies evaluate ADHD intervention programs that emphasize parent training. Hence, Stage 1 of this research programme aimed to describe the functional impairment of South African children with ADHD, and also sought to investigate the influence of sociodemographic variables (e.g., sex, age, socioeconomic status, family environment) and clinical variables (e.g., ADHD subtype and comorbidity) on the degree of that impairment. We used the Mini International Neuropsychiatric Interview for Children and Adolescents as a diagnostic tool, and the Child Behavior Checklist, the Strengths and Difficulties Questionnaire, and the Impairment Rating Scale as measures of functional impairment. Results from this stage of the research indicated that South African children and adolescents who meet diagnostic criteria for ADHD experience most functional impairment in the school domain, as well as in the area of social functioning. None of the measured sociodemographic variables had a significant detrimental or protective effect on how ADHD symptoms impacted on functioning. In terms of comorbidity, the presence of Major Depressive Disorder, Conduct Disorder, and Oppositional Defiant Disorder were all associated with significantly impaired overall functioning. Stage 2 of the research programme aimed to design, implement, and evaluate a child-specific intervention that targeted the primary areas of impairment identified in Stage 1. Existing literature suggests that a positive parent-training programme, in the group format, is one of the best options for cost-effective and successful ADHD intervention. Hence, the intervention took that form. Parents were taught basic behaviour analysis concepts within a supportive group context. Evaluation of the intervention’s efficacy used many of the same measures as in Stage 1, but also featured semi-structured interviews with participants and naturalistic observation of parent-child interaction. We will discuss preliminary results of that evaluation. Studying functional impairment and designing intervention plans in this way will pave the way for evidence-based treatment plans for children and adolescents diagnosed with ADHD.Keywords: attention deficit/hyperactivity disorder, children, intervention, parenting groups
Procedia PDF Downloads 4314562 The Impact of Environmental Social and Governance (ESG) on Corporate Financial Performance (CFP): Evidence from New Zealand Companies
Authors: Muhammad Akhtaruzzaman
Abstract:
The impact of corporate environmental social and governance (ESG) on financial performance is often difficult to quantify despite the ESG related theories predict that ESG performance improves financial performance of a company. This research examines the link between corporate ESG performance and the financial performance of the NZX (New Zealand Stock Exchange) listed companies. For this purpose, this research utilizes mixed methods approaches to examine and understand this link. While quantitative results found no robust evidence of such a link, however, the qualitative analysis of content data suggests a strong cooccurrence exists between ESG performance and financial performance. The findings of this research have important implications for policymakers to support higher ESG-performing companies and for management practitioners to develop ESG-related strategies.Keywords: ESG, financial performance, New Zealand firms, thematic analysis, mixed methods
Procedia PDF Downloads 664561 SciPaaS: a Scientific Execution Platform for the Cloud
Authors: Wesley H. Brewer, John C. Sanford
Abstract:
SciPaaS is a prototype development of an execution platform/middleware designed to make it easy for scientists to rapidly deploy their scientific applications (apps) to the cloud. It provides all the necessary infrastructure for running typical IXP (Input-eXecute-Plot) style apps, including: a web interface, post-processing and plotting capabilities, job scheduling, real-time monitoring of running jobs, and even a file/case manager. In this paper, first the system architecture is described and then is demonstrated for a two scientific applications: (1) a simple finite-difference solver of the inviscid Burger’s equation, and (2) Mendel’s Accountant—a forward-time population genetics simulation model. The implications of the prototype are discussed in terms of ease-of-use and deployment options, especially in cloud environments.Keywords: web-based simulation, cloud computing, Platform-as-a-Service (PaaS), rapid application development (RAD), population genetics
Procedia PDF Downloads 5904560 MyAds: A Social Adaptive System for Online Advertisment from Hypotheses to Implementation
Authors: Dana A. Al Qudah, Alexandra I. Critea, Rizik M. H. Al Sayyed, Amer Obeidah
Abstract:
Online advertisement is one of the major incomes for many companies; it has a role in the overall business flow and affects the consumer behavior directly. Unfortunately most users tend to block their ads or ignore them. MyAds is a social adaptive hypermedia system for online advertising and its main goal is to explore how to make online ads more acceptable. In order to achieve such a goal, various technologies and techniques are used. This paper presents a theoretical framework as well as the system architecture for MyAds that was designed based on a set of hypotheses and an exploratory study. The system then was implemented and a pilot experiment was conducted to validate it. The main outcomes suggest that the system has provided personalized ads for users. The main implications suggest that the system can be used for further testing and validating.Keywords: adaptive hypermedia, e-advertisement, social, hypotheses, exploratory study, framework
Procedia PDF Downloads 4114559 Reflections on Mechanism of Foreign Teachers’ Administration in Colleges and Universities in China
Authors: YangHui
Abstract:
Foreign teachers play an important role in the process of internationalization of higher education in China. Based on the method of literature analysis, firstly study the contents about the mechanism of the foreign teachers’ administration in our country, then secondly analyze the main barriers of the foreign teacher’s administration mechanism. Finally, it is suggested that the international exchange department in universities should constantly improve the employment mechanism, training mechanism, appraisal mechanism and incentive mechanism to promote the internationalization of higher education.Keywords: internationalization of higher education, mechanism, administration of foreign teachers, colleges and universities, China
Procedia PDF Downloads 4784558 Interactivity as a Predictor of Intent to Revisit Sports Apps
Authors: Young Ik Suh, Tywan G. Martin
Abstract:
Sports apps in a smartphone provide up-to-date information and fast and convenient access to live games. The market of sports apps has emerged as the second fastest growing app category worldwide. Further, many sports fans use their smartphones to know the schedule of sporting events, players’ position and bios, videos and highlights. In recent years, a growing number of scholars and practitioners alike have emphasized the importance of interactivity with sports apps, hypothesizing that interactivity plays a significant role in enticing sports apps users and that it is a key component in measuring the success of sports apps. Interactivity in sports apps focuses primarily on two functions: (1) two-way communication and (2) active user control, neither of which have been applicable through traditional mass media and communication technologies. Therefore, the purpose of this study is to examine whether the interactivity function on sports apps leads to positive outcomes such as intent to revisit. More specifically, this study investigates how three major functions of interactivity (i.e., two-way communication, active user control, and real-time information) influence the attitude of sports apps users and their intent to revisit the sports apps. The following hypothesis is proposed; interactivity functions will be positively associated with both attitudes toward sports apps and intent to revisit sports apps. The survey questionnaire includes four parts: (1) an interactivity scale, (2) an attitude scale, (3) a behavioral intention scale, and (4) demographic questions. Data are to be collected from ESPN apps users. To examine the relationships among the observed and latent variables and determine the reliability and validity of constructs, confirmatory factor analysis (CFA) is conducted. Structural equation modeling (SEM) is utilized to test hypothesized relationships among constructs. Additionally, this study compares the proposed interactivity model with a rival model to identify the role of attitude as a mediating factor. The findings of the current sports apps study provide several theoretical and practical contributions and implications by extending the research and literature associated with the important role of interactivity functions in sports apps and sports media consumption behavior. Specifically, this study may improve the theoretical understandings of whether the interactivity functions influence user attitudes and intent to revisit sports apps. Additionally, this study identifies which dimensions of interactivity are most important to sports apps users. From practitioners’ perspectives, this findings of this study provide significant implications. More entrepreneurs and investors in the sport industry need to recognize that high-resolution photos, live streams, and up-to-date stats are in the sports app, right at sports fans fingertips. The result will imply that sport practitioners may need to develop sports mobile apps that offer greater interactivity functions to attract sport fans.Keywords: interactivity, two-way communication, active user control, real time information, sports apps, attitude, intent to revisit
Procedia PDF Downloads 1474557 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe
Authors: Zeta Dooly, Aidan Duane
Abstract:
The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.Keywords: research networks, competency building, network theory, case study
Procedia PDF Downloads 1264556 Brazilian Sign Language: A Synthesis of the Research in the Period from 2000 to 2017
Authors: Maria da Gloria Guara-Tavares
Abstract:
This article reports a synthesis of the research in Brazilian Sign Language conducted from 2000 to 2017. The objective of the synthesis was to identify the most researched areas and the most used methodologies. Articles published in three Brazilian journals of Translation Studies, unpublished dissertations and theses were included in the analysis. Abstracts and the method sections of the papers were scrutinized. Sixty studies were analyzed, and overall results indicate that the research in Brazilian Sign Language has been fragmented in several areas such as linguistic aspects, facial expressions, subtitling, identity issues, bilingualism, and interpretation strategies. Concerning research methods, the synthesis reveals that most research is qualitative in nature. Moreover, results show that the cognitive aspects of Brazilian Sign Language seem to be poorly explored. Implications for a future research agenda are also discussed.Keywords: Brazilian sign language, qualitative methods, research agenda, synthesis
Procedia PDF Downloads 2404555 Optimization of a Hybrid PV-Diesel Mini grid System: A Case Study of Vimtim-Mubi, Nigeria
Authors: Julius Agaka Yusufu
Abstract:
This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.Keywords: Vimtim-Nigeria, homer, renewable energy, PV-diesel hybrid system.
Procedia PDF Downloads 724554 Existence of Financial Service Authority Prior to 2045
Authors: Syafril Hendrik Hutabarat, Hartiwiningsih, Pujiyono Suwadi
Abstract:
The Financial Service Authority (FSA) was formed as a response to the 1997 monetary crisis and the 2008 financial crisis so that it was more defensive in nature while developments in information and communication technology have required state policies to be more offensive to keep up with times. Reconstruction of Authorities of the FSA's Investigator is intended to keep the agency worthy to be part of an integrated criminal justice system in Indonesia which has implications for expanding its authority in line with efforts to protect and increase the welfare of the people. The results show that internal synergy between sub-sectors in the financial services sector is not optimised, some are even left behind so that the FSA is not truly an authority in the financial services sector. This research method is empirical. The goal of synergy must begin with internal synergy which has its moment when Indonesia gets a demographic bonus in the 2030s and becomes an international logistics hub supported by the national financial services sector.Keywords: reconstruction, authorities, FSA investigators, synergy, demography
Procedia PDF Downloads 774553 Unsupervised Reciter Recognition Using Gaussian Mixture Models
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model
Procedia PDF Downloads 3804552 Economic Empowerment before Political Participation: Peacebuilding from the Perspective of Women Activists in the Post-Yugoslav Area
Authors: Emilie Fort
Abstract:
Two major pitfalls emerge at the intersection of gender and peacebuilding literature: the comprehension of women as a homogeneous category and a focus on women's participation in formal peace processes and state structures. However, women belong (and identify) to distinct ethnic, religious, or social groups, and the variety of their social location impacts their ability to mobilize, to participate in peace processes as well as the way they envision peace. This study is based on interviews conducted (remotely) with women activists from the post-Yugoslav area. It shows that women's economic empowerment and education are central issues that must be addressed for women political participation being effective. This has implications for peace projects –their priorities, scales of implementation, etc.– and the allocation of civil society’s funds.Keywords: ex-Yugoslavia, gender-based issues, peacebuilding, women activism
Procedia PDF Downloads 1954551 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 1304550 Impact of National Institutions on Corporate Social Performance
Authors: Debdatta Mukherjee, Abhiman Das, Amit Garg
Abstract:
In recent years, there is a growing interest about corporate social responsibility of firms in both academic literature and business world. Since business forms a part of society incorporating socio-environment concerns into its value chain, activities are vital for ensuring mutual sustainability and prosperity. But, until now most of the works have been either descriptive or normative rather than positivist in tone. Even the few ones with a positivist approach have mostly studied the link between corporate financial performance and corporate social performance. However, these studies have been severely criticized by many eminent authors on grounds that they lack a theoretical basis for their findings. They have also argued that apart from corporate financial performance, there must be certain other crucial influences that are likely to determine corporate social performance of firms. In fact, several studies have indicated that firms operating in distinct national institutions show significant variations in the corporate social responsibility practices that they undertake. This clearly suggests that the institutional context of a country in which the firms operate is a key determinant of corporate social performance of firms. Therefore, this paper uses an institutional framework to understand why corporate social performance of firms vary across countries. It examines the impact of country level institutions on corporate social performance using a sample of 3240 global publicly-held firms across 33 countries covering the period 2010-2015. The country level institutions include public institutions, private institutions, markets and capacity to innovate. Econometric Analysis has been mainly used to assess this impact. A three way panel data analysis using fixed effects has been used to test and validate appropriate hypotheses. Most of the empirical findings confirm our hypotheses and the economic significance indicates the specific impact of each variable and their importance relative to others. The results suggest that institutional determinants like ethical behavior of private institutions, goods market, labor market and innovation capacity of a country are significantly related to the corporate social performance of firms. Based on our findings, few implications for policy makers from across the world have also been suggested. The institutions in a country should promote competition. The government should use policy levers for upgrading home demands, like setting challenging yet flexible safety, quality and environment standards, and framing policies governing buyer information, providing innovative recourses to low quality goods and services and promoting early adoption of new and technologically advanced products. Moreover, the institution building in a country should be such that they facilitate and improve the capacity of firms to innovate. Therefore, the proposed study argues that country level institutions impact corporate social performance of firms, empirically validates the same, suggest policy implications and attempts to contribute to an extended understanding of corporate social responsibility and corporate social performance in a multinational context.Keywords: corporate social performance, corporate social responsibility, institutions, markets
Procedia PDF Downloads 1664549 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 1254548 Discrimination of Artificial Intelligence
Authors: Iman Abu-Rub
Abstract:
This research paper examines if Artificial Intelligence is, in fact, racist or not. Different studies from all around the world, and covering different communities were analyzed to further understand AI’s true implications over different communities. The black community, Asian community, and Muslim community were all analyzed and discussed in the paper to figure out if AI is biased or unbiased towards these specific communities. It was found that the biggest problem AI faces is the biased distribution of data collection. Most of the data inserted and coded into AI are of a white male, which significantly affects the other communities in terms of reliable cultural, political, or medical research. Nonetheless, there are various research was done that help increase awareness of this issue, but also solve it completely if done correctly. Governments and big corporations are able to implement different strategies into their AI inventions to avoid any racist results, which could cause hatred culturally but also unreliable data, medically, for example. Overall, Artificial Intelligence is not racist per se, but the data implementation and current racist culture online manipulate AI to become racist.Keywords: social media, artificial intelligence, racism, discrimination
Procedia PDF Downloads 116