Search results for: micro controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2535

Search results for: micro controller

375 The MicroRNA-2110 Suppressed Cell Proliferation and Migration Capacity in Hepatocellular Carcinoma Cells

Authors: Pelin Balcik Ercin

Abstract:

Introduction: ZEB transcription factor family member ZEB2, has a role in epithelial to mesenchymal transition during development and metastasis. The altered circulating extracellular miRNAs expression is observed in diseases, and extracellular miRNAs have an important role in cancer cell microenvironment. In ChIP-Seq study, the expression of miR-2110 was found to be regulated by ZEB2. In this study, the effects of miR2110 on cell proliferation and migration of hepatocellular carcinoma (HCC) cells were examined. Material and Methods: SNU398 cells transfected with mimic miR2110 (20nM) (HMI0375, Sigma-Aldrich) and negative control miR (HMC0002, Sigma-Aldrich). MicroRNA isolation was accomplished with miRVANA isolation kit according to manufacturer instructions. cDNA synthesis was performed expression, respectively, and calibrated with Ct of controls. The real-time quantitative PCR (RT-qPCR) reaction was performed using the TaqMan Fast Advanced Master Mix (Thermo Sci.). Ct values of miR2110 were normalized to miR-186-5p and miR16-5p for the intracellular gene. Cell proliferation analysis was analyzed with the xCELLigence RTCA System. Wound healing assay was analyzed with the ImageJ program and relative fold change calculated. Results: The mimic-miR-2110 transfected SNU398 cells nearly nine-fold (log2) more miR-2110 expressed compared to negative control transfected cells. The mimic-miR-2110 transfected HCC cell proliferation significantly inhibited compared to the negative control cells. Furthermore, miR-2110-SNU398 cell migration capacity was relatively four-fold decreased compared to negative control-miR-SNU398 cells. Conclusion: Our results suggest the miR-2110 inhibited cell proliferation and also miR-2110 negatively affect cell migration compared to control groups in HCC cells. These data suggest the complexity of microRNA EMT transcription factors regulation. These initial results are pointed out the predictive biomarker capacity of miR-2110 in HCC.

Keywords: epithelial to mesenchymal transition, EMT, hepatocellular carcinoma cells, micro-RNA-2110, ZEB2

Procedia PDF Downloads 93
374 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: laser scribing, lightscribe DVD, graphene oxide, scanning electron microscopy

Procedia PDF Downloads 93
373 Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep

Authors: Wojciech Górecki, Anna Sowiżdżał, Grzegorz Machowski, Tomasz Maćkowski, Bartosz Papiernik, Michał Stefaniuk

Abstract:

The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep.

Keywords: autochthonous Miocene, Carpathian foredeep, Poland, shale gas

Procedia PDF Downloads 200
372 Solid State Drive End to End Reliability Prediction, Characterization and Control

Authors: Mohd Azman Abdul Latif, Erwan Basiron

Abstract:

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Keywords: e2e reliability prediction, SSD, TCT, solder joint reliability, NUDD, connectivity issues, qualifications, characterization and control

Procedia PDF Downloads 147
371 Physical Planning Trajectories for Disaster Mitigation and Preparedness in Costal and Seismic Regions: Capital Region of Andhra Pradesh, Vijayawada in India

Authors: Timma Reddy, Srikonda Ramesh

Abstract:

India has been traditionally vulnerable to natural disasters such as Floods, droughts, cyclones, earthquakes and landslides. It has become a recurrent phenomenon as observed in last five decades. The survey indicates that about 60% of the landmass is prone to earthquakes of various intensities; over 40 million hectares is prone to floods; about 8% of the total area is prone to cyclones and 68% of the area is susceptible to drought. Climate change is likely to be perceived through experience of extreme weather events. There is growing societal concern about climate change, given the potential impacts of associated natural hazards such as cyclones, flooding, earthquakes, landslides etc, hence it is essential and crucial to strengthening our settlements to respond to such calamities. So, the research paper focus is to analyze the effective planning strategy/mechanism to integrate disaster mitigation measures in coastal regions in general and Capital Region of Andhra Pradesh in particular. The basic hypothesis is to govern the appropriate special planning considerations would facilitate to have organized way of protective life and properties from natural disasters. And further to integrate the infrastructure planning with conscious direction would provide an effective mitigations measures. It has been planned and analyzed to Vijayawada city with conscious land use planning with reference to space syntax trajectory in accordance to required social infrastructure such as health facilities, institution areas and recreational and other open spaces. It has been identified that the geographically ideal location with reference to the population densities based on GIS tools the properness strategies can be effectively integrated to protect the life and to save the properties by means of reducing the damage/impact of natural disasters in general earth quake/cyclones or floods in particularly.

Keywords: modular, trajectories, social infrastructure, evidence based syntax, drills and equipments, GIS, geographical micro zoning, high resolution satellite image

Procedia PDF Downloads 196
370 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining

Procedia PDF Downloads 145
369 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties

Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich

Abstract:

Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.

Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis

Procedia PDF Downloads 80
368 New Insights into Ethylene and Auxin Interplay during Tomato Ripening

Authors: Bruna Lima Gomes, Vanessa Caroline De Barros Bonato, Luciano Freschi, Eduardo Purgatto

Abstract:

Plant hormones are long known to be tightly associated with fruit development and are involved in controlling various aspects of fruit ripening. For fleshy fruits, ripening is characterized for changes in texture, color, aroma and other parameters that markedly contribute to its quality. Ethylene is one of the major players regulating the ripening-related processes, but emerging evidences suggest that auxin is also part of this dynamic control. Thus, the aim of this study was providing new insights into the auxin role during ripening and the hormonal interplay between auxin and ethylene. For that, tomato fruits (Micro-Tom) were collected at mature green stage and separated in four groups: one for indole-3-acetic acid (IAA) treatment, one for ethylene, one for a combination of IAA and ethylene, and one for control. Hormone solution was injected through the stylar apex, while mock samples were injected with buffer only. For ethylene treatments, fruits were exposed to gaseous hormone. Then, fruits were left to ripen under standard conditions and to assess ripening development, hue angle was reported as color indicator and ethylene production was measured by gas chromatography. The transcript levels of three ripening-related ethylene receptors (LeETR3, LeETR4 and LeETR6) were evaluated by RT-qPCR. Results showed that ethylene treatment induced ripening, stimulated ethylene production, accelerated color changes and induced receptor expression, as expected. Nonetheless, auxin treatment showed the opposite effect once fruits remained green for longer time than control group and ethylene perception has changed, taking account the reduced levels of receptor transcripts. Further, treatment with both hormones revealed that auxin effect in delaying ripening was predominant, even with higher levels of ethylene. Altogether, the data suggest that auxin modulates several aspects of the tomato fruit ripening modifying the ethylene perception. The knowledge about hormonal control of fruit development will help design new strategies for effective manipulation of ripening regarding fruit quality and brings a new level of complexity on fruit ripening regulation.

Keywords: ethylene, auxin, fruit ripening, hormonal crosstalk

Procedia PDF Downloads 438
367 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: body composition, diet, exercise, protein

Procedia PDF Downloads 203
366 Design and Modeling of Human Middle Ear for Harmonic Response Analysis

Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey

Abstract:

The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.

Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)

Procedia PDF Downloads 140
365 Parametric Study of a Washing Machine to Develop an Energy Efficient Program Regarding the Enhanced Washing Efficiency Index and Micro Organism Removal Performance

Authors: Peli̇n Yilmaz, Gi̇zemnur Yildiz Uysal, Emi̇ne Bi̇rci̇, Berk Özcan, Burak Koca, Ehsan Tuzcuoğlu, Fati̇h Kasap

Abstract:

Development of Energy Efficient Programs (EEP) is one of the most significant trends in the wet appliance industry of the recent years. Thanks to the EEP, the energy consumption of a washing machine as one of the most energy-consuming home appliances can shrink considerably, while its washing performance and the textile hygiene should remain almost unchanged. Here in, the goal of the present study is to achieve an optimum EEP algorithm providing excellent textile hygiene results as well as cleaning performance in a domestic washing machine. In this regard, steam-pretreated cold wash approach with a combination of innovative algorithm solution in a relatively short washing cycle duration was implemented. For the parametric study, steam exposure time, washing load, total water consumption, main-washing time, and spinning rpm as the significant parameters affecting the textile hygiene and cleaning performance were investigated within a Design of Experiment study using Minitab 2021 statistical program. For the textile hygiene studies, specific loads containing the contaminated cotton carriers with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria were washed. Then, the microbial removal performance of the designed programs was expressed as log reduction calculated as a difference of microbial count per ml of the liquids in which the cotton carriers before and after washing. For the cleaning performance studies, tests were carried out with various types of detergents and EMPA Standard Stain Strip. According to the results, the optimum EEP program provided an excellent hygiene performance of more than 2 log reduction of microorganism and a perfect Washing Efficiency Index (Iw) of 1.035, which is greater than the value specified by EU ecodesign regulation 2019/2023.

Keywords: washing machine, energy efficient programs, hygiene, washing efficiency index, microorganism, escherichia coli, staphylococcus aureus, pseudomonas aeruginosa, laundry

Procedia PDF Downloads 102
364 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

Authors: Bijit Kalita, R. Jayaganthan

Abstract:

Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.

Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing

Procedia PDF Downloads 97
363 The Effect of Acute Rejection and Delayed Graft Function on Renal Transplant Fibrosis in Live Donor Renal Transplantation

Authors: Wisam Ismail, Sarah Hosgood, Michael Nicholson

Abstract:

The research hypothesis is that early post-transplant allograft fibrosis will be linked to donor factors and that acute rejection and/or delayed graft function in the recipient will be independent risk factors for the development of fibrosis. This research hypothesis is to explore whether acute rejection/delay graft function has an effect on the renal transplant fibrosis within the first year post live donor kidney transplant between 1998 and 2009. Methods: The study has been designed to identify five time points of the renal transplant biopsies [0 (pre-transplant), 1 month, 3 months, 6 months and 12 months] for 300 live donor renal transplant patients over 12 years period between March 1997 – August 2009. Paraffin fixed slides were collected from Leicester General Hospital and Leicester Royal Infirmary. These were routinely sectioned at a thickness of 4 Micro millimetres for standardization. Conclusions: Fibrosis at 1 month after the transplant was found significantly associated with baseline fibrosis (p<0.001) and HTN in the transplant recipient (p<0.001). Dialysis after the transplant showed a weak association with fibrosis at 1 month (p=0.07). The negative coefficient for HTN (-0.05) suggests a reduction in fibrosis in the absence of HTN. Fibrosis at 1 month was significantly associated with fibrosis at baseline (p 0.01 and 95%CI 0.11 to 0.67). Fibrosis at 3, 6 or 12 months was not found to be associated with fibrosis at baseline (p=0.70. 0.65 and 0.50 respectively). The amount of fibrosis at 1 month is significantly associated with graft survival (p=0.01 and 95%CI 0.02 to 0.14). Rejection and severity of rejection were not found to be associated with fibrosis at 1 month. The amount of fibrosis at 1 month was significantly associated with graft survival (p=0.02) after adjusting for baseline fibrosis (p=0.01). Both baseline fibrosis and graft survival were significant predictive factors. The amount of fibrosis at 1 month was not found to be significantly associated with rejection (p=0.64) after adjusting for baseline fibrosis (p=0.01). The amount of fibrosis at 1 month was not found to be significantly associated with rejection severity (p=0.29) after adjusting for baseline fibrosis (p=0.04). Fibrosis at baseline and HTN in the recipient were found to be predictive factors of fibrosis at 1 month. (p 0.02, p <0.001 respectively). Age of the donor, their relation to the patient, the pre-op Creatinine, artery, kidney weight and warm time were not found to be significantly associated with fibrosis at 1 month. In this complex model baseline fibrosis, HTN in the recipient and cold time were found to be predictive factors of fibrosis at 1 month (p=0.01,<0.001 and 0.03 respectively). Donor age was found to be a predictive factor of fibrosis at 6 months. The above analysis was repeated for 3, 6 and 12 months. No associations were detected between fibrosis and any of the explanatory variables with the exception of the donor age which was found to be a predictive factor of fibrosis at 6 months.

Keywords: fibrosis, transplant, renal, rejection

Procedia PDF Downloads 210
362 Micro RNAs (194 and 135a) as Biomarkers and Therapeutic Targets in Type 2 Diabetic Rats

Authors: H. Haseena Banu, D. Karthick, R. Stalin, E. Nandha Kumar, T. P. Sachidanandam, P. Shanthi

Abstract:

Background of the study: Type 2 diabetes is emerging as the predominant metabolic disorder in the world among adults characterized mainly by the resistance of the insulin sensitive tissues towards insulin followed by the decrease in the insulin secretion. The treatment for this disease usually involves treatment with oral synthetic drugs which are known to cause several side effects. Therefore, identification of new biomarkers as therapeutic target is the need of the hour. miRNAs are small, non–protein-coding RNAs that negatively regulate gene expression by promoting degradation and/or inhibit the translation of target mRNAs and have emerged as biomarkers in predicting diabetes mellitus. Objective of the study: To elucidate the therapeutic role of gallic acid in modulating the alterations in glucose metabolism induced by miRNAs 194 and 135a in Type 2 diabetic rats. Materials and Methods: T2D was induced in rats by feeding them with a high fat diet for 2 weeks followed by intraperitoneal injection of 35 mg/kg/body weight (b.wt.) of streptozotocin. Microarrays were used to assess the expression of miRNAs in control, diabetic and gallic acid treated rats. Gene expression studies were carried out by RT PCR analysis. Results: Forty one miRNAs were differentially expressed in Type 2 diabetic rats. Among these, the expression of miRNA 194 was significantly decreased whereas miRNA 135a was significantly increased in Type 2 diabetic rats. The glucose metabolism was also altered significantly in skeletal muscle of Type 2 diabetic rats. Conclusion: T2D is associated with alterations in the expression of miRNAs in skeletal muscle. Both these miRNAs 194 and 135a play an important role in glucose metabolism in skeletal muscle of diabetic rats. Gallic acid effectively ameliorated the alterations in glucose metabolism. Hence, both these miRNAs can serve as biomarkers and therapeutic targets in diabetes mellitus. The study also establishes the role of gallic acid as therapeutic agent. Acknowledgment: The financial assistance provided in the form of ICMR women scientist by ICMR DHR INDIA is gratefully acknowledged here.

Keywords: gallic acid, high fat diet, type 2 diabetes mellitus, miRNAs

Procedia PDF Downloads 325
361 Genotyping and Phylogeny of Phaeomoniella Genus Associated with Grapevine Trunk Diseases in Algeria

Authors: A. Berraf-Tebbal, Z. Bouznad, , A.J.L. Phillips

Abstract:

Phaeomoniella is a fungus genus in the mitosporic ascomycota which includes Phaeomoniella chlamydospora specie associated with two declining diseases on grapevine (Vitis vinifera) namely Petri disease and esca. Recent studies have shown that several Phaeomoniella species also cause disease on many other woody crops, such as forest trees and woody ornamentals. Two new species, Phaeomoniella zymoides and Phaeomoniella pinifoliorum H.B. Lee, J.Y. Park, R.C. Summerbell et H.S. Jung, were isolated from the needle surface of Pinus densiflora Sieb. et Zucc. in Korea. The identification of species in Phaeomoniella genus can be a difficult task if based solely on morphological and cultural characters. In this respect, the application of molecular methods, particularly PCR-based techniques, may provide an important contribution. MSP-PCR (microsatellite primed-PCR) fingerprinting has proven useful in the molecular typing of fungal strains. The high discriminatory potential of this method is particularly useful when dealing with closely related or cryptic species. In the present study, the application of PCR fingerprinting was performed using the micro satellite primer M13 for the purpose of species identification and strain typing of 84 Phaeomoniella -like isolates collected from grapevines with typical symptoms of dieback. The bands produced by MSP-PCR profiles divided the strains into 3 clusters and 5 singletons with a reproducibility level of 80%. Representative isolates from each group and, when possible, isolates from Eutypa dieback and esca symptoms were selected for sequencing of the ITS region. The ITS sequences for the 16 isolates selected from the MSP-PCR profiles were combined and aligned with sequences of 18 isolates retrieved from GenBank, representing a selection of all known Phaeomoniella species. DNA sequences were compared with those available in GenBank using Neighbor-joining (NJ) and Maximum-parsimony (MP) analyses. The phylogenetic trees of the ITS region revealed that the Phaeomoniella isolates clustered with Phaeomoniella chlamydospora reference sequences with a bootstrap support of 100 %. The complexity of the pathosystems vine-trunk diseases shows clearly the need to identify unambiguously the fungal component in order to allow a better understanding of the etiology of these diseases and justify the establishment of control strategies against these fungal agents.

Keywords: Genotyping, MSP-PCR, ITS, phylogeny, trunk diseases

Procedia PDF Downloads 459
360 Nose Macroneedling Tie Suture Hidden Technique

Authors: Mohamed Ghoz, Hala Alsabeh

Abstract:

Context: Macroscopic Nose Macroneedling (MNM) is a new non-surgical procedure for lifting and tightening the nose. It is a tissue-non-invasive technique that uses a needle to create micro-injuries in the skin. These injuries stimulate the production of collagen and elastin, which results in the tightening and lifting of the skin. Research Aim: The research aim of this study was to investigate the efficacy and safety of MNM for the treatment of nasal deformities. Methodology A total of 100 patients with nasal deformities were included in this study. The patients were randomly assigned to either the MNM group or the control group. The MNM group received a single treatment of MNM, while the control group received no treatment. The patients were evaluated at baseline, 6 months, and 12 months after treatment. Findings: The results of this study showed that MNM was effective in improving the appearance of the nose in patients with nasal deformities. At 6 months after treatment, the patients in the MNM group had significantly improved nasal tip projection, nasal bridge height, and nasal width compared to the patients in the control group. The improvements in nasal appearance were maintained at 12 months after treatment. Theoretical Importance: The findings of this study provide support for the use of MNM as a safe and effective treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities. Data Collection: Data was collected from the patients using a variety of methods, including clinical assessments, photographic assessments, and patient-reported outcome measures. Analysis Procedures: The data was analyzed using a variety of statistical methods, including descriptive statistics, inferential statistics, and meta-analysis. Question Addressed: The research question addressed in this study was whether MNM is an effective and safe treatment for nasal deformities. Conclusion: The findings of this study suggest that MNM is an effective and safe treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities.

Keywords: nose, surgery, tie, suture

Procedia PDF Downloads 54
359 Usage of Crude Glycerol for Biological Hydrogen Production, Experiments and Analysis

Authors: Ilze Dimanta, Zane Rutkovska, Vizma Nikolajeva, Janis Kleperis, Indrikis Muiznieks

Abstract:

Majority of word’s steadily increasing energy consumption is provided by non-renewable fossil resources. Need to find an alternative energy resource is essential for further socio-economic development. Hydrogen is renewable, clean energy carrier with high energy density (142 MJ/kg, accordingly – oil has 42 MJ/kg). Biological hydrogen production is an alternative way to produce hydrogen from renewable resources, e.g. using organic waste material resource fermentation that facilitate recycling of sewage and are environmentally benign. Hydrogen gas is produced during the fermentation process of bacteria in anaerobic conditions. Bacteria are producing hydrogen in the liquid phase and when thermodynamic equilibrium is reached, hydrogen is diffusing from liquid to gaseous phase. Because of large quantities of available crude glycerol and the highly reduced nature of carbon in glycerol per se, microbial conversion of it seems to be economically and environmentally viable possibility. Such industrial organic waste product as crude glycerol is perspective for usage in feedstock for hydrogen producing bacteria. The process of biodiesel production results in 41% (w/w) of crude glycerol. The developed lab-scale test system (experimental bioreactor) with hydrogen micro-electrode (Unisense, Denmark) was used to determine hydrogen production yield and rate in the liquid phase. For hydrogen analysis in the gas phase the RGAPro-100 mass-spectrometer connected to the experimental test-system was used. Fermentative bacteria strains were tested for hydrogen gas production rates. The presence of hydrogen in gaseous phase was measured using mass spectrometer but registered concentrations were comparatively small. To decrease the hydrogen partial pressure in liquid phase reactor with a system for continuous bubbling with inert gas was developed. H2 production rate for the best producer in liquid phase reached 0,40 mmol H2/l, in gaseous phase - 1,32 mmol H2/l. Hydrogen production rate is time dependent – higher rate of hydrogen production is at the fermentation process beginning when concentration increases, but after three hours of fermentation, it decreases.

Keywords: bio-hydrogen, fermentation, experimental bioreactor, crude glycerol

Procedia PDF Downloads 495
358 Reading and Teaching Poetry as Communicative Discourse: A Pragma-Linguistic Approach

Authors: Omnia Elkommos

Abstract:

Language is communication on several discourse levels. The target of teaching a language and the literature of a foreign language is to communicate a message. Reading, appreciating, analysing, and interpreting poetry as a sophisticated rhetorical expression of human thoughts, emotions, and philosophical messages is more feasible through the use of linguistic pragmatic tools from a communicative discourse perspective. The poet's intention, speech act, illocutionary act, and perlocutionary goal can be better understood when communicative situational context as well as linguistic discourse structure theories are employed. The use of linguistic theories in the teaching of poetry is, therefore, intrinsic to students' comprehension, interpretation, and appreciation of poetry of the different ages. It is the purpose of this study to show how both teachers as well as students can apply these linguistic theories and tools to dramatic poetic texts for an engaging, enlightening, and effective interpretation and appreciation of the language. Theories drawn from areas of pragmatics, discourse analysis, embedded discourse level, communicative situational context, and other linguistic approaches were applied to selected poetry texts from the different centuries. Further, in a simple statistical count of the number of poems with dialogic dramatic discourse with embedded two or three levels of discourse in different anthologies outweighs the number of descriptive poems with a one level of discourse, between the poet and the reader. Poetry is thus discourse on one, two, or three levels. It is, therefore, recommended that teachers and students in the area of ESL/EFL use the linguistics theories for a better understanding of poetry as communicative discourse. The practice of applying these linguistic theories in classrooms and in research will allow them to perceive the language and its linguistic, social, and cultural aspect. Texts will become live illocutionary acts with a perlocutionary acts goal rather than mere literary texts in anthologies.

Keywords: coda, commissives, communicative situation, context of culture, context of reference, context of utterance, dialogue, directives, discourse analysis, dramatic discourse interaction, duologue, embedded discourse levels, language for communication, linguistic structures, literary texts, poetry, pragmatic theories, reader response, speech acts (macro/micro), stylistics, teaching literature, TEFL, terms of address, turn-taking

Procedia PDF Downloads 299
357 Mentor and Peer Feed-Back on Micro-Teaching: As a Tool for Enhancing of Pre-Service Teachers' Teaching Practices

Authors: Ayhan Cinici, Mustafa Ozden, Umit Duruk, Gulden Akdag

Abstract:

The purpose of this study was to investigate how feedbacks left from two different sources (mentors and peers) during microteaching sessions effecting preservice teachers’ teaching skills and views on science teaching. Sampling process is twofold in the study. As part of qualitative research, among other counterparts, case study method was chosen and respectively, constructed six working groups in which there were six preservice teachers, totally from thirty six preservice teachers enrolled in the third grade of Elementary Education Department by random assignment. Subsequently, one preservice teacher from all groups was appointed as the moderator of those groups (totally six moderators). Rest of them taking part remained as audience in all groups. At the beginning of the instructional process, all participants were asked to watch some videos by which someone already recorded. After watching these videos, they were also given a chance to discuss their ideas and impressions regarding microteaching in the classroom atmosphere. Both academic staff as mentors and participants as preservice teachers took role in the process of determining which teaching skills would be taken into consideration as part of microteaching sessions. Each group were gathered at regular intervals throughout twelve weeks together with their mentor who guided them and performed their microteaching. Data was collected using reflective diaries by which researchers constructed for both preservice teachers playing role as teacher of the group and preservice teachers playing role as audience during these microteaching sessions. Semi structured interviews were also carried out with only preservice teachers playing role as teachers of the groups. Findings from these reflective diaries and semi structured interviews were analysed by descriptive statistics and content analysis method. With regard to these findings, explanatory themes and subthemes were categorized and supported by direct citations. The results reveal that preservice teachers playing role as the teachers of the each group consider “content knowledge” as the most important aspect among other teaching skills. Furthermore, preservice teachers also point out that the more they get feedback on any teaching skill, the more they get motivated to develop it.

Keywords: teacher education, microteaching, mentor, peer feedback

Procedia PDF Downloads 359
356 Hardness map of Human Tarsals, Meta Tarsals and Phalanges of Toes

Authors: Irfan Anjum Manarvi, Zahid Ali kaimkhani

Abstract:

Predicting location of the fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation, and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers, therefore, have proposed further studies due to inaccuracies in measurement methods, testing machines, and experimental errors. Advancement and availability of hardware, measuring instrumentation, and testing machines can now provide remedies to these limitations. The human foot is a critical part of the body exposed to various forces throughout its life. A number of products are developed for using it for protection and care, which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Mechanical properties of Tarsals, Metatarsals, and phalanges are, therefore, the primary area of consideration for all such design applications. Hardness is one of the mechanical properties which are considered very important to establish the mechanical resistance behavior of a material against applied loads. Past researchers have worked in the areas of investigating mechanical properties of these bones. However, their results were based on a limited number of experiments and taking average values of hardness due to either limitation of samples or testing instruments. Therefore, they proposed further studies in this area. The present research has been carried out to develop a hardness map of the human foot by measuring micro hardness at various locations of these bones. Results are compiled in the form of distance from a reference point on a bone and the hardness values for each surface. The number of test results is far more than previous studies and are spread over a typical bone to give a complete hardness map of these bones. These results could also be used to establish other properties such as stress and strain distribution in the bones. Also, industrial engineers could use it for design and development of various accessories for human feet health care and comfort and further research in the same areas.

Keywords: tarsals, metatarsals, phalanges, hardness testing, biomechanics of human foot

Procedia PDF Downloads 392
355 Cellulose Enhancement in Wood Used in Pulp Production by Overexpression of Korrigan and Sucrose Synthase Genes

Authors: Anil Kumar, Diwakar Aggarwal, M. Sudhakara Reddy

Abstract:

The wood of Eucalyptus, Populus and bamboos are some important species used as raw material for the manufacture of pulp. However, higher levels of lignin pose a problem during Kraft pulping and yield of pulp is also lower. In order to increase the yield of pulp per unit wood and reduce the use of chemicals during kraft pulping it is important to reduce the lignin content and/or increase cellulose content in wood. Cellulose biosynthesis in wood takes place by the coordinated action of many enzymes. The two important enzymes are KORRIGAN and SUCROSE SYNTHASE. KORRIGAN (Endo-1,4--glucanase) is implicated in the process of editing growing cellulose chains and improvement of the crystallinity of produced cellulose, whereas SUCROSE SYNTHASE is involved in providing substrate (UDP-glucose) for growing cellulose chains. The present study was aimed at the cloning, characterization and overexpression of these genes in Eucalyptus and Populus. An efficient shoot organogenesis protocol from leaf explants taken from micro shoots of the species has been developed. Agrobacterium mediated genetic transformation using Agrobacterium tumefaciens strain EHA105 and LBA4404 harboring binary vector pBI121 was achieved. Both the genes were cloned from cDNA library of Populus deltoides. These were subsequently characterized using various bioinformatics tools. The cloned genes were then inserted into pBI121 under the CaMV35S promotors replacing GUS gene. The constructs were then mobilized into above strains of Agrobacterium and used for the transformation work. Subsequently, genetic transformation of these clones with target genes following already developed protocol is in progress. Four transgenic lines of Eucalyptus tereticornis overexpressing Korrigan gene under the strong constitutive promoters CaMV35S have been developed, which are being further evaluated. Work on development of more transgenic lines overexpressing these genes in Populus and Eucalyptus is also in progress. This presentation will focus on important developments in this direction.

Keywords: Eucalyptus tereticornis, genetic transformation, Kraft pulping Populus deltoides

Procedia PDF Downloads 109
354 Cyclic Stress and Masing Behaviour of Modified 9Cr-1Mo at RT and 300 °C

Authors: Preeti Verma, P. Chellapandi, N.C. Santhi Srinivas, Vakil Singh

Abstract:

Modified 9Cr-1Mo steel is widely used for structural components like heat exchangers, pressure vessels and steam generator in the nuclear reactors. It is also found to be a candidate material for future metallic fuel sodium cooled fast breeder reactor because of its high thermal conductivity, lower thermal expansion coefficient, micro structural stability, high irradiation void swelling resistance and higher resistance to stress corrosion cracking in water-steam systems compared to austenitic stainless steels. The components of steam generators that operate at elevated temperatures are often subjected to repeated thermal stresses as a result of temperature gradients which occur on heating and cooling during start-ups and shutdowns or during variations in operating conditions of a reactor. These transient thermal stresses give rise to LCF damage. In the present investigation strain controlled low cycle fatigue tests were conducted at room temperature and 300 °C in normalized and tempered condition using total strain amplitudes in the range from ±0.25% to ±0.5% at strain rate of 10-2 s-1. Cyclic Stress response at high strain amplitudes (±0.31% to ±0.5%) showed initial softening followed by hardening upto a few cycles and subsequent softening till failure. The extent of softening increased with increase in strain amplitude and temperature. Depends on the strain amplitude of the test the stress strain hysteresis loops displayed Masing behaviour at higher strain amplitudes and non-Masing at lower strain amplitudes at both the temperatures. It is quite opposite to the usual Masing and Non-Masing behaviour reported earlier for different materials. Low cycle fatigue damage was evaluated in terms of plastic strain and plastic strain energy approach at room temperature and 300 °C. It was observed that the plastic strain energy approach was found to be more closely matches with the experimental fatigue lives particularly, at 300 °C where dynamic strain aging was observed.

Keywords: Modified 9Cr-mo steel, low cycle fatigue, Masing behavior, cyclic softening

Procedia PDF Downloads 422
353 Submarines Unmanned Vehicle for Underwater Exploration and Monitoring System in Indonesia

Authors: Nabila Dwi Agustin, Ria Septitis Mentari, Nugroho Adi Sasongko

Abstract:

Indonesia is experiencing a crisis in the development of defense equipment. Most of Indonesia's defense equipment must import its parts from other countries. Moreover, the area of Indonesia is 2/3 of its territory is the sea areas. For the protection of marine areas, Indonesia relies solely on submarines in monitoring conditions and whether or not intruders enter their territory. In fact, we know the submarine has a large size so that the expenses are getting bigger, the time it takes longer and needs a big maneuver to operate the submarine. Indeed, the submarine can only be operated for deeper seas. Many other countries enter the underwater world of Indonesia but Indonesia could not do anything due to the limitations of underwater monitoring system. At the same time, reconnaissance and monitor for shallow seas cannot be done by submarine. Equipment that can be used for surveillance of shallow underwater areas shall be made. This study reviewed the current research and development initiative of the submarine unmanned vehicle (SUV) or unmanned undersea vehicle (UUV) in Indonesia. This can explore underwater without the need for an operator to operate in it, but we can monitor it from a long distance. UUV has several advantages that size can be reduced as we desired, rechargeable ship batteries, has a detection sonar commonly found on a submarine and agile movement to detect at shallow sea depth. In the sonar sensors consisted of MEMS (Micro Electro Mechanical System), the sonar system runs more efficiently and effectively to monitor the target. UUV that has been developed will be very useful if the equipment is used around the outlying islands and outer from Indonesia especially the island frequented by foreign submarines without us know. The impact of this may not be felt now but it will allow foreign countries to attack Indonesia from within for the future. In addition, UUV needs to be equipped with a anti-radar system so that submarines of other countries crossing borders cannot detect it and Indonesia anti-submarine vessels can take further security measures. As the recommendation, Indonesia should take decisive steps in the state border rules, especially submarines of other countries that deliberately cross the borders of the state. This decisive action not only by word alone but also action as well. Indonesia government should show the strength and sovereignty as the entire society unites and applies the principle of universal peace.

Keywords: submarine unmanned vehicle, submarine, development of defense equipment, the border of Indonesia

Procedia PDF Downloads 123
352 Influence of Different Ripening Agents on the Shelf-Life and Microbial Load of Organic and Inorganic Musaceae, during the Ripening Process, and the Health Implication for Food Security

Authors: Wisdom Robert Duruji

Abstract:

Local farmers and fruit processors in developing countries of West Africa use different ripening agents to accelerate the ripening process of plantain and banana. This study reports on the influence of different ripening agents on the shelf-life and microbial load of organic and inorganic plantain (Musa paradisiaca) and banana (Musa sapientum) during ripening process and the health implication for food security in Nigeria. The experiment consisted of four treatments, namely: Calcium carbide, Irvingia gabonensis fruits, Newbouldia laevis leaves and a control, where no ripening agent was applied to the fingers of plantain and banana. The unripe and ripened plantain and banana were subjected to microbial analysis by isolating their micro flora (Bacteria, Yeast and Mould) using pour plate method. Microbes present in the samples were enumerated, characterized and classified to genera and species. The result indicated that the microbial load of inorganic plantain from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 12.11 cfu/g for ripened; and the microbial load of organic plantain from Obafemi Awolowo University Teaching and Research Farm (OAUTRF) increased from 6.00 for unripe to 11.60 cfu/g for ripened. Also, the microbial load of inorganic banana from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 11.50 cfu/g for ripened; while the microbial load of organic banana from OAUTRF increased from 6.50 for unripe to 9.40 cfu/g for ripened. The microbial effects of the ripening agents increased from 10.00 for control to 16.00 cfu/g for treated (ripened) organic and inorganic plantain; while that of organic and inorganic banana increased from 7.50 for control to 14.50 cfu/g for ripened. Visual observation for the presence of fungal colonies and deterioration rates were monitored till seven days after the plantain and banana fingers have fully ripened. Inorganic plantain and banana from (Urban day) open market in Ile-Ife are more contaminated than organic plantain and banana fingers from OAUTRF. The ripening accelerators reduced the shelf life, increased senescence, and microbial load of plantain and banana. This study concluded that organic Agriculture is better and microbial friendlier than inorganic farming.

Keywords: organic agriculture, food security, Musaceae, calcium carbide, Irvingia gabonensis, Newbouldia laevis

Procedia PDF Downloads 513
351 Discussing Classicalness: Online Reviews of Plato’s Allegory of the Cave and the Discourses around the “Classic”

Authors: Damianos Tzoupis

Abstract:

In the context of the canon debate, assumptions regarding the place, value, and impact of classical texts have come under increased scrutiny. Factors like the distance of time, the depreciation of tradition, or the increased cultural omnivorousness and eclecticism have allegedly played a part in destabilizing classics’ authority. However, despite all these developments, classics’ position and influence is strong both in contemporary institutions and among readers’ preferences. Within this background of conflicted narratives, the study maps the varied discourses, value grammars, and justifications that lay cultural consumers employ to discuss those texts which have come to be the most consecrated and valuable cultural objects. The study centers on reviews posted on Goodreads. These online reviews offer unique access to unsolicited reception data produced by lay readers themselves, thus providing a clearer picture of lay cultural consumption and lay theories about classics. Moreover, the approach taken relies on the micro-practices of evaluation: the study investigates the evaluation of a specific cultural object, namely Plato’s allegory of the Cave, and treats it as an exemplary case to identify interpretive repertoires and valuation grammars about classical texts in general. The analysis uncovers a wide range of discourses used to construct the concept of the “classical text”. At first sight, lay reviewers seem to adopt interpretive repertoires that highlight qualities such as universality, timelessness, canonicity, cultural impact, and difficulty. These repertoires seem in principle to follow generalized and institutionalized discourses about classical texts, as these are established and circulated by institutions and cultural brokers like schools, academics, critics, etc. However, the study also uncovers important variations of these discourses. Lay readers tend to (re)negotiate the meanings/connotations of the above qualities and also structure their discourses by “modalities” such as necessity or surprise. These variations in interpretive repertoires are important in cultural sociology’s attempt to better grasp the principles informing the grammars of valuation that lay cultural consumers employ and to understand the kinds of impact that consecrated cultural objects have on people’s lives.

Keywords: classics, interpretive repertoires around classicalness, institutionalized discourses, lay readers, online reviews/criticism

Procedia PDF Downloads 189
350 The Accuracy of an In-House Developed Computer-Assisted Surgery Protocol for Mandibular Micro-Vascular Reconstruction

Authors: Christophe Spaas, Lies Pottel, Joke De Ceulaer, Johan Abeloos, Philippe Lamoral, Tom De Backer, Calix De Clercq

Abstract:

We aimed to evaluate the accuracy of an in-house developed low-cost computer-assisted surgery (CAS) protocol for osseous free flap mandibular reconstruction. All patients who underwent primary or secondary mandibular reconstruction with a free (solely or composite) osseous flap, either a fibula free flap or iliac crest free flap, between January 2014 and December 2017 were evaluated. The low-cost protocol consisted out of a virtual surgical planning, a prebend custom reconstruction plate and an individualized free flap positioning guide. The accuracy of the protocol was evaluated through comparison of the postoperative outcome with the 3D virtual planning, based on measurement of the following parameters: intercondylar distance, mandibular angle (axial and sagittal), inner angular distance, anterior-posterior distance, length of the fibular/iliac crest segments and osteotomy angles. A statistical analysis of the obtained values was done. Virtual 3D surgical planning and cutting guide design were performed with Proplan CMF® software (Materialise, Leuven, Belgium) and IPS Gate (KLS Martin, Tuttlingen, Germany). Segmentation of the DICOM data as well as outcome analysis were done with BrainLab iPlan® Software (Brainlab AG, Feldkirchen, Germany). A cost analysis of the protocol was done. Twenty-two patients (11 fibula /11 iliac crest) were included and analyzed. Based on voxel-based registration on the cranial base, 3D virtual planning landmark parameters did not significantly differ from those measured on the actual treatment outcome (p-values >0.05). A cost evaluation of the in-house developed CAS protocol revealed a 1750 euro cost reduction in comparison with a standard CAS protocol with a patient-specific reconstruction plate. Our results indicate that an accurate transfer of the planning with our in-house developed low-cost CAS protocol is feasible at a significant lower cost.

Keywords: CAD/CAM, computer-assisted surgery, low-cost, mandibular reconstruction

Procedia PDF Downloads 120
349 Active Vibration Reduction for a Flexible Structure Bonded with Sensor/Actuator Pairs on Efficient Locations Using a Developed Methodology

Authors: Ali H. Daraji, Jack M. Hale, Ye Jianqiao

Abstract:

With the extensive use of high specific strength structures to optimise the loading capacity and material cost in aerospace and most engineering applications, much effort has been expended to develop intelligent structures for active vibration reduction and structural health monitoring. These structures are highly flexible, inherently low internal damping and associated with large vibration and long decay time. The modification of such structures by adding lightweight piezoelectric sensors and actuators at efficient locations integrated with an optimal control scheme is considered an effective solution for structural vibration monitoring and controlling. The size and location of sensor and actuator are important research topics to investigate their effects on the level of vibration detection and reduction and the amount of energy provided by a controller. Several methodologies have been presented to determine the optimal location of a limited number of sensors and actuators for small-scale structures. However, these studies have tackled this problem directly, measuring the fitness function based on eigenvalues and eigenvectors achieved with numerous combinations of sensor/actuator pair locations and converging on an optimal set using heuristic optimisation techniques such as the genetic algorithms. This is computationally expensive for small- and large-scale structures subject to optimise a number of s/a pairs to suppress multiple vibration modes. This paper proposes an efficient method to determine optimal locations for a limited number of sensor/actuator pairs for active vibration reduction of a flexible structure based on finite element method and Hamilton’s principle. The current work takes the simplified approach of modelling a structure with sensors at all locations, subjecting it to an external force to excite the various modes of interest and noting the locations of sensors giving the largest average percentage sensors effectiveness measured by dividing all sensor output voltage over the maximum for each mode. The methodology was implemented for a cantilever plate under external force excitation to find the optimal distribution of six sensor/actuator pairs to suppress the first six modes of vibration. It is shown that the results of the optimal sensor locations give good agreement with published optimal locations, but with very much reduced computational effort and higher effectiveness. Furthermore, it is shown that collocated sensor/actuator pairs placed in these locations give very effective active vibration reduction using optimal linear quadratic control scheme.

Keywords: optimisation, plate, sensor effectiveness, vibration control

Procedia PDF Downloads 206
348 Formal Innovations vs. Informal Innovations: The Case of the Mining Sector in Nigeria

Authors: Jegede Oluseye Oladayo

Abstract:

The study mapped innovation activities in the formal and informal mining sector in Nigeria. Data were collected through primary and secondary sources. Primary data were collected through guided questionnaire administration, guided interviews and personal observation. A purposive sampling method was adopted to select firms that are micro, small and medium enterprises. The study covered 100 (50 in the formal sector and 50 in the informal sector) purposively selected companies in south-western Nigeria. Secondary data were collected from different published sources. Data were analysed using descriptive and inferential statistics. Of the four types of technological innovations sampled, organisational innovation was found to be highest both in the formal (100%) and informal (100%) sectors, followed by process innovation: 60% in the formal sector and 28% in the informal sector, marketing innovation and diffusion based innovation were implemented by 64% and 4% respectively in the formal sector. There were no R&D activities (intramural or extramural) in both sectors, however, innovation activities occur at moderate levels in the formal sector. This is characterised by acquisition of machinery, equipment, hardware (100%), software (56), training (82%) and acquisition of external knowledge (60%) in the formal sector. In the informal sector, innovation activities were characterised by acquisition of external knowledge (100%), training/learning by experience (100%) and acquisition of tools (68%). The impact of innovation on firm’s performance in the formal sector was expressed mainly as increased capacity of production (100%), reduced production cost per unit of labour (88%), compliance with governmental regulatory requirements (72%) and entry on new markets (60%). In the informal sector, the impact of innovation was mainly expressed in improved flexibility of production (70%) and machinery/energy efficiency (70%). The important technological driver of process innovation in the mining sector was acquisition of machinery which accounts for the prevalence of 100% both in the formal and informal sectors. Next to this is training and re-training of technical staff, 74% in both the formal and the informal sector. Other factors influencing organisational innovation are skill of workforce with a prevalence of 80% in both the formal and informal sector. The important technological drivers include educational background of the manager/head of technical department (54%) for organisational innovation and (50%) for process innovation in the formal sector. The study concluded that innovation competence of the firms was mostly organisational changes.

Keywords: innovation prevalence, innovation activities, innovation performance, innovation drivers

Procedia PDF Downloads 355
347 Wireless Gyroscopes for Highly Dynamic Objects

Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev

Abstract:

Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.

Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing

Procedia PDF Downloads 344
346 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers

Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz

Abstract:

Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.

Keywords: cells integration, electrospun fiber, PHBV, surface characterization

Procedia PDF Downloads 95