Search results for: smart camera networks
2385 An Experimental Study on the Positive Streamer Leader Propagation under Slow Front Impulse Voltages in a 10m Rod-Plane Air Gap
Authors: Wahab Ali Shah, Junjia He
Abstract:
In this work, we performed a large-scale investigation into leader development in a 10 m rod-plane gap under a long front positive impulse. To describe the leader propagation under slow front impulse voltages, we recorded the leader propagation with a high-speed charge coupled device (CCD) camera. It is important to figure out this phenomenon to deepen our understanding of leader discharge. The observation results showed that the leader mechanism is a very complex physical phenomenon; it could be categorized into two types of leader process, namely, continuous and the discontinuous leader streamer-leader propagation. Furthermore, we studied the continuous leader development parameters, including two-dimensional (2-D) leader length, injected charge, and final jump stage, as well as leader velocity for rod–plane configuration. We observed that the discontinuous leader makes an important contribution to the appearance of channel re-illuminations of the positive leader. The comparative study shows better results in terms of standard switch impulse and long front positive impulse. Finally, the results are presented with a view toward improving our understanding of propagation mechanisms related to restrike phenomena, which are rarely reported. To clarify the above doubts under long front cases, we carried out extensive experiments in this study.Keywords: continuous and discontinuous leader, high-speed photographs, long air gap, positive long front impulse, restrike phenomena
Procedia PDF Downloads 1692384 Emerging Technologies in Distance Education
Authors: Eunice H. Li
Abstract:
This paper discusses and analyses a small portion of the literature that has been reviewed for research work in Distance Education (DE) pedagogies that I am currently undertaking. It begins by presenting a brief overview of Taylor's (2001) five-generation models of Distance Education. The focus of the discussion will be on the 5th generation, Intelligent Flexible Learning Model. For this generation, educational and other institutions make portal access and interactive multi-media (IMM) an integral part of their operations. The paper then takes a brief look at current trends in technologies – for example smart-watch wearable technology such as Apple Watch. The emergent trends in technologies carry many new features. These are compared to former DE generational features. Also compared is the time span that has elapsed between the generations that are referred to in Taylor's model. This paper is a work in progress. The paper therefore welcome new insights, comparisons and critique of the issues discussed.Keywords: distance education, e-learning technologies, pedagogy, generational models
Procedia PDF Downloads 4622383 Development of an Indoor Drone Designed for the Needs of the Creative Industries
Authors: V. Santamarina Campos, M. de Miguel Molina, S. Kröner, B. de Miguel Molina
Abstract:
With this contribution, we want to show how the AiRT system could change the future way of working of a part of the creative industry and what new economic opportunities could arise for them. Remotely Piloted Aircraft Systems (RPAS), also more commonly known as drones, are now essential tools used by many different companies for their creative outdoor work. However, using this very flexible applicable tool indoor is almost impossible, since safe navigation cannot be guaranteed by the operator due to the lack of a reliable and affordable indoor positioning system which ensures a stable flight, among other issues. Here we present our first results of a European project, which consists of developing an indoor drone for professional footage especially designed for the creative industries. One of the main achievements of this project is the successful implication of the end-users in the overall design process from the very beginning. To ensure safe flight in confined spaces, our drone incorporates a positioning system based on ultra-wide band technology, an RGB-D (depth) camera for 3D environment reconstruction and the possibility to fully pre-program automatic flights. Since we also want to offer this tool for inexperienced pilots, we have always focused on user-friendly handling of the whole system throughout the entire process.Keywords: virtual reality, 3D reconstruction, indoor positioning system, RPAS, remotely piloted aircraft systems, aerial film, intelligent navigation, advanced safety measures, creative industries
Procedia PDF Downloads 1962382 The Influence of Meteorological Properties on the Power of Night Radiation Cooling
Authors: Othmane Fahim, Naoual Belouaggadia. Charifa David, Mohamed Ezzine
Abstract:
To make better use of cooling resources, systems have been derived on the basis of the use of night radiator systems for heat pumping. Using the TRNSYS tool we determined the influence of the climatic characteristics of the two zones in Morocco on the temperature of the outer surface of a Photovoltaic Thermal Panel “PVT” made of aluminum. The proposal to improve the performance of the panel allowed us to have little heat absorption during the day and give the same performance of a panel made of aluminum at night. The variation in the granite-based panel temperature recorded a deviation from the other materials of 0.5 °C, 2.5 °C on the first day respectively in Marrakech and Casablanca, and 0.2 °C and 3.2 °C on the second night. Power varied between 110.16 and 32.01 W/m² marked in Marrakech, to be the most suitable area to practice night cooling by night radiation.Keywords: smart buildings, energy efficiency, Morocco, radiative cooling
Procedia PDF Downloads 1532381 The Flipped Education Case Study on Teacher Professional Learning Community in Technology and Media Implementation
Authors: Juei-Hsin Wang, Yen-Ting Chen
Abstract:
The paper examines teacher professional learning community theory and implementation by using technology and media tools in Taiwan. After literature review, the researcher concluded in five elements of teacher professional learning community theory. They are ‘sharing the vision and value', ‘collaborative cooperation’, ‘ to support the situation', ‘to share practice' and 'Pay Attention to Student Learning Effectiveness' five levels by using technology and media in flipped education. Teacher professional learning community is one kind of models for teacher professional development in flipped education. Due to Taiwan education culture, there is no summative evaluation for teachers. So, there are multiple kinds of ways and education practice in teacher professional learning community nowadays. This study used literature review and quality analysis to analyze the connection theory and practice and discussed the official and non‐official strategies on teacher professional learning community by using technology and media in flipped education. The tablet is used as a camera tool for classroom students to solve problems. The students can instantly see and enable other students to watch the whole class discussion by operating the tablet. This would allow teachers and students to focus on discussing the connotation of subjects, especially bottom‐up and non‐official cases from teachers become an important influence in Taiwan.Keywords: professional learning community, collaborative cooperation, flipped education, technology application, media application
Procedia PDF Downloads 1472380 Infrastructure Development – Stages in Development
Authors: Seppo Sirkemaa
Abstract:
Information systems infrastructure is the basis of business systems and processes in the company. It should be a reliable platform for business processes and activities but also have the flexibility to change business needs. The development of an infrastructure that is robust, reliable, and flexible is a challenge. Understanding technological capabilities and business needs is a key element in the development of successful information systems infrastructure.Keywords: development, information technology, networks, technology
Procedia PDF Downloads 1182379 Interactive Image Search for Mobile Devices
Authors: Komal V. Aher, Sanjay B. Waykar
Abstract:
Nowadays every individual having mobile device with them. In both computer vision and information retrieval Image search is currently hot topic with many applications. The proposed intelligent image search system is fully utilizing multimodal and multi-touch functionalities of smart phones which allows search with Image, Voice, and Text on mobile phones. The system will be more useful for users who already have pictures in their minds but have no proper descriptions or names to address them. The paper gives system with ability to form composite visual query to express user’s intention more clearly which helps to give more precise or appropriate results to user. The proposed algorithm will considerably get better in different aspects. System also uses Context based Image retrieval scheme to give significant outcomes. So system is able to achieve gain in terms of search performance, accuracy and user satisfaction.Keywords: color space, histogram, mobile device, mobile visual search, multimodal search
Procedia PDF Downloads 3672378 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp
Authors: Ali Mohammed Ali Lmbash
Abstract:
The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.Keywords: smart architecture, Hatay Camp, sustainability, machine learning.
Procedia PDF Downloads 542377 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience
Authors: Al-Amin, Huanjun Jiang, Anayat Ali
Abstract:
Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network
Procedia PDF Downloads 852376 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence
Procedia PDF Downloads 1272375 A Numerical Model for Simulation of Blood Flow in Vascular Networks
Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia
Abstract:
An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.Keywords: blood flow, morphometric data, vascular tree, Strahler ordering system
Procedia PDF Downloads 2722374 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process
Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand
Abstract:
This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping
Procedia PDF Downloads 522373 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics
Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin
Abstract:
Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.Keywords: convolutional neural networks, deep learning, shallow correctors, sign language
Procedia PDF Downloads 1002372 Spatial Audio Player Using Musical Genre Classification
Authors: Jun-Yong Lee, Hyoung-Gook Kim
Abstract:
In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing
Procedia PDF Downloads 4292371 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers
Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion
Abstract:
Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law
Procedia PDF Downloads 1512370 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 1732369 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers
Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala
Abstract:
The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification
Procedia PDF Downloads 1632368 Interwoven Realms: The Relationship Between Textiles, Fashion, and Architecture
Authors: Toktam mehrabani
Abstract:
Textiles, fashion, and architecture, though seemingly disparate fields, share a deep and evolving relationship. This paper explores the intersection of these disciplines, examining how the tactile, structural, and aesthetic qualities of textiles have influenced both fashion and architecture over time. By investigating historical and contemporary examples, this paper seeks to unravel the ways in which textiles and fashion have not only shaped architectural design but have also acted as a bridge between functionality, art, and human experience in the built environment.Textiles have been integral to human culture since the dawn of civilization. Their presence transcends mere functionality, serving as a medium for artistic expression, cultural identity, and social commentary. Fashion, derived from textiles, has long been associated with personal identity and societal trends, while architecture reflects human needs, environmental context, and cultural values. This paper posits that the relationship between textiles, fashion, and architecture is more interconnected than often perceived, with each influencing and inspiring the other across time. Textiles in Architectural Design: From ancient draperies in temples to tapestries in castles, textiles have adorned structures, softening rigid spaces and adding layers of warmth and luxury. Fabric screens and curtains have also served functional purposes, such as controlling light, acoustics, and temperature. Fashion as Architectural Expression: Renaissance and Baroque fashion used exaggerated forms, corsetry, and layers to mirror the grandiosity of architectural styles of the time. Clothing acted as wearable architecture, with structured garments mirroring the strong lines and curves of buildings..Structural Textiles in Architecture: In the 21st century, textiles are no longer just decorative; they have become integral to architectural innovation. Materials like tensile fabrics and smart textiles are used in creating flexible, lightweight structures. Iconic examples include Frei Otto’s work with tensile membranes, seen in the Munich Olympic Stadium.Technological advancements have drastically transformed the relationship between textiles, fashion, and architecture. Digital tools like 3D printing and laser cutting allow designers in both fields to push the limits of form and structure. Smart textiles that react to environmental stimuli are being explored for use in both wearable technology and adaptable architecture, such as facades that change in response to weather conditions. Textiles, fashion, and architecture are inextricably linked through their shared exploration of form, structure, and expression. This interdisciplinary relationship continues to evolve, driven by technological advancements and a growing emphasis on sustainability. As fashion becomes more architectural in its construction and architecture more fluid in its forms, the lines between these disciplines blur, offering new possibilities for creativity and functionality in both wearable and built environments.Keywords: textiles in architecture, fashion and architecture, textile architecture, structural textiles, wearable architecture, architectural fashion
Procedia PDF Downloads 292367 The Impact of Household Income on Students' Financial Literacy
Authors: Dorjana Nano
Abstract:
Financial literacy has become on focus of many research studies. Family household is found to influence students’ financial literacy. The purpose of this study is to explore whether financial literacy of Albanian students is associated with their family household. The main objectives of this research are: i) firstly, to evaluate how financial literate are Albanian university students; ii) secondly, to examine whether the financial literacy differs based on the level of students family income; and iii) finally, to draw some conclusions and recommendations in order to improve student’s financial literacy. An instrument, comprised of personal finance and personal characteristics is administered to 637 students in Albania. The constituency of the survey is tested based on the dimension reduction and factor analyzing techniques. The One Way Welch ANOVA and multiple comparison techniques are utilized to analyze the data. The results indicate that student’s financial literacy is influenced by their family income.Keywords: financial literacy, household income, smart decisions, university students
Procedia PDF Downloads 2722366 The Use of Computer Simulation as Technological Education for Crisis Management Staff
Authors: Jiří Barta, Josef Krahulec, Jiří F. Urbánek
Abstract:
Education and practical training crisis management members are a topical issue nowadays. The paper deals with the perspectives and possibilities of ‘smart solutions’ to education for crisis management staff. Currently, there are a large number of simulation tools, which notes that they are suitable for practical training of crisis management staff. The first part of the paper is focused on the introduction of the technology simulation tools. The simulators aim is to create a realistic environment for the practical training of extending units of crisis staff. The second part of the paper concerns the possibilities of using the simulation technology to the education process. The aim of this section is to introduce the practical capabilities and potential of the simulation programs for practical training of crisis management staff.Keywords: crisis management staff, computer simulation, software, technological education
Procedia PDF Downloads 3542365 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application
Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro
Abstract:
In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype
Procedia PDF Downloads 1592364 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System
Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie
Abstract:
In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection
Procedia PDF Downloads 2462363 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1192362 LuMee: A Centralized Smart Protector for School Children who are Using Online Education
Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.
Abstract:
This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data
Procedia PDF Downloads 892361 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 5282360 Teaching Translation in Brazilian Universities: A Study about the Possible Impacts of Translators’ Comments on the Cyberspace about Translator Education
Authors: Erica Lima
Abstract:
The objective of this paper is to discuss relevant points about teaching translation in Brazilian universities and the possible impacts of blogs and social networks to translator education today. It is intended to analyze the curricula of Brazilian translation courses, contrasting them to information obtained from two social networking groups of great visibility in the area concerning essential characteristics to become a successful profession. Therefore, research has, as its main corpus, a few undergraduate translation programs’ syllabuses, as well as a few postings on social networks groups that specifically share professional opinions regarding the necessity for a translator to obtain a degree in translation to practice the profession. To a certain extent, such comments and their corresponding responses lead to the propagation of discourses which influence the ideas that aspiring translators and recent graduates end up having towards themselves and their undergraduate courses. The postings also show that many professionals do not have a clear position regarding the translator education; while refuting it, they also encourage “free” courses. It is thus observed that cyberspace constitutes, on the one hand, a place of mobilization of people in defense of similar ideas. However, on the other hand, it embodies a place of tension and conflict, in view of the fact that there are many participants and, as in any other situation of interlocution, disagreements may arise. From the postings, aspects related to professionalism were analyzed (including discussions about regulation), as well as questions about the classic dichotomies: theory/practice; art/technique; self-education/academic training. As partial result, the common interest regarding the valorization of the profession could be mentioned, although there is no consensus on the essential characteristics to be a good translator. It was also possible to observe that the set of socially constructed representations in the group reflects characteristics of the world situation of the translation courses (especially in some European countries and in the United States), which, in the first instance, does not accurately reflect the Brazilian idiosyncrasies of the area.Keywords: cyberspace, teaching translation, translator education, university
Procedia PDF Downloads 3882359 The Aquatic Plants Community in the Owena-Idanre Section of the Owena River of Ondo State
Authors: Rafiu O. Sanni, Abayomi O. Olajuyigbe, Nelson R. Osungbemiro, Rotimi F. Olaniyan
Abstract:
The Owena River lies within the drainage basins of the Oni, Siluko, and Ogbesse rivers. The river’s immediate surroundings are covered by dense forests, interspersed by plantations of cocoa, oil palm, kolanut, bananas, and other crops. The objectives were to identify the aquatic plants community, comprising the algae and aquatic macrophytes, observe their population dynamics in relation to the two seasons and identify their economic importance, especially to the neighbouring community. The study sites were determined using a stratified sampling method. Three strata were marked out for sampling namely strata I (upstream)–5 stations, strata II (reservoir) –2 stations, and strata III (outflow) 2 stations. These nine stations were tagged st1, st2, st3…st9. The aquatic macrophytes were collected using standard methods and identified at the University of Ibadan herbarium while the algal samples were collected using standard methods for microalgae. The periphytonic species were scraped from surfaces of rocks (perilithic), sucked with large syringe from mud (epipellic), scraped from suspended logs, washed from roots of aquatic angiosperms (epiphytic), as well as shaken from other particles such as suspended plant parts. Some were collected physically by scooping floating thallus of non-microscopic multicellular forms. The specimens were taken to the laboratory and observed under a microscope with mounted digital camera for photomicrography. Identification was done using Prescott.Keywords: aquatic plants, aquatic macrophytes, algae, Owena river
Procedia PDF Downloads 5582358 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method
Authors: W. Swiderski
Abstract:
In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.Keywords: composite material, ultrasonic, infrared thermography, non-destructive testing
Procedia PDF Downloads 2952357 Analysing the Stability of Electrical Grid for Increased Renewable Energy Penetration by Focussing on LI-Ion Battery Storage Technology
Authors: Hemendra Singh Rathod
Abstract:
Frequency is, among other factors, one of the governing parameters for maintaining electrical grid stability. The quality of an electrical transmission and supply system is mainly described by the stability of the grid frequency. Over the past few decades, energy generation by intermittent sustainable sources like wind and solar has seen a significant increase globally. Consequently, controlling the associated deviations in grid frequency within safe limits has been gaining momentum so that the balance between demand and supply can be maintained. Lithium-ion battery energy storage system (Li-Ion BESS) has been a promising technology to tackle the challenges associated with grid instability. BESS is, therefore, an effective response to the ongoing debate whether it is feasible to have an electrical grid constantly functioning on a hundred percent renewable power in the near future. In recent years, large-scale manufacturing and capital investment into battery production processes have made the Li-ion battery systems cost-effective and increasingly efficient. The Li-ion systems require very low maintenance and are also independent of geographical constraints while being easily scalable. The paper highlights the use of stationary and moving BESS for balancing electrical energy, thereby maintaining grid frequency at a rapid rate. Moving BESS technology, as implemented in the selected railway network in Germany, is here considered as an exemplary concept for demonstrating the same functionality in the electrical grid system. Further, using certain applications of Li-ion batteries, such as self-consumption of wind and solar parks or their ancillary services, wind and solar energy storage during low demand, black start, island operation, residential home storage, etc. offers a solution to effectively integrate the renewables and support Europe’s future smart grid. EMT software tool DIgSILENT PowerFactory has been utilised to model an electrical transmission system with 100% renewable energy penetration. The stability of such a transmission system has been evaluated together with BESS within a defined frequency band. The transmission system operators (TSO) have the superordinate responsibility for system stability and must also coordinate with the other European transmission system operators. Frequency control is implemented by TSO by maintaining a balance between electricity generation and consumption. Li-ion battery systems are here seen as flexible, controllable loads and flexible, controllable generation for balancing energy pools. Thus using Li-ion battery storage solution, frequency-dependent load shedding, i.e., automatic gradual disconnection of loads from the grid, and frequency-dependent electricity generation, i.e., automatic gradual connection of BESS to the grid, is used as a perfect security measure to maintain grid stability in any case scenario. The paper emphasizes the use of stationary and moving Li-ion battery storage for meeting the demands of maintaining grid frequency and stability for near future operations.Keywords: frequency control, grid stability, li-ion battery storage, smart grid
Procedia PDF Downloads 1502356 Correlation between Dynamic Knee Valgus with Isometric Hip External Rotators Strength during Single Leg Landing
Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda
Abstract:
The excessive frontal plane motion of the lower extremity during sports activities is thought to be a contributing factor to many traumatic and overuse injuries of the knee joint, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip external rotators isometric strength and the value of frontal plane projection angle (FPPA) during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip external rotators isometric strength were assessed by portable hand held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip external rotators isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip external rotators isometric strength and the value of FPPA during functional activities in normal male subjects.Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries
Procedia PDF Downloads 225