Search results for: data-driven decision making
4878 Theoretical Comparisons and Empirical Illustration of Malmquist, Hicks–Moorsteen, and Luenberger Productivity Indices
Authors: Fatemeh Abbasi, Sahand Daneshvar
Abstract:
Productivity is one of the essential goals of companies to improve performance, which as a strategy-oriented method, determines the basis of the company's economic growth. The history of productivity goes back centuries, but most researchers defined productivity as the relationship between a product and the factors used in production in the early twentieth century. Productivity as the optimal use of available resources means that "more output using less input" can increase companies' economic growth and prosperity capacity. Also, having a quality life based on economic progress depends on productivity growth in that society. Therefore, productivity is a national priority for any developed country. There are several methods for calculating productivity growth measurements that can be divided into parametric and non-parametric methods. Parametric methods rely on the existence of a function in their hypotheses, while non-parametric methods do not require a function based on empirical evidence. One of the most popular non-parametric methods is Data Envelopment Analysis (DEA), which measures changes in productivity over time. The DEA evaluates the productivity of decision-making units (DMUs) based on mathematical models. This method uses multiple inputs and outputs to compare the productivity of similar DMUs such as banks, government agencies, companies, airports, Etc. Non-parametric methods are themselves divided into the frontier and non frontier approaches. The Malmquist productivity index (MPI) proposed by Caves, Christensen, and Diewert (1982), the Hicks–Moorsteen productivity index (HMPI) proposed by Bjurek (1996), or the Luenberger productivity indicator (LPI) proposed by Chambers (2002) are powerful tools for measuring productivity changes over time. This study will compare the Malmquist, Hicks–Moorsteen, and Luenberger indices theoretically and empirically based on DEA models and review their strengths and weaknesses.Keywords: data envelopment analysis, Hicks–Moorsteen productivity index, Leuenberger productivity indicator, malmquist productivity index
Procedia PDF Downloads 1974877 Insight into Figo Sub-classification System of Uterine Fibroids and Its Clinical Importance as Well as MR Imaging Appearances of Atypical Fibroids
Authors: Madhuri S. Ghate, Rahul P. Chavhan, Shriya S. Nahar
Abstract:
Learning objective: •To describe Magnetic Resonance Imaging (MRI) imaging appearances of typical and atypical uterine fibroids with emphasis on differentiating it from other similar conditions. •To classify uterine fibroids according to International Federation of Gynecology and Obstetrics (FIGO) Sub-classifications system and emphasis on its clinical significance. •To show cases with atypical imaging appearances atypical fibroids Material and methods: MRI of Pelvis had been performed in symptomatic women of child bearing age group on 1.5T and 3T MRI using T1, T2, STIR, FAT SAT, DWI sequences. Contrast was administered when degeneration was suspected. Imaging appearances of Atypical fibroids and various degenerations in fibroids were studied. Fibroids were classified using FIGO Sub-classification system. Its impact on surgical decision making and clinical outcome were also studied qualitatively. Results: Intramural fibroids were most common (14 patients), subserosal 7 patients, submucosal 5 patients . 6 patients were having multiple fibroids. 7 were having atypical fibroids. (1 hyaline degeneration, 1 cystic degeneration, 1 fatty, 1 necrosis and hemorrhage, 1 red degeneration, 1 calcification, 1 unusual large bilobed growth). Fibroids were classified using FIGO system. In uterus conservative surgeries, the lesser was the degree of myometrial invasion of fibroid, better was the fertility outcome. Conclusion: Relationship of fibroid with mucosal and serosal layers is important in the management of symptomatic fibroid cases. Risk to fertility involved in uterus conservative surgeries in women of child bearing age group depends on the extent of myometrial invasion of fibroids. FIGO system provides better insight into the degree of myometrial invasion. Knowledge about the atypical appearances of fibroids is important to avoid diagnostic confusion and untoward treatment.Keywords: degeneration, FIGO sub-classification, MRI pelvis, uterine fibroids
Procedia PDF Downloads 964876 An Experimental Study of Iron Smelting Techniques Used in the South East Rajasthan, with Special Reference to Nathara-Ki-Pal, Udaipur
Authors: Udaya Kumar
Abstract:
The aim of this paper is to discuss recent research conducted in experimental studies related to the process of the iron smelting. The paper will discuss issues related to the selection of iron ore, structure of furnace, making of tuyeres, fashioning of blowers and firing temperatures through experiments conducted recently and scientific analyses of experimental work. Experiments were conducted in order to investigate iron smelting techniques used at the Early Historic site of Nathara-Ki-Pal. (73°47’E; 24°16N is located about 70 km south-east of Udaipur city). Geographically, Nathara-Ki-Pal has located the foot hills of Aravalli’s. Iron ore and iron slag can be seen on the surface of the site. The remains of 4 broken furnaces were recovered during excavations (2007 and 2008) and the site was excavated by Prof. Pandey from the Department of Archaeology of the Institute of Rajasthan studies, Rajasthan Vidyapeeth University. This shows that the site of Nathara-Ki-Pal was a center of iron smelting. Results of experiments performed both in the field reconstruction of a bloomery furnace and in the laboratory are discussed.Keywords: experimental studies, furnace, smelting techniques, making of tuyeres
Procedia PDF Downloads 1924875 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes
Authors: Ahmed Al-Adaileh
Abstract:
Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process
Procedia PDF Downloads 2114874 The Correlation between Territory Planning and Logistics Development: Methodological Approach
Authors: Ebtissem Sassi, Abdellatif Benabdelhafid, Sami Hammami
Abstract:
Congestion, pollution and space misuse are the major risks in the hinterland. Management of these risks is a major issue for all the actors intervening in territory management. A good mastery of these risks is based on the consideration of environmental and physical constraints since the implementation of a policy integrates simultaneously an efficient use, territorial resources, and financial resources which become increasingly rare. Yet, this balance can be difficult to establish simultaneously by all the actors. Indeed, every actor has often the tendency to favor these objectives in detriment to others. In this framework, we have fixed the objective of designing and achieving a model which will centralize multidisciplinary data and serve the analysis tool as well as a decision support tool. In this article, we will elaborate some methodological axes allowing the good management of the territory system through (i) determination of the structural factors of the decision support system, (ii) integration of methods tools favoring the territorial decisional process. Logistics territory geographic information system is a model dealing with this issue. The objective of this model is to facilitate the exchanges between the actors around a common question which was the research subject of human sciences researchers (geography, economy), nature sciences (ecology) as well as finding an optimal solution for simultaneous responses to all these objectives.Keywords: complexity, territory, logistics, territory planning, conceptual model, GIS, MCA
Procedia PDF Downloads 1394873 Federalism, Dual Sovereignty, and the Supreme Court of Nigeria
Authors: Edoba Bright Omoregie
Abstract:
Nigeria became a federation in 1954 six years before it gained independence away from British colonial rule. The country has remained a federation since then despite the challenging circumstances of military rule and civil strife which have tasked its federal credentials. Since 1961, when it first decided a federalism dispute, cases over vertical and horizontal powers have inundated the country’s Supreme Court. In its current practice of federalism after democratic rule was resumed in 1999, the country has witnessed a spell of intergovernmental disputes over a good number of federalism issues. Such conflicts have eventually found their way to the Supreme Court for resolution, not as a final appellate court (which it is in other non-federal matters) but as a court of first and final instance following the constitutional provision granting the court such power. However, in April 2014 one of such disputes was denied hearing by the court when it declined original jurisdiction to determine the matter. The suit was instituted by one state of the federation against the federal government and the other 35 states challenging the collection of value added tax (a consumption tax)on certain goods and services within the state. The paper appraises the rationale of the court’s decision and reason that its decision to decline jurisdiction is the result of an avoidable misunderstanding of the dual sovereignty instituted by the federal system of Nigeria as well as a misconception of the role which the court is constitutionally assigned to play in resolving intergovernmental schisms in the federal system.Keywords: dual sovereignty, federalism, intergovernmental conflict, Supreme Court
Procedia PDF Downloads 5594872 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness
Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan
Abstract:
Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.Keywords: combat effectiveness, emerging technologies, human factors, systems safety analysis
Procedia PDF Downloads 1454871 Inclusive, Just and Effective Transition: Comparing Market-Based and Redistributive Approaches to Sustainability
Authors: Karen Bell
Abstract:
While there is broad agreement among governments and civil society globally about the need to develop more sustainable societies, the best way to achieve this is still contested. In particular, there are differences regarding whether to continue to implement market-based approaches or to move to alternative redistributive-based approaches. In this paper, ‘Green Economy’ and ‘Living Well’ strategies are compared as examples of these two different strategies for achieving social, ecological and economic sustainability. The paper is based on a 3-year ESRC funded project on transitions to sustainability which examines the implementation of the ‘Green Economy’ paradigm in South Korea and the 'Living Well' paradigm in Bolivia. As well as outlining and analysing secondary data, the paper also draws on over 100 interviews with a range of local stakeholders in these countries carried out by the author between and including 2016 and 2018. The work indicates that the Living Well paradigm seems to better integrate social, ecological and economic concerns and may better deliver sustainability in the time frame necessary than the dominant Green Economy paradigm. This seems to be primarily because Living Well emphasises redistribution to reduce inequality and ensure human needs are met; living in harmony with nature, taking into account natural limits and cycles; respecting traditional values and practices where these support sustainability and human well-being; sovereignty and local control of natural resources; and participative decision-making, based on grassroots community organising. It is, therefore, argued that to achieve inclusive, just and effective transitions to sustainability we should aim to foster equality, respect planetary limits, build on local traditions, bring resources into public ownership and enhance participatory democracy. This will require a radically different approach to that offered within the market-based agenda currently dominating global sustainability debates and activities.Keywords: environmental transition, green economy, inclusive sustainability, living well, sustainable transition
Procedia PDF Downloads 1404870 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 1534869 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling
Procedia PDF Downloads 3044868 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 2544867 Support Provided by Midwives to Women during Labour in a Public Hospital, Limpopo Province, South Africa: A Participant Observation Study
Authors: Sonto Maputle
Abstract:
Background: Support during labour increase women's chances of having positive childbirth experiences as well as childbirth outcomes. The purpose of this study was to determine the support provided by midwives to women during labour at the public hospital in Limpopo Province. The study was conducted at the Tertiary hospital in Limpopo Province. Methods: A qualitative, participant observation approach was used. Population consisted of all women that were admitted to deliver their babies and the midwives who provided midwifery care in the obstetric unit of one tertiary public hospital in Limpopo Province. Non-probability, purposive and convenience sampling were used to sample 24 women and 12 midwives. Data were collected through participant observations which included unstructured conversations with the use of observational guide, field notes of events and conversations that occurred when women interact with midwives were recorded verbatim and a Visual Analog Scale to complement the observations. Data was analysed qualitatively but were presented in the tables and bar graphs. Results: Five themes emerged as support provided by midwives during labour, namely; communication between women and midwives, informational support, emotional support activities, interpretation of the experienced labour pain and supportive care activities during labour. Conclusion: The communication was occurring when the midwife was rendering midwifery care and very limited for empowering. The information sharing focused on the assistive actions rather than on the activities that would promote mothers’ participation. The emotional support activities indicated lack of respect and disregard cultural preferences and this contributed to inability to exercise choices in decision-making. The study recommended the implementation of Batho Pele principles in order to provide woman-centred care during labour.Keywords: communication between women and midwives, labour pains, informational and emotional support, physical comforting measures
Procedia PDF Downloads 1574866 Non-Thyroidal Illness Syndrome and Its Prognostic Significance in Pediatric Septic Shock: A Cross-Sectional Analysis
Authors: Ankita Sharma, Satish Kumar Meena, Neha Kawatra Madan
Abstract:
Background and Aims: Pediatric septic shock, a life-threatening condition, is associated with significant morbidity and mortality. Dysregulation of thyroid function, presenting as Non-Thyroidal Illness Syndrome (NTIS), is a common observation in critically ill patients and may impact clinical outcomes. This study investigates the thyroid hormone profile in pediatric septic shock and its correlation with disease outcomes. Methods: A cross-sectional study was conducted in the Pediatric Department of VMMC and Safdarjung Hospital, New Delhi. Ninety-one children, aged 1 month to 12 years, diagnosed with septic shock were included. Thyroid function tests (Total T3, Total T4, Free T3, Free T4, and TSH) were measured upon admission. Outcomes were categorized as favorable (shock reversal within 24 hours, ICU stay <7 days) or unfavorable (prolonged shock, ICU stay >7 days, multiorgan dysfunction syndrome [MODS], or death). Statistical analysis included logistic regression and receiver operating characteristic (ROC) curve evaluation. Results: Thyroid hormone abnormalities were prevalent, with low Total T3 (84.6%), low Total T4 (70.3%), and low Free T3 (76.9%) being the most common findings. Significant associations were observed between low levels of Total T3, Total T4, Free T3, and Free T4 with unfavorable outcomes (p<0.001 for all). ROC analysis identified Free T3 as the strongest predictor of unfavorable outcomes, with an AUROC of 0.842. Conclusions: Thyroid hormone levels, particularly Free T3, are critical prognostic markers in pediatric septic shock. Timely monitoring of thyroid function could aid in risk stratification and therapeutic decision-making. Future research should focus on the potential benefits of thyroid hormone replacement therapy in this population.Keywords: pediatric septic shock, thyroid function, non-thyroidal illness syndrome, prognostic markers, free T3
Procedia PDF Downloads 134865 Colloquialism in Audiovisual Translation: English Subtitling of the Lebanese Film Capernaum as a Case Study
Authors: Fatima Saab
Abstract:
This paper attempts to study colloquialism in audio-visual translation, with particular emphasis given to investigating the difficulties and challenges encountered by subtitlers in translating Lebanese colloquial into English. To achieve the main objectives of this study, ample and thorough cultural and translational analysis of examples drawn from the subtitled movie Capernaum are presented in order to identify the strategies used to overcome cultural barriers and differences and to show the process of decision-making by the translator. Also, special attention is given to explain the technicalities in translating subtitles and how they affect the translation process. The research is a descriptive analytical study whereby the writer sets out empirical observations, consisting of descriptive and analytical examination of the difficulties and problems associated with translating Arabic colloquialisms, specifically Lebanese, into English in the subtitled film, Capernaum. The research methodology utilizes a qualitative approach to group the selected data into the subtitling strategies presented by Gottlieb under the domesticating or foreignizing strategies according to Venuti's Model. It is shown that producing the same meanings to a foreign audience is not an easy task. The background of cultural elements and the stories that make up the history and mindset of the Lebanese and Arabic peoples leads to the use of the transfer and paraphrase methodologies most of the time (81% of the sample used for analysis). The research shows that translating and subtitling colloquialism needs special skills by the translators to overcome the challenges imposed by the limited presentation space as well as cultural differences. Translation of colloquial Arabic/Lebanese can be achieved to a certain extent and delivering the meaning and effect of the source language culture is accomplished in as much as the translator investigates and relates to the target culture.Keywords: Lebanese colloquial, audio-visual translation, subtitling, Capernaum
Procedia PDF Downloads 1524864 Generic Competences, the Great Forgotten: Teamwork in the Undergraduate Degree in Translation and Interpretation
Authors: María-Dolores Olvera-Lobo, Bryan John Robinson, Juncal Gutierrez-Artacho
Abstract:
Graduates are equipped with a wide range of generic competencies which complement solid curricular competencies and facilitate their access to the labour market in diverse fields and careers. However, some generic competencies such as instrumental, personal and systemic competencies related to teamwork and interpersonal communication skills, decision-making and organization skills are seldom taught explicitly and even less often assessed. In this context, translator training has embraced a broad range of competencies specified in the undergraduate program currently taught at universities and opens up the learning experience to cover areas often ignored due to the difficulties inherent in both teaching and assessment. In practice, translator training combines two well-established approaches to teaching/learning: project-based learning and genuinely cooperative – or merely collaborative – learning. Our professional approach to translator training is a model focused on and adapted to the teleworking context of professional translation and presented through the medium of blended e-learning. Teamwork-related competencies are extremely relevant, and they require explicit and implicit teaching so that graduates can be confident about their capacity to make their way in professional contexts. In order to highlight the importance of teamwork and intra-team relationships beyond the classroom, we aim to raise awareness of teamwork processes so as to empower translation students in managing their interaction and ensure that they gain valuable pre-professional experience. With these objectives, at the University of Granada (Spain) we have developed a range of classroom activities and assessment tools. The results of their application are summarized in this study.Keywords: blended learning, collaborative teamwork, cross-curricular competencies, higher education, intra-team relationships, students’ perceptions, translator training
Procedia PDF Downloads 1734863 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 484862 Organizational Decision to Adopt Digital Forensics: An Empirical Investigation in the Case of Malaysian Law Enforcement Agencies
Authors: Siti N. I. Mat Kamal, Othman Ibrahim, Mehrbakhsh Nilashi, Jafalizan M. Jali
Abstract:
The use of digital forensics (DF) is nowadays essential for law enforcement agencies to identify analysis and interpret the digital information derived from digital sources. In Malaysia, the engagement of Malaysian Law Enforcement Agencies (MLEA) with this new technology is not evenly distributed. To investigate the factors influencing the adoption of DF in Malaysia law enforcement agencies’ operational environment, this study proposed the initial theoretical framework based on the integration of technology organization environment (TOE), institutional theory, and human organization technology (HOT) fit model. A questionnaire survey was conducted on selected law enforcement agencies in Malaysia to verify the validity of the initial integrated framework. Relative advantage, compatibility, coercive pressure, normative pressure, vendor support and perceived technical competence of technical staff were found as the influential factors on digital forensics adoption. In addition to the only moderator of this study (agency size), any significant moderating effect on the perceived technical competence and the decision to adopt digital forensics by Malaysian law enforcement agencies was found insignificant. Thus, these results indicated that the developed integrated framework provides an effective prediction of the digital forensics adoption by Malaysian law enforcement agencies.Keywords: digital forensics, digital forensics adoption, digital information, law enforcement agency
Procedia PDF Downloads 1574861 Disrupting Certainties: Reimagined History Curriculum as Critical Pedagogy in Secondary Teacher Education
Authors: Philippa Hunter
Abstract:
How might history education support teachers and students to see the past as a provocation, be open to possible futures, and act differently? As teacher educators in an age of diversity and uncertainty, we need to question history’s curriculum nature, pedagogy, and policy intent. The cultural politics of history’s identity in the senior secondary curriculum influences educational socialization (disciplinary, professional, research) and engagement with curriculum decision-making. This paper reflects on curriculum disturbance that shaped a critical pedagogy stance to problematize school history’s certainties. The context is situated in an Aotearoa New Zealand university-based initial teacher education programme. A pedagogic innovation was activated whereby problematized history pedagogy [PHP] was conceptualized as the phenomenon and method of inquiry and storied in doctoral work. The PHP was a reciprocal research process involving history class’ participants and the teacher as researcher, in fashioning teaching identities, identifying with, and thinking critically about history pedagogy. PHP findings revealed evocative discourses of embodiment, nostalgia, and connectedness about living ‘inside the past’. Participants expressed certainty about their abilities as teachers living ‘outside the past’ to interpret historical perspectives. However, discomfort was evident in relation to ‘difficult knowledge’ or unfamiliar contexts of the past that exposed exclusion, powerlessness, or silenced voices. Participants identified history programmes as strongly masculine and conflict-focused. A normalized inquiry-transmission approach to history pedagogy was identified and critiqued. Individuals’ reflexive accounts of PHP implemented whilst on practicum indicate possibilities of history pedagogy as; inclusive and democratic, social and ethical reconstruction, and as a critical project. The PHP sought to reimagine history curriculum and identify spaces of possibility in secondary postgraduate teacher education.Keywords: curriculum, pedagogy, problematise, reciprocal
Procedia PDF Downloads 1664860 Evaluation of the Impact of Community Based Disaster Risk Management Applied In Landslide Prone Area; Reference to Badulla District
Authors: S. B. D. Samarasinghe, Malini Herath
Abstract:
Participatory planning is a very important process for decision making and choosing the best alternative options for community welfare, development of the society and its interactions among community and professionals. People’s involvement is considered as the key guidance in participatory planning. Presently, Participatory planning is being used in many fields. It's not only limited to planning but also to disaster management, poverty, housing, etc. In the past, Disaster management practice was a top-down approach, but it raised many issues as it was converted to a bottom-up approach. There are several approaches that can aid disaster management. Community-Based Disaster Risk Management (CBDRM) is a very successful participatory approach to risk management that is often successfully applied by other disaster-prone countries. In the local context, CBDRM has been applied to prevent Diseases as well as to prevent disasters such as landslides, tsunamis and floods. From three years before, Sri Lanka has initiated the CBDRM approach to minimize landslide vulnerability. Hence, this study mainly focuses on the impact of CBDRM approaches on landslide hazards. Also to identify their successes and failures from both implementing parties and community. This research is carried out based on a qualitative method combined with a descriptive research approach. A successful framework was prepared via a literature review. Case studies were selected considering landslide CBDRM programs which were implemented by Disaster Management Center and National Building Research Organization in Badulla. Their processes were evaluated. Data collection is done through interviews and informal discussions. Then their ideas were quantified by using the Relative Effectiveness index. The resulting numerical value was used to rank the program effectiveness and their success, failures and impacting factors. Results show that there are several failures among implementing parties and the community. Overcoming those factors can make way for better conduction of future CBDRM programs.Keywords: community-based disaster risk management, disaster management, preparedness, landslide
Procedia PDF Downloads 1544859 The Link between Strategic Sense-Making and Performance in Dubai Public Sector
Authors: Mohammad Rahman, Guy Burton, Megan Mathias
Abstract:
Strategic management as an organizational practice was adopted by the public sector in the New Public Management (NPM) era that began in most parts of the world in the 1980s. Strategy as a new public management concept was subscribed by governments in both developed and developing world, as they were persuaded that clearly defined vision, mission and goals, as well as programs and projects - aligned with the goals - could potentially help achieve government vision at the national level and organizational goals at the service-delivery level. The advocates for strategic management in the public sector saw an inherent link between strategy and performance, claiming that the implementation of organizational strategy has an effect on the overall performance of an organization. Arguably, many government entities that have failed in enhancing team and individual performance had poorly-designed strategy or weak strategy implementation. Another key argument about low-level performance is linked with lack of strategic sense-making and orientation by middle managers in particular. Scholars maintain that employees at all levels need to understand strategic management plan in order to facilitate its implementation. Therefore, involving employees (particularly the middle managers) from the beginning potentially helps an organization avoid the drop in performance, and on the contrary would increase their commitment. The United Arab Emirates (UAE) is well known for adopting public sector reform strategies and tools since the 1990s. This observation is contextually pertinent in the case of the Government of Dubai, which has provided a Strategy Execution Guide to all of its entities to achieve high level strategic success in service delivery. The Dubai public sector also adopts road maps for e-Government, Smart Dubai, Expo 2020, investment, environment, education, health and other sectors. Evidently, some of these strategies are bringing tangible (e.g. Smart Dubai transformation) results in a transformational manner. However, the amount of academic research and literature on the strategy process vis-à-vis staff performance in the Government of Dubai is limited. In this backdrop, this study examines how individual performance of public sector employees in Dubai is linked with their sense-making, engagement and orientation with strategy development and implementation processes. Based on a theoretical framework, this study will undertake a sample-based questionnaire survey amongst middle managers in Dubai public sector to (a) measure the level of engagement of middle managers in strategy development and implementation processes as perceived by them; (b) observe the organizational landscape in which role expectations are placed on middle managers; and (c) examine the impact of employee engagement in strategy development process and the conditions for role expectations on individual performance. The paper is expected to provide new insights on the interface between strategic sense-making and performance in order to contribute a better understanding of the current culture/practices of staff engagement in strategic management in the public sector of Dubai.Keywords: employee performance, government of Dubai, middle managers, strategic sense-making
Procedia PDF Downloads 2004858 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 3194857 Building Successful Organizational Business Communication and Its Impact on Business Performance: An Intra- and Inter-Organizational Perspective
Authors: Aynura Valiyeva, Basil John Thomas
Abstract:
Intra-firm communication is critical for building synergy amongst internal business units of a firm, where employees from various functional departments and ranks incorporate their decision-making, understanding of organizational objectives, as well as common norms and culture for better organizational effectiveness. This study builds on and assesses a framework of the causes and consequences of effective communication in business interactions between customer and supplier firms, and the path for efficient communication within a firm. The proposed study’s structural equation modeling (SEM) analysis based on 352 sample responses collected from firm representatives at different job positions ranging from marketing to logistics operations, reveals that, in the frame of reference of intra-organizational communication, organization characteristics and shared values, top management support and style of leadership, as well as information technology, are all significantly related to communication effectiveness. Furthermore, the frequency and variety of interactions enhance the outcome of communication, that improves a company’s performance. The results reveal that cultural factors are significantly related to communication effectiveness, as well as the shared beliefs and goals. In terms of organizational factors, leadership style, top management support and information technology are significant determinants of effective communication. Among the contextual factors, interaction frequency and diversity are found to be priority factors. This study also tests the relationship between supplier and supplier firm performance in the context of communication effectiveness, and finds that they are closely related, when trust and commitment is built between business partners. When firms do business in other multicultural contexts, language and shared values with destination country must be considered significant elements of communication process.Keywords: business performance, intra-firm communication, inter-firm communication, structural equation modeling
Procedia PDF Downloads 1034856 A Rapid Assessment of the Impacts of COVID-19 on Overseas Labor Migration: Findings from Bangladesh
Authors: Vaiddehi Bansal, Ridhi Sahai, Kareem Kysia
Abstract:
Overseas labor migration is currently one of the most important contributors to the economy of Bangladesh and is a highly profitable form of labor for Gulf Cooperative Council (GCC) countries. In 2019, 700,159 migrant workers from Bangladeshtraveled abroad for employment. GCC countries are a major destination for Bangladeshi migrant workers, with Saudi Arabia being the most common destination for Bangladeshi migrant workers since 2016. Despite the high rate of migration between these countries every year, the OLR industry remains complex and often leaves migrants susceptible to human trafficking, forced labor, and modern slavery. While the prevalence of forced labor among Bangladeshi migrants in GCC countries is still unknown, the IOM estimates international migrant workers comprise one fourth of the victims of forced labor. Moreover, the onset of the global COVID-19 pandemic has exposed migrant workers to additional adverse situations, making them even more vulnerable to forced labor and health risks. This paper presents findings from a rapid assessment of the impacts of COVID-19 on OLR in Bangladesh, with an emphasis on the increased risk of forced labor among vulnerable migrant worker populations, particularly women.Rapid reviews are a useful approach to swiftly provide actionable evidence for informed decision-making during emergencies, such as the COVID-19 pandemic. The research team conducted semi-structured key information interviews (KIIs) with a range of stakeholders, including government officials, local NGOs, international organizations, migration researchers, and formal and informal recruiting agencies, to obtain insights on the multi-facted impacts of COVID-19 on the OLR sector. The research team also conducted a comprehensive review of available resources, including media articles, blogs, policy briefs, reports, white papers, and other online content, to triangulate findings from the KIIs. After screening for inclusion criteria, a total of 110 grey literature documents were included in the review. A total of 31 KIIs were conducted, data from which was transcribed and translated from Bangla to English, andanalyzed using a detailed codebook. Findings indicate that there was limited reintegration support for returnee migrants. Facing increasing amounts of debt, financial insecurity, and social discrimination, returnee migrants, were extremely vulnerable to forced labor and exploitation. Growing financial debt and limited job opportunities in their home country will likely push migrants to resort to unsafe migration channels. Evidence suggests that women, who are primarily domestic works in GCC countries, were exposed to increased risk of forced labor and workplace violence. Due to stay-at-home measures, women migrant workers were tasked with additional housekeeping working and subjected to longer work hours, wage withholding, and physical abuse. In Bangladesh, returnee women migrant workers also faced an increased risk of domestic violence.Keywords: forced labor, migration, gender, human trafficking
Procedia PDF Downloads 1204855 Trends, Status, and Future Directions of Artificial Intelligence in Human Resources Disciplines: A Bibliometric Analysis
Authors: Gertrude I. Hewapathirana, Loi A. Nguyen, Mohammed M. Mostafa
Abstract:
Artificial intelligence (AI) technologies and tools are swiftly integrating into many functions of all organizations as a competitive drive to enhance innovations, productivity, efficiency, faster and precise decision making to keep up with rapid changes in the global business arena. Despite increasing research on AI technologies in production, manufacturing, and information management, AI in human resource disciplines is still lagging. Though a few research studies on HR informatics, recruitment, and HRM in general, how to integrate AI in other HR functional disciplines (e.g., compensation, training, mentoring and coaching, employee motivation) is rarely researched. Many inconsistencies of research hinder developing up-to-date knowledge on AI in HR disciplines. Therefore, exploring eight research questions, using bibliometric network analysis combined with a meta-analysis of published research literature. The authors attempt to generate knowledge on the role of AI in improving the efficiency of HR functional disciplines. To advance the knowledge for the benefit of researchers, academics, policymakers, and practitioners, the study highlights the types of AI innovations and outcomes, trends, gaps, themes and topics, fast-moving disciplines, key players, and future directions.AI in HR informatics in high tech firms is the dominant theme in many research publications. While there is increasing attention from researchers and practitioners, there are many gaps between the promise, potential, and real AI applications in HR disciplines. A higher knowledge gap raised many unanswered questions regarding legal, ethical, and morale aspects of AI in HR disciplines as well as the potential contributions of AI in HR disciplines that may guide future research directions. Though the study provides the most current knowledge, it is limited to peer-reviewed empirical, theoretical, and conceptual research publications stored in the WoS database. The implications for theory, practice, and future research are discussed.Keywords: artificial intelligence, human resources, bibliometric analysis, research directions
Procedia PDF Downloads 1024854 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 1314853 Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design
Authors: Claudeny Simone Alves Santana, Alexandre Simas De Medeiros, Marcelino Aurélio Vieira Da Silva
Abstract:
The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability.Keywords: life cycle assessment, greenhouse gases, urban paving, service cost
Procedia PDF Downloads 804852 The Effects of Future Priming on Resource Concern
Authors: Calvin Rong, Regina Agassian, Mindy Engle-Friedman
Abstract:
Climate changes, including rising sea levels and increases in global temperature, can have major effects on resource availability, leading to increased competition for resources and rising food prices. The abstract nature and often delayed consequences of many ecological problems cause people focus on immediate, specific, and personal events and circumstances that compel immediate and emotional involvement. This finding may be explained by the challenges humans have in imagining themselves in the future, a shortcoming that interferes with decision-making involving far-off rewards, and leads people to indicate a lower concern toward the future than to present circumstances. The present study sought to assess whether priming people to think of themselves in the future might strengthen the connection to their future selves and stimulate environmentally-protective behavior. We hypothesize that priming participants to think about themselves in the future would increase concern for the future environment. 45 control participants were primed to think about themselves in the present, and 42 participants were primed to think about themselves in the futures. After priming, the participants rated their concern over access to clean water, food, and energy on a scale of 1 to 10. They also rated their predicted care levels for the environment at age points 40, 50, 60, 70, 80, and 90 on a scale of 1(not at all) to 10 (very much). Predicted care levels at age 90 for the experimental group was significantly higher than for the control group. Overall the experimental group rated their concern for resources higher than the control. In comparison to the control group (M=7.60, SD=2.104) participants in the experimental group had greater concern for clean water (M=8.56, SD=1.534). In comparison to the control group (M=7.49, SD=2.041) participants in the experimental group were more concerned about food resources (M=8.41, SD=1.830). In comparison to the control group (M=7.22, SD=1.999) participants in the experimental group were more concerned about energy resources (M=8.07, SD=1.967). This study assessed whether a priming strategy could be used to encourage pro-environmental practices that protect limited resources. Future-self priming helped participants see past short term issues and focus on concern for the future environment.Keywords: climate change, future, priming, global warming
Procedia PDF Downloads 2624851 Short-Term Effects of an Open Monitoring Meditation on Cognitive Control and Information Processing
Authors: Sarah Ullrich, Juliane Rolle, Christian Beste, Nicole Wolff
Abstract:
Inhibition and cognitive flexibility are essential parts of executive functions in our daily lives, as they enable the avoidance of unwanted responses or selectively switch between mental processes to generate appropriate behavior. There is growing interest in improving inhibition and response selection through brief mindfulness-based meditations. Arguably, open-monitoring meditation (OMM) improves inhibitory and flexibility performance by optimizing cognitive control and information processing. Yet, the underlying neurophysiological processes have been poorly studied. Using the Simon-Go/Nogo paradigm, the present work examined the effect of a single 15-minute smartphone app-based OMM on inhibitory performance and response selection in meditation novices. We used both behavioral and neurophysiological measures (event-related potentials, ERPs) to investigate which subprocesses of response selection and inhibition are altered after OMM. The study was conducted in a randomized crossover design with N = 32 healthy adults. We thereby investigated Go and Nogo trials in the paradigm. The results show that as little as 15 minutes of OMM can improve response selection and inhibition at behavioral and neurophysiological levels. More specifically, OMM reduces the rate of false alarms, especially during Nogo trials regardless of congruency. It appears that OMM optimizes conflict processing and response inhibition compared to no meditation, also reflected in the ERP N2 and P3 time windows. The results may be explained by the meta control model, which argues in terms of a specific processing mode with increased flexibility and inclusive decision-making under OMM. Importantly, however, the effects of OMM were only evident when there was the prior experience with the task. It is likely that OMM provides more cognitive resources, as the amplitudes of these EKPs decreased. OMM novices seem to induce finer adjustments during conflict processing after familiarization with the task.Keywords: EEG, inhibition, meditation, Simon Nogo
Procedia PDF Downloads 2154850 Data Quality on Regular Immunization Programme at Birkod District: Somali Region, Ethiopia
Authors: Eyob Seife, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew, Yohans Demis
Abstract:
Developing countries continue to face preventable communicable diseases, such as vaccine-preventable diseases. The Expanded Programme on Immunization (EPI) was established by the World Health Organization in 1974 to control these diseases. Health data use is crucial in decision-making, but ensuring data quality remains challenging. The study aimed to assess the accuracy ratio, timeliness, and quality index of regular immunization programme data in the Birkod district of the Somali Region, Ethiopia. For poor data quality, technical, contextual, behavioral, and organizational factors are among contributors. The study used a quantitative cross-sectional design conducted in September 2022GC using WHO-recommended data quality self-assessment tools. The accuracy ratio and timeliness of reports on regular immunization programmes were assessed for two health centers and three health posts in the district for one fiscal year. Moreover, the quality index assessment was conducted at the district level and health facilities by trained assessors. The study found poor data quality in the accuracy ratio and timeliness of reports at all health units, which includes zeros. Overreporting was observed for most facilities, particularly at the health post level. Health centers showed a relatively better accuracy ratio than health posts. The quality index assessment revealed poor quality at all levels. The study recommends that responsible bodies at different levels improve data quality using various approaches, such as the capacitation of health professionals and strengthening the quality index components. The study highlighted the need for attention to data quality in general, specifically at the health post level, and improving the quality index at all levels, which is essential.Keywords: Birkod District, data quality, quality index, regular immunization programme, Somali Region-Ethiopia
Procedia PDF Downloads 974849 Support for Planning of Mobile Personnel Tasks by Solving Time-Dependent Routing Problems
Authors: Wlodzimierz Ogryczak, Tomasz Sliwinski, Jaroslaw Hurkala, Mariusz Kaleta, Bartosz Kozlowski, Piotr Palka
Abstract:
Implementation concepts of a decision support system for planning and management of mobile personnel tasks (sales representatives and others) are discussed. Large-scale periodic time-dependent vehicle routing and scheduling problems with complex constraints are solved for this purpose. Complex nonuniform constraints with respect to frequency, time windows, working time, etc. are taken into account with additional fast adaptive procedures for operational rescheduling of plans in the presence of various disturbances. Five individual solution quality indicators with respect to a single personnel person are considered. This paper deals with modeling issues corresponding to the problem and general solution concepts. The research was supported by the European Union through the European Regional Development Fund under the Operational Programme ‘Innovative Economy’ for the years 2007-2013; Priority 1 Research and development of modern technologies under the project POIG.01.03.01-14-076/12: 'Decision Support System for Large-Scale Periodic Vehicle Routing and Scheduling Problems with Complex Constraints.'Keywords: mobile personnel management, multiple criteria, time dependent, time windows, vehicle routing and scheduling
Procedia PDF Downloads 326