Search results for: motion response
4250 Silica Nanoparticles Induced Oxidative Stress and Inflammation in MRC-5 Human Lung Fibroblasts
Authors: Anca Dinischiotu, Sorina Nicoleta Voicu
Abstract:
Silica nanoparticles (SiO2-NPs) are widely used in consumer products such as paints, plastics, insulation materials, tires, concrete production, as well as in gene delivery systems and imaging procedures. Environmental human exposure to them occurs during utilization of these products, in a time-dependent manner, the uptake being by topic and inhalation route especially. SiO2-NPs enter cells and induce membrane damage, oxidative stress and inflammatory reactions in a concentration-dependent manner. In this study, MRC-5 cells (human fetal lung fibroblasts) were exposed to amorphous SiO2-NPs at a dose of 62.5 μg/ml for 24, 48 and 72 hours. The size distribution of NPs was a lognormal function, in the range 3-14 nm. A time-dependent decrease of total reduced glutathione concentration by 36%, 50%, and 78% and an increase of NO level by 62%, 32%, respectively 24% compared to control were noticed. An up-regulation of NF-kB expression by 20%, 50% respectively 10% and of Nrf-2 by 139%, 58%, and 16% compared to control after 24, 48 and 72 hours was noticed also. The expression of IL-1β, IL-6, IL-8, and COX-2 was up-regulated in a time-dependent manner. Also, the expression of MMP-2 and MMP-9 were down-regulated after 48 and 72 hours, whereas their activities raised in a time-dependent manner. Exposure of cells to NPs up-regulated the expression of inducible NO synthase, as previously was shown, and probably this is the reason for the increased level of NO, that can react with the thiol groups of reduced glutathione molecules, diminishing its concentration Nrf2 is a transcription factor translocated in nucleus, under oxidative stress, where downstream gene expression activates in order to modulate the adaptive intracellular response against oxidative stress. The cross-talk between Nrf2 and NF-kB activities regulates the inflammatory processes. The activation of NF-kB could activate up-regulation of IL-1β, IL-6, and IL-8. The increase of COX-2 expression could be correlated with IL-1β one. Also, probably in response to the pro-inflammatory cytokines, MMP-2 and MMP-9 were induced and activated. In conclusion, the exposure of MRC-5 cells to SiO2-NPs generated inflammation in a time-dependent manner.Keywords: inflammation, MRC-5 cells, oxidative stress, silica nanoparticles
Procedia PDF Downloads 1464249 Angiogenic Potential of Collagen Based Biomaterials Implanted on Chick Embryo Chorioallantoic Membrane as Alternative Microenvironment for in Vitro and in Vivo Angiogenesis Assays
Authors: Anca Maria Cimpean, Serban Comsa
Abstract:
Chick embryo chorioallantoic membrane (CAM) is a well vascularised in vivo experimental model used as a platform for testing the behavior of different implants inserted on it from tumor fragments to therapeutic agents or various biomaterials. Five types of collagen-based biomaterials with 2D and 3D structure (MotifMesh, Optimaix2D, Optimaix3D, Dual Layer Collagen and Xenoderm) were implanted on CAM and continuously evaluated by stereomicroscope for up to 5 days post-implant with an emphasis of their ability to requisite and develop new blood vessels (BVs) followed by microscopic analysis. MotifMEsh did not induce any angiogenic response lacking to be invaded by BVs from the CAM, but it induced intense inflammatory response necrosis and fibroblastic reaction around the implant. Optimaix2D has good adherence. CAM with minimal or no inflammatory reaction, a good integration of the CAM between the collagen mesh’s fibers, consistent adhesion of the cells to the collagen fibers,and a good ability to form pseudo-vascular channels filled with cells. Optimaix3D induced the highest angiogenic effects on CAM. The material shows good integration on CAM. The collagen fibers of the material show the ability to organize themselves into linear and tubular structures. It is possible to see blood elements, especially at the periphery of the implant. Dual-layer collagen behaves similar to Optimaix 3D, while Xenoderm induced a moderate angiogenic effect on CAM. Based on these data, we may conclude that collagen-based materials have variable ability to requisite and develop new blood vessels. A proper selection of collagen-based biomaterial scaffolds may crucially influence the acquisition and development of blood vessels during angiogenesis assays.Keywords: chick embryo chorioallantoic membrane, collagen scaffolds, blood vessels, vascular microenvironment
Procedia PDF Downloads 1934248 Association Analysis of Putative Loci with Coronary Artery Disease
Authors: Asma Naseer Cheema, Attya Bhatti, Jabar Ali, John Peter
Abstract:
Background: High cholesterol levels, endothelial dysfunction, inefficient coagulation cascade and hyper inflammatory response all are the basis of coronary artery disease (CAD). Several studies are carried out to see the genetic influence of these factors on disease outcome. Objective: The objective of our study was to see the association of 10 putative loci with coronary artery disease in our population. Materials & Methods: We screened our population for 10 putative loci of CAD showing significant association (p < 5x10-8) with candidate genes (regulating the cholesterol metabolism, endothelial function, coagulation cascade and inflammatory response of body). Hardy-Weinberg equilibrium and linkage disequilibrium in cases and controls s were estimated separately. Approximately 5-10 ng of dried DNA in 384 well plate format was used to genotype each sample on the Sequenom iPLEX assay at University of Pittsburgh Genomics and Proteomics Core Laboratories. It was built on single-base primer extension with the MALDI-TOF MS detection possessing high sensitivity and specificity. The SNPs were genotyped through Taqman assay. Hardy Weinberg test was applied. The 10 SNPs were selected as genetic markers for this study (rs579459, rs1561198, rs2954029, rs1122608, rs17114036, rs9515203, rs10947789, rs7173743, rs2895811, rs2075650). Results: Mean age of the patient was 52 ± 11 years. Blood pressure and positive family history was found a significant risk factor for CAD. None of the selected SNPs showed significant association with coronary artery disease in our population (p>0.05). Conclusion: rs579459, rs1561198, rs2954029, rs1122608, rs17114036, rs9515203, rs10947789, rs7173743, rs2895811, rs2075650 are not significant genetic markers for CAD in our population.Keywords: CAD, genetic markers, loci, risk factors
Procedia PDF Downloads 3714247 Dynamic Analysis of Nanosize FG Rectangular Plates Based on Simple Nonlocal Quasi 3D HSDT
Authors: Sabrina Boutaleb, Fouad Bourad, Kouider Halim Benrahou, Abdelouahed Tounsi
Abstract:
In the present work, the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosized FG plate. In HSDT, a cubic function is employed in terms of thickness coordinates to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton’s principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature, and a good agreement is observed. Finally, the influence of the various parameters, such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness-to-length ratio, on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.Keywords: nonlocal elasticity theory, FG nanoplate, free vibration, refined theory, elastic foundation
Procedia PDF Downloads 1204246 Crack Propagation in Concrete Gravity Dam
Authors: Faramarz Khoshnoudian
Abstract:
A seismic stability assessment of the concrete gravity dam was performed. Initially (Phase 1), a linear response spectrum analysis was performed to verify the potential for crack formation. The result shows the possibility of developing cracks in the upstream face of the dam close to the lowest gallery, which were sufficiently long that the dam would not be stable following the earthquake. The results show the dam has potentially inadequate seismic and post-earthquake resistance and recommended an update of the stability analysis.Keywords: crack propgation, concrete gravity dam, seismic, assesment
Procedia PDF Downloads 714245 Analysis of the Discursive Dynamics of Preservice Physics Teachers in a Context of Curricular Innovation
Authors: M. A. Barros, M. V. Barros
Abstract:
The aim of this work is to analyze the discursive dynamics of preservice teachers during the implementation of a didactic sequence on topics of Quantum Mechanics for High School. Our research methodology was qualitative, case study type, in which we selected two prospective teachers on the Physics Teacher Training Course of the Sao Carlos Institute of Physics, at the University of Sao Paulo/Brazil. The set of modes of communication analyzed were the intentions and interventions of the teachers, the established communicative approach, the patterns and the contents of the interactions between teachers and students. Data were collected through video recording, interviews and questionnaires conducted before and after an 8 hour mini-course, which was offered to a group of 20 secondary students. As teaching strategy we used an active learning methodology, called: Peer Instruction. The episodes pointed out that both future teachers used interactive dialogic and authoritative communicative approaches to mediate the discussion between peers. In the interactive dialogic dimension the communication pattern was predominantly I-R-F (initiation-response-feedback), in which the future teachers assisted the students in the discussion by providing feedback to their initiations and contributing to the progress of the discussions between peers. Although the interactive dialogic dimension has been preferential during the use of the Peer Instruction method the authoritative communicative approach was also employed. In the authoritative dimension, future teachers used predominantly the type I-R-E (initiation-response-evaluation) communication pattern by asking the students several questions and leading them to the correct answer. Among the main implications the work contributes to the improvement of the practices of future teachers involved in applying active learning methodologies in classroom by identifying the types of communicative approaches and communication patterns used, as well as researches on curriculum innovation in physics in high school.Keywords: curricular innovation, high school, physics teaching, discursive dynamics
Procedia PDF Downloads 1814244 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils
Authors: Ákos Wolf, Richard P. Ray
Abstract:
Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soilsKeywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity
Procedia PDF Downloads 2464243 Ultrasonic Agglomeration of Protein Matrices and Its Effect on Thermophysical, Macro- and Microstructural Properties
Authors: Daniela Rivera-Tobar Mario Perez-Won, Roberto Lemus-Mondaca, Gipsy Tabilo-Munizaga
Abstract:
Different dietary trends worldwide seek to consume foods with anti-inflammatory properties, rich in antioxidants, proteins, and unsaturated fatty acids that lead to better metabolic, intestinal, mental, and cardiac health. In this sense, food matrices with high protein content based on macro and microalgae are an excellent alternative to meet the new needs of consumers. An emerging and environmentally friendly technology for producing protein matrices is ultrasonic agglomeration. It consists of the formation of permanent bonds between particles, improving the agglomeration of the matrix compared to conventionally agglomerated products (compression). Among the advantages of this process are the reduction of nutrient loss and the avoidance of binding agents. The objective of this research was to optimize the ultrasonic agglomeration process in matrices composed of Spirulina (Arthrospira platensis) powder and Cochayuyo (Durvillae Antartica) flour, by means of the response variable (Young's modulus) and the independent variables were the process conditions (percentage of ultrasonic amplitude: 70, 80 and 90; ultrasonic agglomeration times and cycles: 20, 25 and 30 seconds, and 3, 4 and 5). It was evaluated using a central composite design and analyzed using response surface methodology. In addition, the effects of agglomeration on thermophysical and microstructural properties were evaluated. It was determined that ultrasonic compression with 80 and 90% amplitude caused conformational changes according to Fourier infrared spectroscopy (FTIR) analysis, the best condition with respect to observed microstructure images (SEM) and differential scanning calorimetry (DSC) analysis, was the condition of 90% amplitude 25 and 30 seconds with 3 and 4 cycles of ultrasound. In conclusion, the agglomerated matrices present good macro and microstructural properties which would allow the design of food systems with better nutritional and functional properties.Keywords: ultrasonic agglomeration, physical properties of food, protein matrices, macro and microalgae
Procedia PDF Downloads 614242 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor
Authors: Mitali Saha, Soma Das
Abstract:
The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.Keywords: coconut oil, CCNT, cholesterol, biosensor
Procedia PDF Downloads 2824241 Control of Oil Content of Fried Zucchini Slices by Partial Predrying and Process Optimization
Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner
Abstract:
Main concern about deep-fat-fried food materials is their high final oil contents absorbed during frying process and/or after cooling period, since diet including high content of oil is accepted unhealthy by consumers. Different methods have been evaluated to decrease oil content of fried food stuffs. One promising method is partially drying of food material before frying. In the present study it was aimed to control and decrease the final oil content of zucchini slices by means of partial drying and to optimize process conditions. Conventional oven drying was used to decrease moisture content of zucchini slices at a certain extent. Process performance in terms of oil uptake was evaluated by comparing oil content of predried and then fried zucchini slices with those determined for directly fried ones. For predrying and frying processes, oven temperature and weight loss and frying oil temperature and time pairs were controlled variables, respectively. Zucchini slices were also directly fried for sensory evaluations revealing preferred properties of final product in terms of surface color, moisture content, texture and taste. These properties of directly fried zucchini slices taking the highest score at the end of sensory evaluation were determined and used as targets in optimization procedure. Response surface methodology was used for process optimization. The properties, determined after sensory evaluation, were selected as targets; meanwhile oil content was aimed to be minimized. Results indicated that final oil content of zucchini slices could be reduced from 58% to 46% by controlling conditions of predrying and frying processes. As a result, it was suggested that predrying could be one choose to reduce oil content of fried zucchini slices for health diet. This project (113R015) has been supported by TUBITAK.Keywords: health process, optimization, response surface methodology, oil uptake, conventional oven
Procedia PDF Downloads 3664240 Limitation of Parallel Flow in Three-Dimensional Elongated Porous Domain Subjected to Cross Heat and Mass Flux
Authors: Najwa Mimouni, Omar Rahli, Rachid Bennacer, Salah Chikh
Abstract:
In the present work 2D and 3D numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out. In the formulation of the problem, the Boussinesq approximation is considered and cross Neumann boundary conditions are specified for heat and mass walls conditions. The numerical method is based on the control volume approach with the third order QUICK scheme. Full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For the explored large range of the controlling parameters, we clearly evidenced that the increase in the depth of the cavity i.e. the lateral aspect ratio has an important effect on the flow patterns. The 2D perfect parallel flows obtained for a small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complicated flow pattern and the classically studied 2D parallel flows are impossible.Keywords: bifurcation, natural convection, heat and mass transfer, parallel flow, porous media
Procedia PDF Downloads 4734239 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall
Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono
Abstract:
Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall
Procedia PDF Downloads 1914238 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform
Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho
Abstract:
In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay, and signal noise were added to a simulation model of an active-controlled vibration isolation system to regulate the movement of the exercise platform. Previous simulation work was conducted primarily via MATLAB/Simulink. Two additional simulation tools used in this study were Trick and MBDyn, NASA co-developed software simulation environments. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active-controlled vibration isolation system outperforms a passive-controlled system even with the addition of feedback delay and signal noise to the active-controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from a squat exercise was calculated from the motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active-controlled system than the passive-controlled system.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 1134237 Development of PPy-M Composites Materials for Sensor Application
Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad
Abstract:
The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole
Procedia PDF Downloads 2664236 Enhanced Physiological Response of Blood Pressure and Improved Performance in Successive Divided Attention Test Seen with Classical Instrumental Background Music Compared to Controls
Authors: Shantala Herlekar
Abstract:
Introduction: Entrainment effect of music on cardiovascular parameters is well established. Music is being used in the background by medical students while studying. However, does it really help them relax faster and concentrate better? Objectives: This study was done to compare the effects of classical instrumental background music versus no music on blood pressure response over time and on successively performed divided attention test in Indian and Malaysian 1st-year medical students. Method: 60 Indian and 60 Malaysian first year medical students, with an equal number of girls and boys were randomized into two groups i.e music group and control group thus creating four subgroups. Three different forms of Symbol Digit Modality Test (to test concentration ability) were used as a pre-test, during music/control session and post-test. It was assessed using total, correct and error score. Simultaneously, multiple Blood Pressure recordings were taken as pre-test, during 1, 5, 15, 25 minutes during music/control (+SDMT) and post-test. The music group performed the test with classical instrumental background music while the control group performed it in silence. Results were analyzed using students paired t test. p value < 0.05 was taken as statistically significant. A drop in BP recording was indicative of relaxed state and a rise in BP with task performance was indicative of increased arousal. Results: In Symbol Digit Modality Test (SDMT) test, Music group showed significant better results for correct (p = 0.02) and total (p = 0.029) scores during post-test while errors reduced (p = 0.002). Indian music group showed decline in post-test error scores (p = 0.002). Malaysian music group performed significantly better in all categories. Blood pressure response was similar in music and control group with following variations, a drop in BP at 5minutes, being significant in music group (p < 0.001), a steep rise in values till 15minutes (corresponding to SDMT test) also being significant only in music group (p < 0.001) and the Systolic BP readings in controls during post-test were at lower levels compared to music group. On comparing the subgroups, not much difference was noticed in recordings of Indian student’s subgroups while all the paired-t test values in the Malaysian music group were significant. Conclusion: These recordings indicate an increased relaxed state with classical instrumental music and an increased arousal while performing a concentration task. Music used in our study was beneficial to students irrespective of their nationality and preference of music type. It can act as an “active coping” strategy and alleviate stress within a very short period of time, in our study within a span of 5minutes. When used in the background, during task performance, can increase arousal which helps the students perform better. Implications: Music can be used between lectures for a short time to relax the students and help them concentrate better for the subsequent classes, especially for late afternoon sessions.Keywords: blood pressure, classical instrumental background music, ethnicity, symbol digit modality test
Procedia PDF Downloads 1414235 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison
Authors: B. S. Abdelwahed, B. B. Belkassem
Abstract:
Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance
Procedia PDF Downloads 4634234 Using Human-Centred Service Design and Partnerships as a Model to Promote Cross-Sector Social Responsibility in Disaster Resilience: An Australian Case Study
Authors: Keith Diamond, Tracy Collier, Ciara Sterling, Ben Kraal
Abstract:
The increased frequency and intensity of disaster events in the Asia-Pacific region is likely to require organisations to better understand how their initiatives, and the support they provide to their customers, intersect with other organisations aiming to support communities in achieving disaster resilience. While there is a growing awareness that disaster response and recovery rebuild programmes need to adapt to more integrated, community-led approaches, there is often a discrepancy between how programmes intend to work and how they are collectively experienced in the community, creating undesired effects on community resilience. Following Australia’s North Queensland Monsoon Disaster of 2019, this research set out to understand and evaluate how the service and support ecosystem impacted on the local community’s experience and influenced their ability to respond and recover. The purpose of this initiative was to identify actionable, cross-sector, people-centered improvements that support communities to recover and thrive when faced with disaster. The challenge arose as a group of organisations, including utility providers, banks, insurers, and community organisations, acknowledged that improving their own services would have limited impact on community wellbeing unless the other services people need are also improved and aligned. The research applied human-centred service design methods, typically applied to single products or services, to design a new way to understand a whole-of-community journey. Phase 1 of the research conducted deep contextual interviews with residents and small business owners impacted by the North Queensland Monsoon and qualitative data was analysed to produce community journey maps that detailed how individuals navigated essential services, such as accommodation, finance, health, and community. Phase 2 conducted interviews and focus groups with frontline workers who represented industries that provided essential services to assist the community. Data from Phase 1 and Phase 2 of the research was analysed and combined to generate a systems map that visualised the positive and negative impacts that occurred across the disaster response and recovery service ecosystem. Insights gained from the research has catalysed collective action to address future Australian disaster events. The case study outlines a transformative way for sectors and industries to rethink their corporate social responsibility activities towards a cross-sector partnership model that shares responsibility and approaches disaster response and recovery as a single service that can be designed to meet the needs of communities.Keywords: corporate social responsibility, cross sector partnerships, disaster resilience, human-centred design, service design, systems change
Procedia PDF Downloads 1544233 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study
Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali
Abstract:
In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.Keywords: Navier’s condition, Newtonian fluid model, chemical reaction, heat source/sink
Procedia PDF Downloads 1714232 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques
Procedia PDF Downloads 3324231 Design of Target Selection for Pedestrian Autonomous Emergency Braking System
Authors: Tao Song, Hao Cheng, Guangfeng Tian, Chuang Xu
Abstract:
An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion.Keywords: automatic emergency braking system, pedestrian target selection, TTC, variable width funnel
Procedia PDF Downloads 1574230 Guidelines to Designing Generic Protocol for Responding to Chemical, Biological, Radiological and Nuclear Incidents
Authors: Mohammad H. Yarmohammadian, Mehdi Nasr Isfahani, Elham Anbari
Abstract:
Introduction: The awareness of using chemical, biological, and nuclear agents in everyday industrial and non-industrial incidents has increased recently; release of these materials can be accidental or intentional. Since hospitals are the forefronts of confronting Chemical, Biological, Radiological and Nuclear( CBRN) incidents, the goal of the present research was to provide a generic protocol for CBRN incidents through a comparative review of CBRN protocols and guidelines of different countries and reviewing various books, handbooks and papers. Method: The integrative approach or research synthesis was adopted in this study. First a simple narrative review of programs, books, handbooks, and papers about response to CBRN incidents in different countries was carried out. Then the most important and functional information was discussed in the form of a generic protocol in focus group sessions and subsequently confirmed. Results: Findings indicated that most of the countries had various protocols, guidelines, and handbooks for hazardous materials or CBRN incidents. The final outcome of the research synthesis was a 50 page generic protocol whose main topics included introduction, definition and classification of CBRN agents, four major phases of incident and disaster management cycle, hospital response management plan, equipment, and recommended supplies and antidotes for decontamination (radiological/nuclear, chemical, biological); each of these also had subtopics. Conclusion: In the majority of international protocols, guidelines, handbooks and also international and Iranian books and papers, there is an emphasis on the importance of incident command system, determining the safety degree of decontamination zones, maps of decontamination zones, decontamination process, triage classifications, personal protective equipment, and supplies and antidotes for decontamination; these are the least requirements for such incidents and also consistent with the provided generic protocol.Keywords: hospital, CBRN, decontamination, generic protocol, CBRN Incidents
Procedia PDF Downloads 2954229 Tuning for a Small Engine with a Supercharger
Authors: Shinji Kajiwara, Tadamasa Fukuoka
Abstract:
The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.Keywords: engine, combustion, cooling system, numerical simulation, power, torque, mechanical super charger
Procedia PDF Downloads 3004228 Empirical Green’s Function Technique for Accelerogram Synthesis: The Problem of the Use for Marine Seismic Hazard Assessment
Authors: Artem A. Krylov
Abstract:
Instrumental seismological researches in water areas are complicated and expensive, that leads to the lack of strong motion records in most offshore regions. In the same time the number of offshore industrial infrastructure objects, such as oil rigs, subsea pipelines, is constantly increasing. The empirical Green’s function technique proved to be very effective for accelerograms synthesis under the conditions of poorly described seismic wave propagation medium. But the selection of suitable small earthquake record in offshore regions as an empirical Green’s function is a problem because of short seafloor instrumental seismological investigation results usually with weak micro-earthquakes recordings. An approach based on moving average smoothing in the frequency domain is presented for preliminary processing of weak micro-earthquake records before using it as empirical Green’s function. The method results in significant waveform correction for modeled event. The case study for 2009 L’Aquila earthquake was used to demonstrate the suitability of the method. This work was supported by the Russian Foundation of Basic Research (project № 18-35-00474 mol_a).Keywords: accelerogram synthesis, empirical Green's function, marine seismology, microearthquakes
Procedia PDF Downloads 3244227 Bronchoscopy and Genexpert in the Diagnosis of Pulmonary Tuberculosis in the Indian Private Health Sector: A Short Case Series
Authors: J. J. Mathew
Abstract:
Pulmonary tuberculosis is highly prevalent in the Indian subcontinent. Most cases of pulmonary tuberculosis are diagnosed with sputum examinations and the vast majority of these are undertaken by the government run establishments. However, mycobacterial cultures are not routinely done, unless drug resistance is detected based on clinical response. Modern diagnostic tests like bronchoscopy and Genexpert are not routinely employed in the government institutions for the diagnosis of pulmonary tuberculosis, but have been accepted widely by good private institutions. The utility of these investigations in the private sector is not yet well recognized. This retrospective study aims to assess the usefulness of bronchoscopy and Genexpert in the diagnosis of pulmonary tuberculosis in quaternary care private hospital in India. 30 patients with respiratory symptoms raising the possibility of tuberculosis based on clinical and radiological features, but without any significant sputum production, were subject to bronchoscopy and BAL samples taken for microbiological studies, including Genexpert. 6 out of the 30 patients were found to be Genexpert positive and none of them showed Rifampicin resistance. All the 6 cases had upper zone predominant disease. One of the 6 cases of tuberculosis had another co-existent bacterial infection according to the routine culture studies. 6 other cases were proven to be due to other bacterial infections alone, 2 had a malignant diagnosis and the remaining cases were thought to be non-infective pathologies. The Genexpert results were made available within 48 hours in the 6 positive cases. All of them were commenced on standard anti-tuberculous regimen with excellent clinical response. The other infective cases were also managed successfully based on the drug susceptibilities. The study has shown the usefulness of these investigations as early intervention enabled diagnosis facilitating treatment and prevention of any clinical deterioration. The study lends support to early bronchoscopy and Genexpert testing in suspected cases of pulmonary tuberculosis without significant sputum production, in a high prevalence country which normally relies on sputum examination for the diagnosis of pulmonary tuberculosis.Keywords: pulmonary, tuberculosis, bronchoscopy, genexpert
Procedia PDF Downloads 2454226 Application of Modal Analysis for Commissioning of a Ball Screw System
Authors: T. D. Tran, H. Schlegel, R. Neugebauer
Abstract:
Ball screws are an important component in machine tools. In mechatronic systems and machine tools, a ball screw has to work usually at a high speed. Otherwise the axial compliance of the ball screw, in combination with the inertia of the slide, the motor, the coupling and the screw, will cause an oscillation resonance, which limits the systems bandwidth and consequently influences performance of the motion controller. In this paper, the modal analysis method by measuring and analysing the vibrating parameters of the ball screw system to determine the dynamic characteristic of existing structures is used. On the one hand, the results of this study were obtained by the theoretical analysis and the modal testing of a ball screw system test station with the help of an impact hammer, respectively using excitation by motor. The experimental study showed oscillating forms of the ball screw for each frequency and obtained eigenfrequencies of the ball screw system. On the other hand, in this research a simulation with the help of the numerical modal analysis in order to analyse the oscillation and to find the eigenfrequencies of the ball screw system is used. Furthermore, the model order reduction by modal reduction and also according to Guyan is carried out. On the basis of these results a secure and also rapid commissioning of the control loops with regard to operating in their optimal function is targeted.Keywords: modal analysis, ball screw, controller system, machine tools
Procedia PDF Downloads 4604225 Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites
Authors: Sarra Haouala, Issam Doghri
Abstract:
In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles.Keywords: asymptotic expansions, cyclic loadings, inclusion-reinforced thermoplastics, mean-field homogenization, time homogenization
Procedia PDF Downloads 3694224 Response of Lepidium Sativum to Ionic Toxicity
Authors: M. F. El-Barghathi, R. El-Tajouri
Abstract:
The effect of different concentrations of cadmium sulfate "CdSO4" (0.0, 10, 50, 100, 500 ppm) was tested on seed germination, seedling elongation and growth of Lepidium sativum (garden cress) plants. Results indicated that seed germination and seedling elongation were not inhibited by different concentrations of CdSO4. This could suggest that, Lepidium sativum may be used as a phyto remediation tool of soils contaminated with cadmium.Keywords: Lepidium sativum, heavy metals, ionic toxicity, phytoremediation
Procedia PDF Downloads 5564223 Influence of Irregularities in Plan and Elevation
Authors: Houmame Benbouali
Abstract:
Some architectural conditions required some shapes often lead to an irregular distribution of masses, rigidities and resistances. The main object of the present study consists in estimating the influence of the irregularity both in plan and in elevation which presenting some structures on the dynamic characteristics and his influence on the behavior of this structures. To do this, it is necessary to apply both dynamic methods proposed by the RPA99 (spectral modal method and method of analysis by accelerogram) on certain similar prototypes and to analyze the parameters measuring the answer of these structures and to proceed to a comparison of the results.Keywords: irregularity, seismic, response, structure, ductility
Procedia PDF Downloads 3744222 Dosimetric Application of α-Al2O3:C for Food Irradiation Using TA-OSL
Authors: A. Soni, D. R. Mishra, D. K. Koul
Abstract:
α-Al2O3:C has been reported to have deeper traps at 600°C and 900°C respectively. These traps have been reported to accessed at relatively earlier temperatures (122 and 322 °C respectively) using thermally assisted OSL (TA-OSL). In this work, the dose response α-Al2O3:C was studied in the dose range of 10Gy to 10kGy for its application in food irradiation in low ( upto 1kGy) and medium(1 to 10kGy) dose range. The TOL (Thermo-optically stimulated luminescence) measurements were carried out on RisØ TL/OSL, TL-DA-15 system having a blue light-emitting diodes (λ=470 ±30nm) stimulation source with power level set at the 90% of the maximum stimulation intensity for the blue LEDs (40 mW/cm2). The observations were carried on commercial α-Al2O3:C phosphor. The TOL experiments were carried out with number of active channel (300) and inactive channel (1). Using these settings, the sample is subjected to linear thermal heating and constant optical stimulation. The detection filter used in all observations was a Hoya U-340 (Ip ~ 340 nm, FWHM ~ 80 nm). Irradiation of the samples was carried out using a 90Sr/90Y β-source housed in the system. A heating rate of 2 °C/s was preferred in TL measurements so as to reduce the temperature lag between the heater plate and the samples. To study the dose response of deep traps of α-Al2O3:C, samples were irradiated with various dose ranging from 10 Gy to 10 kGy. For each set of dose, three samples were irradiated. In order to record the TA-OSL, initially TL was recorded up to a temperature of 400°C, to deplete the signal due to 185°C main dosimetry TL peak in α-Al2O3:C, which is also associated with the basic OSL traps. After taking TL readout, the sample was subsequently subjected to TOL measurement. As a result, two well-defined TA-OSL peaks at 121°C and at 232°C occur in time as well as temperature domain which are different from the main dosimetric TL peak which occurs at ~ 185°C. The linearity of the integrated TOL signal has been measured as a function of absorbed dose and found to be linear upto 10kGy. Thus, it can be used for low and intermediate dose range of for its application in food irradiation. The deep energy level defects of α-Al2O3:C phosphor can be accessed using TOL section of RisØ reader system.Keywords: α-Al2O3:C, deep traps, food irradiation, TA-OSL
Procedia PDF Downloads 3004221 Portuguese Guitar Strings Characterization and Comparison
Authors: P. Serrão, E. Costa, A. Ribeiro, V. Infante
Abstract:
The characteristic sonority of the Portuguese guitar is in great part what makes Fado so distinguishable from other traditional song styles. The Portuguese guitar is a pear-shaped plucked chordophone with six courses of double strings. This study compares the two types of plain strings available for Portuguese guitar and used by the musicians. One is stainless steel spring wire, the other is high carbon spring steel (music wire). Some musicians mention noticeable differences in sound quality between these two string materials, such as a little more brightness and sustain in the steel strings. Experimental tests were performed to characterize string tension at pitch; mechanical strength and tuning stability using the universal testing machine; dimensional control and chemical composition analysis using the scanning electron microscope. The string dynamical behaviour characterization experiments, including frequency response, inharmonicity, transient response, damping phenomena and were made in a monochord test set-up designed and built in-house. Damping factor was determined for the fundamental frequency. As musicians are able to detect very small damping differences, an accurate a characterization of the damping phenomena for all harmonics was necessary. With that purpose, another improved monochord was set and a new system identification methodology applied. Due to the complexity of this task several adjustments were necessary until obtaining good experimental data. In a few cases, dynamical tests were repeated to detect any evolution in damping parameters after break-in period when according to players experience a new string sounds gradually less dull until reaching the typically brilliant timbre. Finally, each set of strings was played on one guitar by a distinguished player and recorded. The recordings which include individual notes, scales, chords and a study piece, will be analysed to potentially characterize timbre variations.Keywords: damping factor, music wire, portuguese guitar, string dynamics
Procedia PDF Downloads 553