Search results for: controlling oxygen vacancy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2685

Search results for: controlling oxygen vacancy

525 A Review on the Vulnerability of Rural-Small Scale Farmers to Insect Pest Attacks in the Eastern Cape Province, South Africa

Authors: Nolitha L. Skenjana, Bongani P. Kubheka, Maxwell A. Poswal

Abstract:

The Eastern Cape Province of South Africa is characterized by subsistence farming, which is mostly distributed in the rural areas of the province. It is estimated that cereal crops such as maize and sorghum, and vegetables such as cabbage are grown in more than 400.000 rural households, with maize being the most dominant crop. However, compared to commercial agriculture, small-scale farmers receive minimal support from research and development, limited technology transfer on the latest production practices and systems and have poor production infrastructure and equipment. Similarly, there is limited farmers' appreciation on best practices in insect pest management and control. The paper presents findings from the primary literature and personal observations on insect pest management practices of small-scale farmers in the province. Inferences from literature and personal experiences in the production areas have led to a number of deductions regarding the level of exposure and extent of vulnerability. Farmers' pest management practices, which included not controlling at all though there is a pest problem, resulted in their crop stands to be more vulnerable to pest attacks. This became more evident with the recent brown locust, African armyworm, and Fall armyworm outbreaks, and with the incidences of opportunistic phytophagous insects previously collected on wild hosts only, found causing serious damages on crops. In most of these occurrences, damage to crops resulted in low or no yield. Improvements on farmers' reaction and response to pest problems were only observed in areas where focused awareness campaigns and trainings on specific pests and their management techniques were done. This then calls for a concerted effort from all role players in the sphere of small-scale crop production, to train and equip farmers with relevant skills, and provide them with information on affordable and climate-smart strategies and technologies in order to create a state of preparedness. This is necessary for the prevention of substantial crop losses that may exacerbate food insecurity in the province.

Keywords: Eastern Cape Province, small-scale farmers, insect pest management, vulnerability

Procedia PDF Downloads 132
524 Performance and Specific Emissions of an SI Engine Using Anhydrous Ethanol–Gasoline Blends in the City of Bogota

Authors: Alexander García Mariaca, Rodrigo Morillo Castaño, Juan Rolón Ríos

Abstract:

The government of Colombia has promoted the use of biofuels in the last 20 years through laws and resolutions, which regulate their use, with the objective to improve the atmospheric air quality and to promote Colombian agricultural industry. However, despite the use of blends of biofuels with fossil fuels, the air quality in large cities does not get better, this deterioration in the air is mainly caused by mobile sources that working with spark ignition internal combustion engines (SI-ICE), operating with a mixture in volume of 90 % gasoline and 10 % ethanol called E10, that for the case of Bogota represent 84 % of the fleet. Another problem is that Colombia has big cities located above 2200 masl and there are no accurate studies on the impact that the E10 mixture could cause in the emissions and performance of SI-ICE. This study aims to establish the optimal blend between gasoline ethanol in which an SI engine operates more efficiently in urban centres located at 2600 masl. The test was developed on SI engine four-stroke, single cylinder, naturally aspirated and with carburettor for the fuel supply using blends of gasoline and anhydrous ethanol in different ratios E10, E15, E20, E40, E60, E85 and E100. These tests were conducted in the city of Bogota, which is located at 2600 masl, with the engine operating at 3600 rpm and at 25, 50, 75 and 100% of load. The results show that the performance variables as engine brake torque, brake power and brake thermal efficiency decrease, while brake specific fuel consumption increases with the rise in the percentage of ethanol in the mixture. On the other hand, the specific emissions of CO2 and NOx present increases while specific emissions of CO and HC decreases compared to those produced by gasoline. From the tests, it is concluded that the SI-ICE worked more efficiently with the E40 mixture, where was obtained an increases of the brake power of 8.81 % and a reduction on brake specific fuel consumption of 2.5 %, coupled with a reduction in the specific emissions of CO2, HC and CO in 9.72, 52.88 and 76.66 % respectively compared to the results obtained with the E10 blend. This behaviour is because the E40 mixture provides the appropriate amount of the oxygen for the combustion process, which leads to better utilization of available energy in this process, thus generating a comparable power output to the E10 mixing and producing lower emissions CO and HC with the other test blends. Nevertheless, the emission of NOx increases in 106.25 %.

Keywords: emissions, ethanol, gasoline, engine, performance

Procedia PDF Downloads 320
523 The Effect of Different Concentrations of Extracting Solvent on the Polyphenolic Content and Antioxidant Activity of Gynura procumbens Leaves

Authors: Kam Wen Hang, Tan Kee Teng, Huang Poh Ching, Chia Kai Xiang, H. V. Annegowda, H. S. Naveen Kumar

Abstract:

Gynura procumbens (G. procumbens) leaves, commonly known as ‘sambung nyawa’ in Malaysia is a well-known medicinal plant commonly used as folk medicines in controlling blood glucose, cholesterol level as well as treating cancer. These medicinal properties were believed to be related to the polyphenolic content present in G. procumbens extract, therefore optimization of its extraction process is vital to obtain highest possible antioxidant activities. The current study was conducted to investigate the effect of different concentrations of extracting solvent (ethanol) on the amount of polyphenolic content and antioxidant activities of G. procumbens leaf extract. The concentrations of ethanol used were 30-70%, with the temperature and time kept constant at 50°C and 30 minutes, respectively using ultrasound-assisted extraction. The polyphenolic content of these extracts were quantified by Folin-Ciocalteu colorimetric method and results were expressed as milligram gallic acid equivalent (mg GAE)/g. Phosphomolybdenum method and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays were used to investigate the antioxidant properties of the extract and the results were expressed as milligram ascorbic acid equivalent (mg AAE)/g and effective concentration (EC50) respectively. Among the three different (30%, 50% and 70%) concentrations of ethanol studied, the 50% ethanolic extract showed total phenolic content of 31.565 ± 0.344 mg GAE/g and total antioxidant activity of 78.839 ± 0.199 mg AAE/g while 30% ethanolic extract showed 29.214 ± 0.645 mg GAE/g and 70.701 ± 1.394 mg AAE/g, respectively. With respect to DPPH radical scavenging assay, 50% ethanolic extract had exhibited slightly lower EC50 (314.3 ± 4.0 μg/ml) values compared to 30% ethanol extract (340.4 ± 5.3 μg/ml). Out of all the tested extracts, 70% ethanolic extract exhibited significantly (p< 0.05) highest total phenolic content (38.000 ± 1.009 mg GAE/g), total antioxidant capacity (95.874 ± 2.422 mg AAE/g) and demonstrated the lowest EC50 in DPPH assay (244.2 ± 5.9 μg/ml). An excellent correlations were drawn between total phenolic content, total antioxidant capacity and DPPH radical scavenging activity (R2 = 0.949 and R2 = 0.978, respectively). It was concluded from this study that, 70% ethanol should be used as the optimal polarity solvent to obtain G. procumbens leaf extract with maximum polyphenolic content with antioxidant properties.

Keywords: antioxidant activity, DPPH assay, Gynura procumbens, phenolic compounds

Procedia PDF Downloads 407
522 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 111
521 Evolution of Deformation in the Southern Central Tunisian Atlas: Parameters and Modelling

Authors: Mohamed Sadok Bensalem, Soulef Amamria, Khaled Lazzez, Mohamed Ghanmi

Abstract:

The southern-central Tunisian Atlas presents a typical example of an external zone. It occupies a particular position in the North African chains: firstly, it is the eastern limit of atlassic structures; secondly, it is the edges between the belts structures to the north and the stable Saharan platform in the south. The evolution of deformation study is based on several methods, such as classical or numerical methods. The principals parameters controlling the genesis of folds in the southern central Tunisian Atlas are; the reactivation of pre-existing faults during the later compressive phase, the evolution of decollement level, and the relation between thin and thick-skinned. One of the more principal characters of the southern-central Tunisian Atlas is the variation of belts structures directions determined by: NE-SW direction, named the attlassic direction in Tunisia, the NW-SE direction carried along the Gafsa fault (the oriental limit of southern atlassic accident), and the E-W direction defined in the southern Tunisian Atlas. This variation of direction is the result of important variation of deformation during different tectonics phases. A classical modelling of the Jebel ElKebar anticline, based on faults throw of the pre-existing faults and its reactivation during compressive phases, shows the importance of extensional deformation, particular during Aptian-Albian period, comparing with that of later compression (Alpine phases). A numerical modelling, based on the software Rampe E.M. 1.5.0, applied on the anticline of Jebel Orbata confirms the interpretation of “fault related fold” with decollement level within the Triassic successions. The other important parameter of evolution of deformation is the vertical migration of decollement level; indeed, more than the decollement level is in the recent series, most that the deformation is accentuated. The evolution of deformation is marked the development of duplex structure in Jebel At Taghli (eastern limit of Jebel Orbata). Consequently, the evolution of deformation is proportional to the depth of the decollement level, the most important deformation is in the higher successions; thus, is associated to the thin-skinned deformation; the decollement level permit the passive transfer of deformation in the cover.

Keywords: evolution of deformation, pre-existing faults, decollement level, thin-skinned

Procedia PDF Downloads 118
520 A Hedonic Valuation Approach to Valuing Combined Sewer Overflow Reductions

Authors: Matt S. Van Deren, Michael Papenfus

Abstract:

Seattle is one of the hundreds of cities in the United States that relies on a combined sewer system to collect and convey municipal wastewater. By design, these systems convey all wastewater, including industrial and commercial wastewater, human sewage, and stormwater runoff, through a single network of pipes. Serious problems arise for combined sewer systems during heavy precipitation events when treatment plants and storage facilities are unable to accommodate the influx of wastewater needing treatment, causing the sewer system to overflow into local waterways through sewer outfalls. CSOs (Combined Sewer Overflows) pose a serious threat to human and environmental health. Principal pollutants found in CSO discharge include microbial pathogens, comprising of bacteria, viruses, parasites, oxygen-depleting substances, suspended solids, chemicals or chemical mixtures, and excess nutrients, primarily nitrogen and phosphorus. While concentrations of these pollutants can vary between overflow events, CSOs have the potential to spread disease and waterborne illnesses, contaminate drinking water supplies, disrupt aquatic life, and effect a waterbody’s designated use. This paper estimates the economic impact of CSOs on residential property values. Using residential property sales data from Seattle, Washington, this paper employs a hedonic valuation model that controls for housing and neighborhood characteristics, as well as spatial and temporal effects, to predict a consumer’s willingness to pay for improved water quality near their homes. Initial results indicate that a 100,000-gallon decrease in the average annual overflow discharged from a sewer outfall within 300 meters of a home is associated with a 0.053% increase in the property’s sale price. For the average home in the sample, the price increase is estimated to be $18,860.23. These findings reveal some of the important economic benefits of improving water quality by reducing the frequency and severity of combined sewer overflows.

Keywords: benefits, hedonic, Seattle, sewer

Procedia PDF Downloads 172
519 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 139
518 Active Packaging Films Based on Chitosan Incorporated with Thyme Essential Oil and Cross Linkers and Its Effect on the Quality Shelf Life of Food

Authors: Aiman Zehra, Sajad Mohd Wani

Abstract:

Packaging has a vital role as it contains and protects the food that moves from the supply chain to the consumer. Chitosan (CH) has been extensively used in food packaging applications among the plentiful natural macromolecules, including all the polysaccharide class, owing to its easy film-forming capacity, biodegradability, better oxygen and water vapour barrier ability and good mechanical strength. Compared to synthetic films, the films produced from chitosan present poor barrier and mechanical properties. To overcome its deficient qualities, a number of modification procedures are required to enhance the mechanical and physical properties. Various additives such as plasticizers (e.g., glycerol and sorbitol), crosslinkers (e.g.,CaCl₂, ZnO), fillers (nanoclay), and antimicrobial agents (e.g. thyme essential oil) have been used to improve the mechanical, thermal, morphological, antimicrobial properties and emulsifying agents for the stability and elasticity of chitosan-based biodegradable films. Different novel biocomposite films based on chitosan incorporated with thyme essential oil and different additives (ZnO, CaCl₂, NC, and PEG) were successfully prepared and used as packaging material for carrot candy. The chitosan film incorporated with crosslinkers was capable of forming a protective barrier on the surface of the candy to maintain moisture content, water activity, TSS, total sugars, and titratable acidity. ZnO +PEG +NC +CaCl₂ remarkably promotes a synergistic effect on the barrier properties of the film. The combined use of ZnO +PEG +NC +CaCl₂ in CH-TO films was more effective in preventing the moisture gain in candies. The lowest a𝓌 (0.624) was also observed for the candies stored in treatment. The color values L*, a*, b* of the candies were also retained in the film containing all the additives during the 6th month of storage. The value for L*, a*, and b* observed for T was 42.72, 9.89, and 10.84, respectively. The candies packaged in film retained TSS and acidity. The packaging film significantly p≤0.05 conserved sensory qualities and inhibited microbial activity during storage. Carrot candy was found microbiologically safe for human consumption even after six months of storage in all the packaging materials.

Keywords: chitosan, biodegradable films, antimicrobial activity, thyme essential oil, crosslinkers

Procedia PDF Downloads 89
517 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 105
516 Recommendations for Data Quality Filtering of Opportunistic Species Occurrence Data

Authors: Camille Van Eupen, Dirk Maes, Marc Herremans, Kristijn R. R. Swinnen, Ben Somers, Stijn Luca

Abstract:

In ecology, species distribution models are commonly implemented to study species-environment relationships. These models increasingly rely on opportunistic citizen science data when high-quality species records collected through standardized recording protocols are unavailable. While these opportunistic data are abundant, uncertainty is usually high, e.g., due to observer effects or a lack of metadata. Data quality filtering is often used to reduce these types of uncertainty in an attempt to increase the value of studies relying on opportunistic data. However, filtering should not be performed blindly. In this study, recommendations are built for data quality filtering of opportunistic species occurrence data that are used as input for species distribution models. Using an extensive database of 5.7 million citizen science records from 255 species in Flanders, the impact on model performance was quantified by applying three data quality filters, and these results were linked to species traits. More specifically, presence records were filtered based on record attributes that provide information on the observation process or post-entry data validation, and changes in the area under the receiver operating characteristic (AUC), sensitivity, and specificity were analyzed using the Maxent algorithm with and without filtering. Controlling for sample size enabled us to study the combined impact of data quality filtering, i.e., the simultaneous impact of an increase in data quality and a decrease in sample size. Further, the variation among species in their response to data quality filtering was explored by clustering species based on four traits often related to data quality: commonness, popularity, difficulty, and body size. Findings show that model performance is affected by i) the quality of the filtered data, ii) the proportional reduction in sample size caused by filtering and the remaining absolute sample size, and iii) a species ‘quality profile’, resulting from a species classification based on the four traits related to data quality. The findings resulted in recommendations on when and how to filter volunteer generated and opportunistically collected data. This study confirms that correctly processed citizen science data can make a valuable contribution to ecological research and species conservation.

Keywords: citizen science, data quality filtering, species distribution models, trait profiles

Procedia PDF Downloads 194
515 Solanum Nigrum Show Anti-Obesity Effects on High Fat Diet Fed Sprague Dawley Rats

Authors: Kathryn Nderitu, Atunga Nyachieo, Ezekiel Mecha

Abstract:

Introduction: Solanum nigrum , also known as black nightshade, biosynthesizes various phytochemical compounds with various pharmacological activities, including treating cardiovascular diseases and type 2 diabetes, among others. Materials and Methods: To assess the anti-obesity effects of Solanum nigrum using high-fat-fed diet rats, Sprague Dawley male rats (n = 35) of weights 160–180 g were assigned randomly into seven groups comprising n = 5 rats each. Each group was fed for 11 weeks as follows: normal group (normal chow rat feed); high-fat diet control (HFD); HFD and standard drug (Orlistat 30 mg/kg bw); HFD and methanolic extract 150 mg/kgbw; HFD and methanolic extract 300 mg/kgbw; HFD and dichloromethane extract 150 mg/kgbw; HFD and dichloromethane extract 300 mg/kgbw. Body mass index and food intake were monitored per week, and an oral glucose tolerance test was measured in weeks 5 and 10. Lipid profiles, liver function tests, adipose tissue, liver weights, and phytochemical analysis of Solanum nigrum were later carried out. Results: High-fat diet control group rats exhibited a significant increase in body mass index (BMI), while rats administered with leaf extracts of Solanum nigrum showed a reduction in BMI. Both low doses of dichloromethane (150 mg/kgbw) and high doses of methanol extracts (300 mg/kgbw) showed a better reduction in BMI than the other treatment groups. A significant decrease (p <0.05) in low-density lipoprotein-cholesterol, triglycerides, and cholesterol was observed among the rats administered with Solanum nigrum extracts compared to those of HFD control. Moreover, the HFD control group significantly increased liver and adipose tissue weights compared to other treatment groups (p<0.05). Solanum nigrum also decreased glycemic levels and normalized the hepatic enzymes of HFD control. However, food intake among the groups showed no significant difference (p>0.05). Qualitative analysis of Solanum nigrum leaf extracts indicated the presence of various bioactive compounds associated with anti-obesity. Conclusion: These results validate the use of Solanum nigrum in controlling obesity.

Keywords: solanum nigrum, High fat diet, phytocompounds, obesity

Procedia PDF Downloads 51
514 Direct Laser Fabrication and Characterization of Cu-Al-Ni Shape Memory Alloy for Seismic Damping Applications

Authors: Gonzalo Reyes, Magdalena Walczak, Esteban Ramos-Moore, Jorge Ramos-Grez

Abstract:

Metal additive manufacture technologies have gained strong support and acceptance as a promising and alternative method to manufacture high performance complex geometry products. The main purpose of the present work is to study the microstructure and phase transformation temperatures of Cu-Al-Ni shape memory alloys fabricated from a direct laser additive process using metallic powders as precursors. The potential application is to manufacture self-centering seismic dampers for earthquake protection of buildings out of a copper based alloy by an additive process. In this process, the Cu-Al-Ni alloy is melted, inside of a high temperature and vacuum chamber with the aid of a high power fiber laser under inert atmosphere. The laser provides the energy to melt the alloy powder layer. The process allows fabricating fully dense, oxygen-free Cu-Al-Ni specimens using different laser power levels, laser powder interaction times, furnace ambient temperatures, and cooling rates as well as modifying concentration of the alloying elements. Two sets of specimens were fabricated with a nominal composition of Cu-13Al-3Ni and Cu-13Al-4Ni in wt.%, however, semi-quantitative chemical analysis using EDX examination showed that the specimens’ resulting composition was closer to Cu-12Al-5Ni and Cu-11Al-8Ni, respectively. In spite of that fact, it is expected that the specimens should still possess shape memory behavior. To confirm this hypothesis, phase transformation temperatures will be measured using DSC technique, to look for martensitic and austenitic phase transformations at 150°C. So far, metallographic analysis of the specimens showed defined martensitic microstructures. Moreover, XRD technique revealed diffraction peaks corresponding to (0 0 18) and (1 2 8) planes, which are too associated with the presence of martensitic phase. We conclude that it would be possible to obtain fully dense Cu-Al-Ni alloys having shape memory effect behavior by direct laser fabrication process, and to advance into fabrication of self centering seismic dampers by a controllable metal additive manufacturing process.

Keywords: Cu-Al-Ni alloys, direct laser fabrication, shape memory alloy, self-centering seismic dampers

Procedia PDF Downloads 513
513 Rescaling Global Health and International Relations: Globalization of Health in a Low Security Environment

Authors: F. Argurio, F. G. Vaccaro

Abstract:

In a global environment defined by ever-increasing health issues, in spite of the progress made by modern medicine, this paper seeks to readdress the question of global health in an international relations perspective. The research hypothesis is: the lower the security environment, the higher the spread of communicable diseases. This question will be channeled by re-scaling the connotation of 'global' and 'international' dimension through the theoretical lens of glocalization, a theory by Bauman that starts its analysis from simple systems to get to the most complex ones. Glocalization theory will be operationalized by analyzing health in an armed-conflict context. In this respect, the independent variable 'low security environment' translates into the cases of Syria and Yemen, which provide a clear example of the all-encompassing nature of conflict on national health and the effects on regional development. In fact, Syria and Yemen have been affected by poliomyelitis and cholera outbreaks respectively. The dependent variable will be constructed on said communicable diseases which belong to the families of sanitation-related and vaccine-preventable diseases. The research will be both qualitative and quantitative, based on primary (interviews) and secondary (WHO and other NGO’s reports) sources. The methodology is based on the assessment of the vaccine coverage and case-analysis in time and space using epidemiological data. Moreover, local health facilities’ functioning and efficiency will be studied. The article posits that the intervention and cooperation of international organizations with the local authorities becomes crucial to provide the local populations with their primary health needs. In Yemen, the majority of fatal cholera cases were in the regions controlled by the Houthi rebels, not officially accredited by the International Community. Similarly, the polio outbreak in Syria primarily affected the areas not controlled by the Syrian Arab Republic forces, recognized as the leading interlocutor by the WHO. The jeopardized possibilities to access these countries have been pivotal to the determining the problem in controlling sanitation-related and vaccine preventable diseases. This represents a potential threat to global health.

Keywords: health in conflict-affected areas, cholera, polio, Yemen, Syria, glocalization

Procedia PDF Downloads 128
512 Evaluation of Azo Dye Toxicity Using Some Haematological and Histopathological Alterations in Fish Catla Catla

Authors: Jagruti Barot

Abstract:

The textile industry plays a major role in the economy of India and on the other side of the coin it is the major source for water pollution. As azo dyes is the largest dye class they are extensively used in many fields such as textile industry, leather tanning industry, paper production, food, colour photography, pharmaceuticals and medicine, cosmetic, hair colourings, wood staining, agricultural, biological and chemical research etc. In addition to these, they can have acute and/or chronic effects on organisms depending on their concentration and length of exposure when they discharged as effluent in the environment. The aim of this study was to assess the genotoxic and histotoxic potentials of environmentally relevant concentrations of RR 120 on Catla catla, important edible freshwater fingerlings. For this, healthy Catla catla fingerlings were procured from the Government Fish Farm and acclimatized in 100 L capacity and continuously aerated glass aquarium in laboratory for 15 days. According to APHA some physic-chemical parameters were measured and maintained such as temperature, pH, dissolve oxygen, alkalinity, total hardness. Water along with excreta had been changed every 24 hrs. All fingerlings were fed artificial food palates once a day @ body weight. After 15 days fingerlings were grouped in 5 (10 in each) and exposed to various concentrations of RR 120 (Control, 10, 20, 30 and 40 mg/L) and samples (peripheral blood and gills, kidney) were collected and analyzed at 96 hrs. of interval. All results were compared with the control. Micronuclei (MN), nuclear buds (NB), fragmented-apoptotic (FA) and bi-nucleated (BN) cells in blood cells and in tissues (gills and kidney cells) were observed. Prominent histopathological alterations were noticed in gills such as aneurism, hyperplasia, degenerated central axis, lifting of gill epithelium, curved secondary gill lamellae etc. Similarly kidney showed some detrimental changes like shrunken glomeruli with increased periglomerular space, degenerated renal tubules etc. Both haematological and histopathological changes clearly reveal the toxic potential of RR 120. This work concludes that water pollution assessment can be done by these two biomarkers which provide baseline to the further chromosomal or molecular work.

Keywords: micronuclei, genotoxicity, RR 120, Catla catla

Procedia PDF Downloads 204
511 Ultra-Fast Growth of ZnO Nanorods from Aqueous Solution: Technology and Applications

Authors: Bartlomiej S. Witkowski, Lukasz Wachnicki, Sylwia Gieraltowska, Rafal Pietruszka, Marek Godlewski

Abstract:

Zinc oxide is extensively studied II-VI semiconductor with a direct energy gap of about 3.37 eV at room temperature and high transparency in visible light spectral region. Due to these properties, ZnO is an attractive material for applications in photovoltaic, electronic and optoelectronic devices. ZnO nanorods, due to a well-developed surface, have potential of applications in sensor technology and photovoltaics. In this work we present a new inexpensive method of the ultra-fast growth of ZnO nanorods from the aqueous solution. This environment friendly and fully reproducible method allows growth of nanorods in few minutes time on various substrates, without any catalyst or complexing agent. Growth temperature does not exceed 50ºC and growth can be performed at atmospheric pressure. The method is characterized by simplicity and allows regulation of size of the ZnO nanorods in a large extent. Moreover the method is also very safe, it requires organic, non-toxic and low-price precursors. The growth can be performed on almost any type of substrate through the homo-nucleation as well as hetero-nucleation. Moreover, received nanorods are characterized by a very high quality - they are monocrystalline as confirmed by XRD and transmission electron microscopy. Importantly oxygen vacancies are not found in the photoluminescence measurements. First results for obtained by us ZnO nanorods in sensor applications are very promising. Resistance UV sensor, based on ZnO nanorods grown on a quartz substrates shows high sensitivity of 20 mW/m2 (2 μW/cm2) for point contacts, especially that the results are obtained for the nanorods array, not for a single nanorod. UV light (below 400 nm of wavelength) generates electron-hole pairs, which results in a removal from the surfaces of the water vapor and hydroxyl groups. This reduces the depletion layer in nanorods, and thus lowers the resistance of the structure. The so-obtained sensor works at room temperature and does not need the annealing to reset to initial state. Details of the technology and the first sensors results will be presented. The obtained ZnO nanorods are also applied in simple-architecture photovoltaic cells (efficiency over 12%) in conjunction with low-price Si substrates and high-sensitive photoresistors. Details informations about technology and applications will be presented.

Keywords: hydrothermal method, photoresistor, photovoltaic cells, ZnO nanorods

Procedia PDF Downloads 430
510 Optimization of Culture Conditions of Paecilomyces tenuipes, Entomopathogenic Fungi Inoculated into the Silkworm Larva, Bombyx mori

Authors: Sunghee Nam

Abstract:

Entomopathogenic fungi is a Cordyceps species that is isolated from dead silkworm and cicada. Fungi on cicadas were described in old Chinese medicinal books and from ancient times, vegetable wasps and plant worms were widely known to have active substance and have been studied for pharmacological use. Among many fungi belonging to the genus Cordyceps, Cordyceps sinensis have been demonstrated to yield natural products possessing various biological activities and many bioactive components. Generally, It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. Due to their commercial and economic importance, the demand for Cordyceps has been rapidly increased. However, a supply of Cordyceps specimen could not meet the increasing demand because of their sole dependence on field collection and habitat destruction. Because it is difficult to obtain many insect hosts in nature and the edibility of host insect needs to be verified in a pharmacological aspect. Recently, this setback was overcome that P. tenuipes was able to be cultivated in a large scale using silkworm as host. Pharmacological effects of P. tenuipes cultured on silkworm such as strengthening immune function, anti-fatigue, anti-tumor activity and controlling liver etc. have been proved. They are widely commercialized. In this study, we attempted to establish a method for stable growth inhibition of P. tenuipes on silkworm hosts and an optimal condition for synnemata formation. To determine optimum culturing conditions, temperature and light conditions were varied. The length and number of synnemata was highest at 25℃ temperature and 100~300 lux illumination. On an average, the synnemata of wild P. tenuipes measures 70 ㎜ in length and 20 in number; those of the cultured strain were relatively shorter and more in number. The number of synnemata may have increased as a result of inoculating the host with highly concentrated conidia, while the length may have decreased due to limited nutrition per individual. It is not able that changes in light illumination cause morphological variations in the synnemata. However, regulation of only light and temperature could not produce stromata like perithecia, asci, and ascospores.

Keywords: optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi silkworm larva, bombyx mori

Procedia PDF Downloads 249
509 Variation of Litter Chemistry under Intensified Drought: Consequences on Flammability

Authors: E. Ormeno, C. Gutigny, J. Ruffault, J. Madrigal, M. Guijarro, C. Lecareux, C. Ballini

Abstract:

Mediterranean plant species feature numerous metabolic and morpho-physiological responses crucial to survive under both, typical Mediterranean drought conditions and future aggravated drought expected by climate change. Whether these adaptive responses will, in turn, increase the ecosystem perturbation in terms of fire hazard, is an issue that needs to be addressed. The aim of this study was to test whether recurrent and aggravated drought in the Mediterranean area favors the accumulation of waxes in leaf litter, with an eventual increase of litter flammability. The study was conducted in 2017 in a garrigue in Southern France dominated by Quercus coccifera, where two drought treatments were used: a treatment with recurrent aggravated drought consisting of ten rain exclusion structures which withdraw part of the annual precipitation since January 2012, and a natural drought treatment where Q. coccifera stands are free of such structures and thus grow under natural precipitation. Waxes were extracted with organic solvent and analyzed by GC-MS and litter flammability was assessed through measurements of the ignition delay, flame residence time and flame intensity (flame height) using an epiradiator as well as the heat of combustion using an oxygen bomb calorimeter. Results show that after 5 years of rain restriction, wax content in the cuticle of leaf litter increases significantly compared to shrubs growing under natural precipitation, in accordance with the theoretical knowledge which expects increases of cuticle waxes in green leaves in order to limit water evapotranspiration. Wax concentrations were also linearly and positively correlated to litter flammability, a correlation that lies on the high flammability own to the long-chain alkanes (C25-C31) found in leaf litter waxes. This innovative investigation shows that climate change is likely to favor ecosystem fire hazard through accumulation of highly flammable waxes in litter. It also adds valuable information about the types of metabolites that are associated with increasing litter flammability, since so far, within the leaf metabolic profile, only terpene-like compounds had been related to plant flammability.

Keywords: cuticular waxes, drought, flammability, litter

Procedia PDF Downloads 167
508 Toxicity of PPCPs on Adapted Sludge Community

Authors: G. Amariei, K. Boltes, R. Rosal, P. Leton

Abstract:

Wastewater treatment plants (WWTPs) are supposed to hold an important place in the reduction of emerging contaminants, but provide an environment that has potential for the development and/or spread of adaptation, as bacteria are continuously mixed with contaminants at sub-inhibitory concentrations. Reviewing the literature, there are little data available regarding the use of adapted bacteria forming activated sludge community for toxicity assessment, and only individual validations have been performed. Therefore, the aim of this work was to study the toxicity of Triclosan (TCS) and Ibuprofen (IBU), individually and in binary combination, on adapted activated sludge (AS). For this purpose a battery of biomarkers were assessed, involving oxidative stress and cytotoxicity responses: glutation-S-transferase (GST), catalase (CAT) and viable cells with FDA. In addition, we compared the toxic effects on adapted bacteria with unadapted bacteria, from a previous research. Adapted AS comes from three continuous-flow AS laboratory systems; two systems received IBU and TCS, individually; while the other received the binary combination, for 14 days. After adaptation, each bacterial culture condition was exposure to IBU, TCS and the combination, at 12 h. The concentration of IBU and TCS ranged 0.5-4mg/L and 0.012-0.1 mg/L, respectively. Batch toxicity experiments were performed using Oxygraph system (Hansatech), for determining the activity of CAT enzyme based on the quantification of oxygen production rate. Fluorimetric technique was applied as well, using a Fluoroskan Ascent Fl (Thermo) for determining the activity of GST enzyme, using monochlorobimane-GSH as substrate, and to the estimation of viable cell of the sludge, by fluorescence staining using Fluorescein Diacetate (FDA). For IBU adapted sludge, CAT activity it was increased at low concentration of IBU, TCS and mixture. However, increasing the concentration the behavior was different: while IBU tends to stabilize the CAT activity, TCS and the mixture decreased this one. GST activity was significantly increased by TCS and mixture. For IBU, no variations it was observed. For TCS adapted sludge, no significant variations on CAT activity it was observed. GST activity it was significant decreased for all contaminants. For mixture adapted sludge the behaviour of CAT activity it was similar to IBU adapted sludge. GST activity it was decreased at all concentration of IBU. While the presence of TCS and mixture, respectively, increased the GST activity. These findings were consistent with the viability cells evaluation, which clearly showed a variation of sludge viability. Our results suggest that, compared with unadapted bacteria, the adapted bacteria conditions plays a relevant role in the toxicity behaviour towards activated sludge communities.

Keywords: adapted sludge community, mixture, PPCPs, toxicity

Procedia PDF Downloads 394
507 Multi-Omics Integrative Analysis Coupled to Control Theory and Computational Simulation of a Genome-Scale Metabolic Model Reveal Controlling Biological Switches in Human Astrocytes under Palmitic Acid-Induced Lipotoxicity

Authors: Janneth Gonzalez, Andrés Pinzon Velasco, Maria Angarita

Abstract:

Astrocytes play an important role in various processes in the brain, including pathological conditions such as neurodegenerative diseases. Recent studies have shown that the increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatorypathways in the brain. The use of synthetic neurosteroids such as tibolone has demonstrated neuro-protective mechanisms. However, broad studies with a systemic point of view on the neurodegenerative role of PA and the neuro-protective mechanisms of tibolone are lacking. In this study, we performed the integration of multi-omic data (transcriptome and proteome) into a human astrocyte genomic scale metabolic model to study the astrocytic response during palmitate treatment. We evaluated metabolic fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment under PA inflammation). We also applied a control theory approach to identify those reactions that exert more control in the astrocytic system. Our results suggest that PA generates a modulation of central and secondary metabolism, showing a switch in energy source use through inhibition of folate cycle and fatty acid β‐oxidation and upregulation of ketone bodies formation. We found 25 metabolic switches under PA‐mediated cellular regulation, 9 of which were critical only in the inflammatory scenario but not in the protective tibolone one. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a fundamental role in the (de)regulation of metabolic pathways that may increase neurotoxicity and represent potential treatment targets. Finally, the overall framework of our approach facilitates the understanding of complex metabolic regulation, and it can be used for in silico exploration of the mechanisms of astrocytic cell regulation, directing a more complex future experimental work in neurodegenerative diseases.

Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics

Procedia PDF Downloads 91
506 The Effect of Santolina Plant Extract on Nitro-Oxidative Stress

Authors: Sabrina Sebbane, Alina Elena Parvu

Abstract:

Introduction: Santolina rosmarinifolia is a plant of the Santolina genus, a family made of medicinal plants widely used. Some of the Santolina species have been proven to have potent anti-inflammatory and anti-oxidant effects. However, no in vivo study has been made to demonstrate this in Santolina rosmarinifolia. The aim of our study is to experimentally evaluate the potential anti-inflammatory and anti-oxidant effects of Santolina rosmarinifolia plant extracts on acute inflammation in rats. These effects are defined by measuring the modifications on nitric oxide, reactive oxygen species and anti-oxidant response in serum. Materials and Methods: Rats were divided into 5 groups (n=6). Three groups were given Santolina rosmarinifolia extract by gavage in different concentrations(100%, 50%, 25%) for a week. Inflammation was induced by i.m injection of turpentine oil on the 8th day. One group was only given turpentine oil and the fifth group acted as control and was given only saline solution. Blood was collected and serum separated. Global tests were used to measure the oxidative stress, total oxidative status (TOS), total antioxidant reactivity (TAR) and the modified method of Griess assay to measure NO synthesis. Malondilaldehyde (MDA) and thiols levels were also assessed. Results: Santolina rosmarinifolia did not significantly change the TOS levels (p > 0.05). Santolina rosmarinifolia 25% and 50% decreased significantly the TAR levels (p < 0.001). Santolina 100% didn't have a significant effect on TAR (p > 0.05). All concentrations of Santolina rosmarinifolia increased the oxidative stress index (OSI) significantly(p < 0.05). Santolina rosmarinifolia 100% significantly decreased NO synthesis (p value < 0.05). In the diluted Santolina groups, no significant effect on NO synthesis was observed. In the groups treated with Santolina 100% and Santolina rosmarinifolia 50%, thiols concentration were significantly higher compared to the inflammation group (p < 0.02). A higher stimulatory effect was found in the Santolina 25% group (p value < 0.05). MDA levels were not significantly modified by the administration of Santolina rosmarinifolia (p > 0.05). Conclusion: All three solutions of Santolina rosmarinifolia had no important effect on oxidant production. However, Santolina rosmarinifolia solutions had a positive effect by increasing the thiols concentration in the serum of the models. The sum of all the effects produced by the administration of Santolina did not show a significant decrease of nitro-oxidative stress. Further experiments including smaller concentrations of Santolina rosmarinifolia will be made. Santolina rosmarinifolia should also be tested as a curative treatment.

Keywords: inflammation, MDA, nitric oxide, santolina rosmarinifolia, thiols, TAR, TOS

Procedia PDF Downloads 256
505 Gender, Occupational Status, Work-to-Family Conflict, and the Roles of Stressors among Korean Immigrants: Rethinking the Concept of the 'Stress of Higher Status'

Authors: Il-Ho Kim, Samuel Noh, Kwame McKenzie, Cyu-Chul Choi

Abstract:

Introduction: The ‘stress of higher status’ hypothesis suggests that workers with higher-status occupations are more likely to experience work-to-family conflict (WFC) than those with lower-status occupations. Yet, the occupational difference in WFC and its mechanisms have not been explicitly explored within Asian culture. This present study examines (a) the association between occupational status and WFC and (b) the mediating roles of work-related stressors and resources, focused on gender perspectives using a sample of Korean immigrants. Methods: Data were derived from a cross-sectional survey of foreign born Korean immigrants who were currently working at least two years in the Greater Area of Toronto or surrounding towns. The sample was stratified for equivalent presentations of micro-business owners (N=555) and paid employees in diverse occupational categories (N=733). Results: We found gender differences and similarities in the link between occupational status and WFC and the mediating roles of work-related variables. Compared to skilled/unskilled counterparts, male immigrants in professional, service, and microbusiness jobs reported higher levels of WFC, whereas female immigrants in higher-status occupations were more likely to have WFC with the exception of the highest levels of WFC among microbusiness owners. Regardless of gender, both male and female immigrants who have longer weekly work hours, shift work schedule, and high emotional and psychological demands were significantly associated with high levels of WFC. However, skill development was related to WFC only among male immigrants. Regarding the mediating roles of work-related factors, among female immigrants, the occupational difference in WFC was fully mediated by weekly work hours, shift work schedule, and emotional and psychological demands with the exception of the case of microbusiness workers. Among male immigrants, the occupational differences remained virtually unchanged after controlling for these mediators. Conclusions: Our results partially confirmed the ‘stress of higher status’ hypothesis among female immigrants. Additionally, work-related stressors seem to be critical mediators of the link between occupations and WFC only for female immigrants.

Keywords: work-to-family conflict, gender, work conditions, job demands, job resources

Procedia PDF Downloads 177
504 Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions

Authors: Sarayu Vanga, Jorge Galeano-Cabral, Kaya Wei

Abstract:

Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses.

Keywords: body temperature regulation, cerebral hypoxia, thermoelectric, blanket design

Procedia PDF Downloads 149
503 Last ca 2500 Yr History of the Harmful Algal Blooms in South China Reconstructed on Organic-Walled Dinoflagellate Cysts

Authors: Anastasia Poliakova

Abstract:

Harmful algal bloom (HAB) is a known negative phenomenon that is caused both by natural factors and anthropogenic influence. HABs can result in a series of deleterious effects, such as beach fouling, paralytic shellfish poisoning, mass mortality of marine species, and a threat to human health, especially if toxins pollute drinking water or occur nearby public resorts. In South China, the problem of HABs has an ultimately important meaning. For this study, we used a 1.5 m sediment core LAX-2018-2 collected in 2018 from the Zhanjiang Mangrove National Nature Reserve (109°03´E, 20°30´N), Guangdong Province, South China. High-resolution coastal environment reconstruction with a specific focus on the HABs history during the last ca 2500 yrs was attempted. Age control was performed with five radiocarbon dates obtained from benthic foraminifera. A total number of 71 dinoflagellate cyst types was recorded. The most common types found consistently throughout the sediment sequence were autotrophic Spiniferites spp., Spiniferites hyperacanthus and S. mirabilis, S. ramosus, Operculodinium centrocarpum sensu Wall and Dale 1966, Polysphaeridium zoharyi, and heterotrophic Brigantedinium ssp., cyst of Gymnodinium catenatum and cysts mixture of Protoperidinium. Three local dinoflagellate zones LAX-1 to LAX-3 were established based on the results of the constrained cluster analysis and data ordination; additionally, the middle zone LAX-2 was derived into two subzones, LAX-2a and LAX-2b based on the dynamics of toxic and heterotrophic cysts as well as on the significant changes (probability, P=0.89) in percentages of eutrophic indicators. The total cyst count varied from 106 to 410 dinocysts per slide, with 177 cyst types on average. Dinocyst assemblages are characterized by high values of the dost-depositional degradation index (kt) that varies between 3.6 and 7.6 (averaging 5.4), which is relatively high and is very typical for the areas with selective dinoflagellate cyst preservation that is related to bottom-water oxygen concentrations.

Keywords: reconstruction of palaeoenvironment, harmful algal blooms, anthropogenic influence on coastal zones, South China Sea

Procedia PDF Downloads 81
502 Comparison of Physical and Chemical Effects on Senescent Cells

Authors: Svetlana Guryeva, Inna Kornienko, Andrey Usanov, Dmitry Usanov, Elena Petersen

Abstract:

Every day cells in our organism are exposed to various factors: chemical agents, reactive oxygen species, ionizing radiation, and others. These factors can cause damage to DNA, cellular membrane, intracellular compartments, and proteins. The fate of cells depends on the exposure intensity and duration. The prolonged and intense exposure causes the irreversible damage accumulation, which triggers the permanent cell cycle arrest (cellular senescence) or cell death programs. In the case of low dose of impacts, it can lead to cell renovation and to cell functional state improvement. Therefore, it is a pivotal question to investigate the factors and doses that result in described positive effects. In order to estimate the influence of different agents, the proliferation index and levels of cell death markers (annexin V/propidium iodide), senescence-associated β-galactosidase, and lipofuscin were measured. The experiments were conducted on primary human fibroblasts of the 8th passage. According to the levels of mentioned markers, these cells were defined as senescent cells. The effect of low-frequency magnetic field was investigated. Different modes of magnetic field exposure were tested. The physical agents were compared with chemical agents: metformin (10 mM) and taurine (0.8 mM and 1.6 mM). Cells were incubating with chemicals for 5 days. The highest decrease in the level of senescence-associated β-galactosidase (21%) and lipofuscin (17%) was observed in the primary senescent fibroblasts after 5 days after double treatments with 48 h intervals with low-frequency magnetic field. There were no significant changes in the proliferation index after magnetic field application. The cytotoxic effect of magnetic field was not observed. The chemical agent taurine (1.6 mM) decreased the level of senescence-associated β-galactosidase (23%) and lipofuscin (22%). Metformin improved the activity of senescence-associated β-galactosidase on 15% and the level of lipofuscin on 19% in this experiment. According to these results, the effect of double treatment with 48 h interval with low-frequency magnetic field and the effect of taurine (1.6 mM) were comparable to the effect of metformin, for which anti-aging properties are proved. In conclusion, this study can become the first step towards creation of the standardized system for the investigation of different effects on senescent cells.

Keywords: biomarkers, magnetic field, metformin, primary fibroblasts, senescence, taurine

Procedia PDF Downloads 270
501 A POX Controller Module to Collect Web Traffic Statistics in SDN Environment

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a new norm of networks. It is designed to facilitate the way of managing, measuring, debugging and controlling the network dynamically, and to make it suitable for the modern applications. Generally, measurement methods can be divided into two categories: Active and passive methods. Active measurement method is employed to inject test packets into the network in order to monitor their behaviour (ping tool as an example). Meanwhile the passive measurement method is used to monitor the traffic for the purpose of deriving measurement values. The measurement methods, both active and passive, are useful for the collection of traffic statistics, and monitoring of the network traffic. Although there has been a work focusing on measuring traffic statistics in SDN environment, it was only meant for measuring packets and bytes rates for non-web traffic. In this study, a feasible method will be designed to measure the number of packets and bytes in a certain time, and facilitate obtaining statistics for both web traffic and non-web traffic. Web traffic refers to HTTP requests that use application layer; while non-web traffic refers to ICMP and TCP requests. Thus, this work is going to be more comprehensive than previous works. With a developed module on POX OpenFlow controller, information will be collected from each active flow in the OpenFlow switch, and presented on Command Line Interface (CLI) and wireshark interface. Obviously, statistics that will be displayed on CLI and on wireshark interfaces include type of protocol, number of bytes and number of packets, among others. Besides, this module will show the number of flows added to the switch whenever traffic is generated from and to hosts in the same statistics list. In order to carry out this work effectively, our Python module will send a statistics request message to the switch requesting its current ports and flows statistics in every five seconds; while the switch will reply with the required information in a message called statistics reply message. Thus, POX controller will be notified and updated with any changes could happen in the entire network in a very short time. Therefore, our aim of this study is to prepare a list for the important statistics elements that are collected from the whole network, to be used for any further researches; particularly, those that are dealing with the detection of the network attacks that cause a sudden rise in the number of packets and bytes like Distributed Denial of Service (DDoS).

Keywords: mininet, OpenFlow, POX controller, SDN

Procedia PDF Downloads 229
500 Update on Epithelial Ovarian Cancer (EOC), Types, Origin, Molecular Pathogenesis, and Biomarkers

Authors: Salina Yahya Saddick

Abstract:

Ovarian cancer remains the most lethal gynecological malignancy due to the lack of highly sensitive and specific screening tools for detection of early-stage disease. The OSE provides the progenitor cells for 90% of human ovarian cancers. Recent morphologic, immunohistochemical and molecular genetic studies have led to the development of a new paradigm for the pathogenesis and origin of epithelial ovarian cancer (EOC) based on a ualistic model of carcinogenesis that divides EOC into two broad categories designated Types I and II which are characterized by specific mutations, including KRAS, BRAF, ERBB2, CTNNB1, PTEN PIK3CA, ARID1A, and PPPR1A, which target specific cell signaling pathways. Type 1 tumors rarely harbor TP53. type I tumors are relatively genetically stable and typically display a variety of somatic sequence mutations that include KRAS, BRAF, PTEN, PIK3CA CTNNB1 (the gene encoding beta catenin), ARID1A and PPP2R1A but very rarely TP53 . The cancer stem cell (CSC) hypothesis postulates that the tumorigenic potential of CSCs is confined to a very small subset of tumor cells and is defined by their ability to self-renew and differentiate leading to the formation of a tumor mass. Potential protein biomarker miRNA, are promising biomarkers as they are remarkably stable to allow isolation and analysis from tissues and from blood in which they can be found as free circulating nucleic acids and in mononuclear cells. Recently, genomic anaylsis have identified biomarkers and potential therapeutic targets for ovarian cancer namely, FGF18 which plays an active role in controlling migration, invasion, and tumorigenicity of ovarian cancer cells through NF-κB activation, which increased the production of oncogenic cytokines and chemokines. This review summarizes update information on epithelial ovarian cancers and point out to the most recent ongoing research.

Keywords: epithelial ovarian cancers, somatic sequence mutations, cancer stem cell (CSC), potential protein, biomarker, genomic analysis, FGF18 biomarker

Procedia PDF Downloads 376
499 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: biochemical reactor, fermentation process, modelling, adaptive control

Procedia PDF Downloads 125
498 Re-Engineering Management Process in IRAN’s Smart Schools

Authors: M. R. Babaei, S. M. Hosseini, S. Rahmani, L. Moradi

Abstract:

Today, the quality of education and training systems and the effectiveness of the education systems of most concern to stakeholders and decision-makers of our country's development in each country. In Iran this is a double issue of concern to numerous reasons; So that governments, over the past decade have hardly even paid the running costs of education. ICT is claiming it has the power to change the structure of a program for training, reduce costs and increase quality, and do education systems and products consistent with the needs of the community and take steps to practice education. Own of the areas that the introduction of information technology has fundamentally changed is the field of education. The aim of this research is process reengineering management in schools simultaneously has been using field studies to collect data in the form of interviews and a questionnaire survey. The statistical community of this research has been the country of Iran and smart schools under the education. Sampling was targeted. The data collection tool was a questionnaire composed of two parts. The questionnaire consists of 36 questions that each question designates one of effective factors on the management of smart schools. Also each question consists of two parts. The first part designates the operating position in the management process, which represents the domain's belonging to the management agent (planning, organizing, leading, controlling). According to the classification of Dabryn and in second part the factors affect the process of managing the smart schools were examined, that Likert scale is used to classify. Questions the validity of the group of experts and prominent university professors in the fields of information technology, management and reengineering of approved and Cronbach's alpha reliability and also with the use of the formula is evaluated and approved. To analyse the data, descriptive and inferential statistics were used to analyse the factors contributing to the rating of (Linkert scale) descriptive statistics (frequency table data, mean, median, mode) was used. To analyse the data using analysis of variance and nonparametric tests and Friedman test, the assumption was evaluated. The research conclusions show that the factors influencing the management process re-engineering smart schools in school performance is affected.

Keywords: re-engineering, management process, smart school, Iran's school

Procedia PDF Downloads 240
497 Research on the Overall Protection of Historical Cities Based on the 'City Image' in Ancient Maps: Take the Ancient City of Shipu, Zhejiang, China as an Example

Authors: Xiaoya Yi, Yi He, Zhao Lu, Yang Zhang

Abstract:

In the process of rapid urbanization, many historical cities have undergone excessive demolition and construction under the protection and renewal mechanism. The original pattern of the city has been changed, the urban context has been cut off, and historical features have gradually been lost. The historical city gradually changed into the form of decentralization and fragmentation. The understanding of the ancient city includes two levels. The first one refers to the ancient city on the physical space, which defined an ancient city by its historic walls. The second refers to the public perception of the image, which is derived from people's spatial identification of the ancient city. In ancient China, people draw maps to show their way of understanding the city. Starting from ancient maps and exploring the spatial characteristics of traditional Chinese cities from the perspective of urban imagery is a key clue to understanding the spatial characteristics of historical cities on an overall level. The spatial characteristics of the urban image presented by the ancient map are summarized into two levels by typology. The first is the spatial pattern composed of the center, axis and boundary. The second is the space element that contains the city, street, and sign system. Taking the ancient city of Shipu as a typical case, the "city image" in the ancient map is analyzed as a prototype, and it is projected into the current urban space. The research found that after a long period of evolution, the historical spatial pattern of the ancient city has changed from “dominant” to “recessive control”, and the historical spatial elements are non-centralized and fragmented. The wall that serves as the boundary of the ancient city is transformed into “fragmentary remains”, the streets and lanes that serve as the axis of the ancient city are transformed into “structural remains”, and the symbols of the ancient city center are transformed into “site remains”. Based on this, the paper proposed the methods of controlling the protection of land boundaries, the protecting of the streets and lanes, and the selective restoring of the city wall system and the sign system by accurate assessment. In addition, this paper emphasizes the continuity of the ancient city's traditional spatial pattern and attempts to explore a holistic conservation method of the ancient city in the modern context.

Keywords: ancient city protection, ancient maps, Shipu ancient city, urban intention

Procedia PDF Downloads 123
496 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 213