Search results for: chemical warfare agents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5791

Search results for: chemical warfare agents

3631 Racism in Drug Policies: A Report on United States Legislation

Authors: Frederick Monyepao

Abstract:

Crack cocaine first appeared on the scene in the form of cocaine freebasing in the late 1970s. Stockbrokers, investment bankers, rock stars, Hollywood elites, and a few pro athletes were regular users of the substance. As criminogenic factors associated with substance abuse began to surface, congress passed new legislation. The laws led to the increase of health coverage insurances and the expansion of hospitals. By the mid-1980s, crack use spread into America's inner cities among impoverished African Americans and Latinos. While substance abuse increased among minority communities, legislation pertaining to substance abuse evolved. The prison industry also expanded the number of cells available. A qualitative approach was taken, drawing from a range secondary sources for contextual analysis. This paper traces out the continued marginalisation and racist undertones towards minorities as perpetuated by certain drug policies. It was discovered that the new legislation on crack was instrumental in the largest incarcerations the United States ever faced. Drug offenders increased in prisons eightfold from 1986 to 2000. The paper concludes that American drug control policies are consistently irrational and ineffective when measured by levels of substance use and abuse. On the contrary, these policies have been successful as agents of social control in maintaining the stratification patterns of racial/ethnic minorities and women. To move beyond prohibition, radical law and policy reform may require a change in narratives on substance use.

Keywords: crack, drug policy, minorities, racism, substance abuse

Procedia PDF Downloads 267
3630 Prospective Randomized Trial of Na/K Citrate for the Prevention of Contrast-Induced Nephropathy in High-Risk Patients

Authors: Leili Iranirad, Mohammad Saleh Sadeghi, Seyed Fakhreddin Hejazi, Negar Vakili Razlighi

Abstract:

Objective: Contrast-induced nephropathy (CIN) or contrast-induced acute kidney injury (CI-AKI) is an unknown acute kidney injury (AKI) occurring after exposure to contrast media (CM). Contrast agents are most often used for diagnostic procedures or therapeutic angiographic interventions. Recently, Na/K citrate as a urine alkalinization has been evaluated for the prevention of CIN. We conducted this experiment to evaluate the efficiency of Na/K citrate on CIN in high-risk patients treated with cardiac catheterization. Methods: A prospective randomized clinical trial was conducted on 400 patients having moderate to high-risk factors for CIN treated with elective percutaneous coronary intervention (PCI) and were assigned randomly to the control group or the Na/K citrate group. The Na/K citrate group (n=200) received 5 g Na/K citrate solution, which was diluted in 200 mL water two h before and four hours after the first administration and intravenous hydration for two h prior to and six h after the procedure, while the control group (n=200) only received intravenous hydration. Serum creatinine (SCr) was calculated prior to the contrast exposure and after 48 h. CIN was described as a 25% increase in creatinine of serum (SCr) or >0.5 mg/dl 48 h after contrast administration. Results: CIN was observed in 33 patients (16.5%) in the control group and in 6 patients (3%) in the Na/K citrate group. A significant variation was recorded in the CIN incidence between the two groups 48 h after the radiocontrast agent administration (p < 0.001). Conclusion: Our results show that Na/K citrate is useful and substantially reduces the incidence of CIN.

Keywords: contrast media, citrate, PCI

Procedia PDF Downloads 80
3629 Chemical Synthesis, Characterization and Dose Optimization of Chitosan-Based Nanoparticles of MCPA for Management of Broad-Leaved Weeds (Chenopodium album, Lathyrus aphaca, Angalis arvensis and Melilotus indica) of Wheat

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Tasawer Abbas

Abstract:

Nanoherbicides utilize nanotechnology to enhance the delivery of biological or chemical herbicides using combinations of nanomaterials. The aim of this research was to examine the efficacy of chitosan nanoparticles containing MCPA herbicide as a potential eco-friendly alternative for weed control in wheat crops. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet absorbance were used to analyze the developed nanoparticles. The SEM analysis indicated that the average size of the particles was 35 nm, forming clusters with a porous structure. Both nanoparticles of fluroxyper + MCPA exhibited maximal absorption peaks at a wavelength of 320 nm. The compound fluroxyper +MCPA has a strong peak at a 2θ value of 30.55°, which correlates to the 78 plane of the anatase phase. The weeds, including Chenopodium album, Lathyrus aphaca, Angalis arvensis, and Melilotus indica, were sprayed with the nanoparticles while they were in the third or fourth leaf stage. There were seven distinct dosages used: doses (D0 (Check weeds), D1 (Recommended dose of traditional herbicide, D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). The chitosan-based nanoparticles of MCPA at the prescribed dosage of conventional herbicide resulted in complete death and visual damage, with a 100% fatality rate. The dosage that was 5-fold lower exhibited the lowest levels of plant height (3.95 cm), chlorophyll content (5.63%), dry biomass (0.10 g), and fresh biomass (0.33 g) in the broad-leaved weed of wheat. The herbicide nanoparticles, when used at a dosage 10-fold lower than that of conventional herbicides, had a comparable impact on the prescribed dosage. Nano-herbicides have the potential to improve the efficiency of standard herbicides by increasing stability and lowering toxicity.

Keywords: mortality, visual injury, chlorophyl contents, chitosan-based nanoparticles

Procedia PDF Downloads 52
3628 Anti-Osteoporotic Effect of Deer Antler in Ovariectomized Rats

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

The deer velvet antler is well known for its traditional medicinal value and is widely used in the clinic. It has been considered to possess bone-strengthening activity. The goal of this study was to investigate the anti-osteoporotic effect of deer antler velvet on ovariectomized rats (OVX), and their possible mechanism of the action. In the first step, the in vitro effects of DAE on bone loss were determined. The proliferation, collagen content and alkaline phosphatase (ALP) activity of human osteoblastic MG-63 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of DAE on bone tissue. 3-month old female Sparague-Dawley rats were either sham operated or OVX, and administered DAE (20 and 100 mg/kg) for 4 weeks. DAE increased MG-63 cell proliferation and ALP activity in a dose-dependent manner. Collagen content was also increased by DAE treatment. However, the effect of DAE on bone resorption was not observed. OVX rats supplemented with DAE showed osteoprotective effects as the bone ALP level was increased and c-terminal telopeptide level was decreased by 100 mg/kg DAE treatment compared with OVX controls. Moreover, the tartrate-resistant acid phosphatase-5b level was also decreased by DAE treatment. The present study suggests that DAE is effective in preventing bone loss in OVX rats, and may be potential therapeutic agents for the treatment of postmenopausal osteoporosis.

Keywords: bone ALP, c-terminal telopeptide, deer antler, osteoporosis, ovariectomy, tartrate-resistant acid phosphatase-5b

Procedia PDF Downloads 233
3627 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators

Authors: Andrea Bellucci, Martina Tofi

Abstract:

The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.

Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers

Procedia PDF Downloads 281
3626 Leadership Succession and Renewal in Zimbabwe Political Parties: A Critical Analysis of the Bhora Remusango Concept

Authors: A. F. Chikerema

Abstract:

Political leadership in Africa vary from the “criminalization” of the state to political leadership as “dispensing patrimony”, the “recycling” of elites and the use of state power and resources to consolidate political and economic power (Van Wyk:2007: p1). Political parties just like any other organizations always need leadership renewal and revamping, besides ideological and policy renewal. Zimbabwean politics present a shunned leadership renewal as reflected by the two champion political parties namely ZANU PF and MDC-T. Despite hot political power contestation between MDC and ZANUPF, the parties` internal structures are hinged on the two Godfather or Father figure that is Mugabe and Tsvangirai. They are the “labels “behind the two political parties. The suppressing of dissent voice on succession and renewal of leadership in the two parties has brew resistance from within and this has resulted in factional fights within the two political parties. The disgruntlement in the political parties has led to the stemming of the ‘bhoramusango concept’ from the electorate and party cadres whereby they are throwing or donating away their votes to other political parties. The ‘bhoramusango’ concept haunted ZANUPF in 2008 leading to its defeat by the opposition MDC-T .The paper takes the form of an analytic approach on leadership crisis in Zimbabwe. The narrative is framed on key concepts of leadership: namely leadership renewal and leadership succession, as agents operating within inherited structures negotiated political settlements, and form structures of leadership. Rulers gave priority to the consolidation of state power by installing party loyalists in the armed forces, civil service and local government. As part of this process, rulers have ensured consolidated power and authority.

Keywords: leadership renewal, leadership succession, ‘Bhora Musango’, political culture, political legitimacy

Procedia PDF Downloads 395
3625 Chemical Synthesis of a cDNA and Its Expression Analysis

Authors: Salman Akrokayan

Abstract:

Synthetic cDNA (ScDNA) of granulocyte colony-stimulating factor (G-CSF) was constructed using a DNA synthesizer with the aim to increase its expression level. 5' end of the ScDNA of G-CSF coding region was modified by decreasing the GC content without altering the predicted amino acids sequence. The identity of the resulting protein from ScDNA was confirmed by the highly specific enzyme-linked immunosorbent assay. In conclusion, a synthetic G-CSF cDNA in combination with the recombinant DNA protocol offers a rapid and reliable strategy for synthesizing the target protein. However, the commercial utilization of this methodology requires rigorous validation and quality control.

Keywords: synthetic cDNA, recombinant G-CSF, cloning, gene expression

Procedia PDF Downloads 266
3624 Effects of Punicalagin on Some Productive and Reproductive Traits in Virgin Rabbit Does

Authors: Nada A. El-Shahaw, Anas A.Salem, M. Kobeisy, Hoda M. Shabaan

Abstract:

Reactive oxygen species (ROS) is collective term both oxygen radical, such superoxide (O₂•), hydroxyl(OH•), peroxyl (RO₂), and hydroperoxyl (HO₂•), and certain non-radical oxidizing agents, such as hydrogen peroxide (H₂O₂), hypochlorous acid (HOCL), and ozone (O₃), that can be convert easily to radical. The importance of antioxidants is shown here punicalagin. Punicalagin is preventing the harmful effect of (ROS) in all cells, specially gonadal cells. So, the aim of study was to investigate effects of punicalagin (PL) on maternal live body weight (MLBW), number of services/conception (NS), conception rate (CR), gestation length (GL), kindling rate (KR), total litter size (TLS), live litter size (LLS), kit weight (KW), progesterone (P4) and estradiol-17 (E2) concentrations at 1st and 2nd pregnancy of young does. A total of 28 healthy virgin does (6 months old) were divided into 2 equal groups. Group I, each doe, was injected IM with 100 ug PL twice/week pre-mating and one time 3 days post-mating. Group II, each doe was injected IM with sterilized water (control). Blood samples were taken at pre-mating, mating, post-mating, throughout pregnancy, and immediately post-kindling for assaying P4 and E2. All does were naturally mated with fertile bucks. Results revealed that PL displayed their significant impacts on MLBW, NS/conception, CR, GL, KR, TLS, LLS, KWs (birth and weaning), P4 and E2 concentrations either at 1ˢᵗ/2ⁿᵈ pregnancy or both of them. Conclusively, PL improved pregnancy outcomes of young do particularly at 2ⁿᵈ pregnancy and could be recommended in rabbit's farms.

Keywords: punicalagin, pregnancy, estradiol-17β, progesterone, does

Procedia PDF Downloads 99
3623 Testicular Differential MicroRNA Expression Derived Occupational Risk Factor Assessment in Idiopathic Non-obstructive Azoospermia Cases

Authors: Nisha Sharma, Mili Kaur, Ashutosh Halder, Seema Kaushal, Manoj Kumar, Manish Jain

Abstract:

Purpose: To investigate microRNAs (miRNA) as an epigenomic etiological factor in idiopathic non-obstructive azoospermia (NOA). In order to achieve the same, an association was seen between occupational exposure to radiation, thermal, and chemical factors and idiopathic cases of non-obstructive azoospermia, and later, testicular differential miRNA expression profiling was done in exposure group NOA cases. Method: It is a prospective study in which 200 apparent idiopathic male factor infertility cases, who have been advised to undergo testicular fine needle aspiration (FNA) evaluation, are recruited. A detailed occupational history was taken to understand the possible type of exposure due to the nature and duration of work. A total of 26 patients were excluded upon XY-FISH and Yq microdeletion tests due to the presence of genetic causes of infertility, 6 hypospermatogeneis (HS), six Sertoli cell-only syndrome (SCOS), and six normospermatogeneis patients testicular FNA samples were used for RNA isolation followed by small RNA sequencing and nCounter miRNA expression analysis. Differential miRNA expression profile of HS and SCOS patients was done. A web-based tool, miRNet, was used to predict the interacting compounds or chemicals using the shortlisted miRNAs with high fold change. The major limitation encountered in this study was the insufficient quantity of testicular FNA sample used for total RNA isolation, which resulted in a low yield and RNA integrity number (RIN) value. Therefore, the number of RNA samples admissible for differential miRNA expression analysis was very small in comparison to the total number of patients recruited. Results: Differential expression analysis revealed 69 down-regulated and 40 up-regulated miRNAs in HS and 66 down-regulated and 33 up-regulated miRNAs in SCOS in comparison to normospermatogenesis controls. The miRNA interaction analysis using the miRNet tool showed that the differential expression profiles of HS and SCOS patients were associated with arsenic trioxide, bisphenol-A, calcium sulphate, lithium, and cadmium. These compounds are reproductive toxins and might be responsible for miRNA-mediated epigenetic deregulation leading to NOA. The association between occupational risk factor exposure and the non-exposure group of NOA patients was not statistically significant, with ꭓ2 (3, N= 178) = 6.70, p= 0.082. The association between individual exposure groups (radiation, thermal, and chemical) and various sub-types of NOA is also not significant, with ꭓ2 (9, N= 178) = 15.06, p= 0.089. Functional analysis of HS and SCOS patients' miRNA profiles revealed some important miR-family members in terms of male fertility. The miR-181 family plays a role in the differentiation of spermatogonia and spermatocytes, as well as the transcriptional regulation of haploid germ cells. The miR-34 family is expressed in spermatocytes and round spermatids and is involved in the regulation of SSCs differentiation. Conclusion: The reproductive toxins might adopt the miRNA-mediated mechanism of disease development in idiopathic cases of NOA. Chemical compound induced; miRNA-mediated epigenetic deregulation can give a future perspective on the etiopathogenesis of the disease.

Keywords: microRNA, non-obstructive azoospermia (NOA), occupational exposure, hypospermatogenesis (HS), Sertoli cell only syndrome (SCOS)

Procedia PDF Downloads 70
3622 Microbial Bioagent Triggered Biochemical Response in Tea (Camellia sinensis) Inducing Resistance against Grey Blight Disease and Yield Enhancement

Authors: Popy Bora, L. C. Bora, A. Bhattacharya, Sehnaz S. Ahmed

Abstract:

Microbial bioagents, viz., Pseudomonas fluorescens, Bacillus subtilis, and Trichoderma viride were assessed for their ability to suppress grey blight caused by Pestalotiopsis theae, a major disease of tea crop in Assam. The expression of defense-related phytochemicals due to the application of these bioagents was also evaluated. The individual bioagents, as well as their combinations, were screened for their bioefficacy against P. theae in vitro using nutrient agar (NA) as basal medium. The treatment comprising a combination of the three bioagents, P. fluorescens, B. subtilis, and T. viride showed significantly the highest inhibition against the pathogen. Bioformulation of effective bioagent combinations was further evaluated under field condition, where significantly highest reduction of grey blight (90.30%), as well as the highest increase in the green leaf yield (10.52q/ha), was recorded due to application of the bioformulation containing the three bioagents. The application of the three bioformulation also recorded an enhanced level of caffeine (4.15%) and polyphenols (22.87%). A significant increase in the enzymatic activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were recorded in the plants treated with the microbial bioformulation of the three bioagents. The present investigation indicates the role of microbial agents in suppressing disease, inducing plant defense response, as well as improving the quality of tea.

Keywords: enzymatic activity, grey blight, microbial bioagents, Pestalotiopsis theae, phytochemicals, plant defense, tea

Procedia PDF Downloads 131
3621 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 434
3620 Farmers' Perception of the Effects of Climate Change on Rice Production in Nasarawa State, Nigeria

Authors: P. O. Fatoki, R. S. Olaleye, B. O. Adeniji

Abstract:

The study investigated farmers’ perception of the effects of climate change on rice production in Nasarawa State, Nigeria. Multi-stage sampling technique was used in selecting a total of 248 rice farmers from the study area. Data for the study were collected through the use of interview schedule. The data were analysed using both descriptive and inferential statistics. Results showed that majority (71.8%) of the respondents were married and the mean age of the respondents was 44.54 years. The results also showed that most adapted strategies for mitigating the effects of climate change on rice production were change of planting and harvesting date (67.7%), movement to another site (63.7%) and increased or reduced land size (58.5%). Relationship between the roles of extension agents in mitigating climate change effects on rice production and farmers’ perception were significant as revealed Chi-Square analysis from the study ; Dissemination of information ( = 2.16, P < 0.05) and use of demonstration methods ( = 2.15, P < 0.05). Poisson regression analysis revealed that educational status, farm size, experience and yield had significant relationship with the perception of the effects of climate change at 0.01 significance level while household size was as well significant at 0.05. It is recommended that some of the adaptive strategies and practices for mitigating the effects of climate change in rice production should be improved, while the extension outfits should be strengthened to ensure adequate dissemination of relevant information on climate change with a view to mitigate its effects on rice production.

Keywords: perception, rice farmers, climate change, mitigation, adaptive strategies

Procedia PDF Downloads 336
3619 Vitrification and Devitrification of Chromium Containing Tannery Ash

Authors: Savvas Varitis, Panagiotis Kavouras, George Kaimakamis, Eleni Pavlidou, George Vourlias, Konstantinos Chrysafis, Philomela Komninou, Theodoros Karakostas

Abstract:

Tannery industry produces high quantities of chromium containing waste which also have high organic content. Processing of this waste is important since the organic content is above the disposal limits and the containing trivalent chromium could be potentially oxidized to hexavalent in the environment. This work aims to fabricate new vitreous and glass ceramic materials which could incorporate the tannery waste in stabilized form either for safe disposal or for the production of useful materials. Tannery waste was incinerated at 500oC in anoxic conditions so most of the organic content would be removed and the chromium remained trivalent. Glass forming agents SiO2, Na2O and CaO were mixed with the resulting ash in different proportions with decreasing ash content. Considering the low solubility of Cr in silicate melts, the mixtures were melted at 1400oC and/or 1500oC for 2h and then casted on a refractory steel plate. The resulting vitreous products were characterized by X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), Scanning and Transmission Electron Microscopy (SEM and TEM). XRD reveals the existence of Cr2O3 (eskolaite) crystallites embedded in a glassy amorphous matrix. Such crystallites are not formed under a certain proportion of the waste in the ash-vitrified material. Reduction of the ash proportion increases chromium content in the silicate matrix. From these glassy products, glass-ceramics were produced via different regimes of thermal treatment.

Keywords: chromium containing tannery ash, glass ceramic materials, thermal processing, vitrification

Procedia PDF Downloads 352
3618 Preliminary Evaluation of Echinacea Species by UV-VIS Spectroscopy Fingerprinting of Phenolic Compounds

Authors: Elena Ionescu, Elena Iacob, Marie-Louise Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca

Abstract:

Echinacea species (Asteraceae) has received a global attention because it is widely used for treatment of cold, flu and upper respiratory tract infections. Echinacea species contain a great variety of chemical components that contribute to their activity. The most important components responsible for the biological activity are those with high molecular-weight such as polysaccharides, polyacetylenes, highly unsaturated alkamides and caffeic acid derivatives. The principal factors that may influence the chemical composition of Echinacea include the species and the part of plant used (aerial parts or roots ). In recent years the market for Echinacea has grown rapidly and also the cases of adultery/replacement especially for Echinacea root. The identification of presence or absence of same biomarkers provide information for safe use of Echinacea species in food supplements industry. The aim of the study was the preliminary evaluation and fingerprinting by UV-VISIBLE spectroscopy of biomarkers in terms of content in phenolic derivatives of some Echinacea species (E. purpurea, E. angustifolia and E. pallida) for identification and authentication of the species. The steps of the study were: (1) samples (extracts) preparation from Echinacea species (non-hydrolyzed and hydrolyzed ethanol extracts); (2) samples preparation of reference substances (polyphenol acids: caftaric acid, caffeic acid, chlorogenic acid, ferulic acid; flavonoids: rutoside, hyperoside, isoquercitrin and their aglycones: quercitri, quercetol, luteolin, kaempferol and apigenin); (3) identification of specific absorption at wavelengths between 700-200 nm; (4) identify the phenolic compounds from Echinacea species based on spectral characteristics and the specific absorption; each class of compounds corresponds to a maximum absorption in the UV spectrum. The phytochemical compounds were identified at specific wavelengths between 700-200 nm. The absorption intensities were measured. The obtained results proved that ethanolic extract showed absorption peaks attributed to: phenolic compounds (free phenolic acids and phenolic acids derivatives) registrated between 220-280 nm, unsymmetrical chemical structure compounds (caffeic acid, chlorogenic acid, ferulic acid) with maximum absorption peak and absorption "shoulder" that may be due to substitution of hydroxyl or methoxy group, flavonoid compounds (in free form or glycosides) between 330-360 nm, due to the double bond in position 2,3 and carbonyl group in position 4 flavonols. UV spectra showed two major peaks of absorption (quercetin glycoside, rutin, etc.). The results obtained by UV-VIS spectroscopy has revealed the presence of phenolic derivatives such as cicoric acid (240 nm), caftaric acid (329 nm), caffeic acid (240 nm), rutoside (205 nm), quercetin (255 nm), luteolin (235 nm) in all three species of Echinacea. The echinacoside is absent. This profile mentioned above and the absence of phenolic compound echinacoside leads to the conclusion that species harvested as Echinacea angustifolia and Echinacea pallida are Echinacea purpurea also; It can be said that preliminary fingerprinting of Echinacea species through correspondence with the phenolic derivatives profile can be achieved by UV-VIS spectroscopic investigation, which is an adequate technique for preliminary identification and authentication of Echinacea in medicinal herbs.

Keywords: Echinacea species, Fingerprinting, Phenolic compounds, UV-VIS spectroscopy

Procedia PDF Downloads 240
3617 Interactions between Sodium Aerosols and Fission Products: A Theoretical Chemistry and Experimental Approach

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

Safety requirements for Generation IV nuclear reactor designs, especially the new generation sodium-cooled fast reactors (SFR) require a risk-informed approach to model severe accidents (SA) and their consequences in case of outside release. In SFRs, aerosols are produced during a core disruptive accident when primary system sodium is ejected into the containment and burn in contact with the air; producing sodium aerosols. One of the key aspects of safety evaluation is the in-containment sodium aerosol behavior and their interaction with fission products. The study of the effects of sodium fires is essential for safety evaluation as the fire can both thermally damage the containment vessel and cause an overpressurization risk. Besides, during the fire, airborne fission product first dissolved in the primary sodium can be aerosolized or, as it can be the case for fission products, released under the gaseous form. The objective of this work is to study the interactions between sodium aerosols and fission products (Iodine, toxic and volatile, being the primary concern). Sodium fires resulting from an SA would produce aerosols consisting of sodium peroxides, hydroxides, carbonates, and bicarbonates. In addition to being toxic (in oxide form), this aerosol will then become radioactive. If such aerosols are leaked into the environment, they can pose a danger to the ecosystem. Depending on the chemical affinity of these chemical forms with fission products, the radiological consequences of an SA leading to containment leak tightness loss will also be affected. This work is split into two phases. Firstly, a method to theoretically understand the kinetics and thermodynamics of the heterogeneous reaction between sodium aerosols and fission products: I2 and HI are proposed. Ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package are carried out to develop an understanding of the surfaces of sodium carbonate (Na2CO3) aerosols and hence provide insight on its affinity towards iodine species. A comprehensive study of I2 and HI adsorption, as well as bicarbonate formation on the calculated lowest energy surface of Na2CO3, was performed which provided adsorption energies and description of the optimized configuration of adsorbate on the stable surface. Secondly, the heterogeneous reaction between (I2)g and Na2CO3 aerosols were investigated experimentally. To study this, (I2)g was generated by heating a permeation tube containing solid I2, and, passing it through a reaction chamber containing Na2CO3 aerosol deposit. The concentration of iodine was then measured at the exit of the reaction chamber. Preliminary observations indicate that there is an effective uptake of (I2)g on Na2CO3 surface, as suggested by our theoretical chemistry calculations. This work is the first step in addressing the gaps in knowledge of in-containment and atmospheric source term which are essential aspects of safety evaluation of SFR SA. In particular, this study is aimed to determine and characterize the radiological and chemical source term. These results will then provide useful insights for the developments of new models to be implemented in integrated computer simulation tool to analyze and evaluate SFR safety designs.

Keywords: iodine adsorption, sodium aerosols, sodium cooled reactor, DFT calculations, sodium carbonate

Procedia PDF Downloads 204
3616 Blood Chemo-Profiling in Workers Exposed to Occupational Pyrethroid Pesticides to Identify Associated Diseases

Authors: O. O. Sufyani, M. E. Oraiby, S. A. Qumaiy, A. I. Alaamri, Z. M. Eisa, A. M. Hakami, M. A. Attafi, O. M. Alhassan, W. M. Elsideeg, E. M. Noureldin, Y. A. Hobani, Y. Q. Majrabi, I. A. Khardali, A. B. Maashi, A. A. Al Mane, A. H. Hakami, I. M. Alkhyat, A. A. Sahly, I. M. Attafi

Abstract:

According to the Food and Agriculture Organization (FAO) Pesticides Use Database, pesticide use in agriculture in Saudi Arabia has more than doubled from 4539 tons in 2009 to 10496 tons in 2019. Among pesticides, pyrethroids is commonly used in Saudi Arabia. Pesticides may increase susceptibility to a variety of diseases, particularly among pesticide workers, due to their extensive use, indiscriminate use, and long-term exposure. Therefore, analyzing blood chemo-profiles and evaluating the detected substances as biomarkers for pyrethroid pesticide exposure may assist to identify and predicting adverse effects of exposure, which may be used for both preventative and risk assessment purposes. The purpose of this study was to (a) analyze chemo-profiling by Gas Chromatography-Mass Spectrometry (GC-MS) analysis, (b) identify the most commonly detected chemicals in a time-exposure-dependent manner using a Venn diagram, and (c) identify their associated disease among pesticide workers using analyzer tools on the Comparative Toxicogenomics Database (CTD) website, (250 healthy male volunteers (20-60 years old) who deal with pesticides in the Jazan region of Saudi Arabia (exposure intervals: 1-2, 4-6, 6-8, more than 8 years) were included in the study. A questionnaire was used to collect demographic information, the duration of pesticide exposure, and the existence of chronic conditions. Blood samples were collected for biochemistry analysis and extracted by solid-phase extraction for gas chromatography-mass spectrometry (GC-MS) analysis. Biochemistry analysis reveals no significant changes in response to the exposure period; however, an inverse association between the albumin level and the exposure interval was observed. The blood chemo-profiling was differentially expressed in an exposure time-dependent manner. This analysis identified the common chemical set associated with each group and their associated significant occupational diseases. While some of these chemicals are associated with a variety of diseases, the distinguishing feature of these chemically associated disorders is their applicability for prevention measures. The most interesting finding was the identification of several chemicals; erucic acid, pelargonic acid, alpha-linolenic acid, dibutyl phthalate, diisobutyl phthalate, dodecanol, myristic Acid, pyrene, and 8,11,14-eicosatrienoic acid, associated with pneumoconiosis, asbestosis, asthma, silicosis and berylliosis. Chemical-disease association study also found that cancer, digestive system disease, nervous system disease, and metabolic disease were the most often recognized disease categories in the common chemical set. The hierarchical clustering approach was used to compare the expression patterns and exposure intervals of the chemicals found commonly. More study is needed to validate these chemicals as early markers of pyrethroid insecticide-related occupational disease, which might assist evaluate and reducing risk. The current study contributes valuable data and recommendations to public health.

Keywords: occupational, toxicology, chemo-profiling, pesticide, pyrethroid, GC-MS

Procedia PDF Downloads 85
3615 Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2, and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: citrullus lanatus, cucurbita pepo, seed germination, seedling growth, silver nanoparticles, zea mays

Procedia PDF Downloads 288
3614 Measurement of Viscosity and Moisture of Oil in Supradistribution Transformers Using Ultrasonic Waves

Authors: Ehsan Kadkhodaie, Shahin Parvar, Soroush Senemar, Mostafa Shriat, Abdolrasoul Malekpour

Abstract:

The role of oil in supra distribution transformers is so critical and, several standards in determining the quality of oil have been offered. So far, moisture, viscosity and insulation protection of the oil have been measured based on mechanical and chemical methods and systems such as kart fisher, falling ball and TDM 4000 that most of these techniques are destructive and have many problems such as pollution. In this study, due to the properties of oil and also physical behavior of ultrasound wave new method was designed to in the determination of oil indicators including viscosity and moisture. The results show the oil viscosity can be found from the relationship μ = 42.086/√EE and moisture from (PLUS+) = −15.65 (PPM) + 26040 relationship.

Keywords: oil, viscosity, moisture, ultrasonic waves

Procedia PDF Downloads 564
3613 Health Risk Assessment of Exposing to Benzene in Office Building around a Chemical Industry Based on Numerical Simulation

Authors: Majid Bayatian, Mohammadreza Ashouri

Abstract:

Releasing hazardous chemicals is one of the major problems for office buildings in the chemical industry and, therefore, environmental risks are inherent to these environments. The adverse health effects of the airborne concentration of benzene have been a matter of significant concern, especially in oil refineries. The chronic and acute adverse health effects caused by benzene exposure have attracted wide attention. Acute exposure to benzene through inhalation could cause headaches, dizziness, drowsiness, and irritation of the skin. Chronic exposures have reported causing aplastic anemia and leukemia at the occupational settings. Association between chronic occupational exposure to benzene and the development of aplastic anemia and leukemia were documented by several epidemiological studies. Numerous research works have investigated benzene emissions and determined benzene concentration at different locations of the refinery plant and stated considerable health risks. The high cost of industrial control measures requires justification through lifetime health risk assessment of exposed workers and the public. In the present study, a Computational Fluid Dynamics (CFD) model has been proposed to assess the exposure risk of office building around a refinery due to its release of benzene. For simulation, GAMBIT, FLUENT, and CFD Post software were used as pre-processor, processor, and post-processor, and the model was validated based on comparison with experimental results of benzene concentration and wind speed. Model validation results showed that the model is highly validated, and this model can be used for health risk assessment. The simulation and risk assessment results showed that benzene could be dispersion to an office building nearby, and the exposure risk has been unacceptable. According to the results of this study, a validated CFD model, could be very useful for decision-makers for control measures and possibly support them for emergency planning of probable accidents. Also, this model can be used to assess exposure to various types of accidents as well as other pollutants such as toluene, xylene, and ethylbenzene in different atmospheric conditions.

Keywords: health risk assessment, office building, Benzene, numerical simulation, CFD

Procedia PDF Downloads 114
3612 Engineered Reactor Components for Durable Iron Flow Battery

Authors: Anna Ivanovskaya, Alexandra E. L. Overland, Swetha Chandrasekaran, Buddhinie S. Jayathilake

Abstract:

Iron-based redox flow batteries (IRFB) are promising for grid-scale storage because of their low-cost and environmental safety. Earth-abundant iron can enable affordable grid-storage to meet DOE’s target material cost <$20/kWh and levelized cost for storage $0.05/kWh. In conventional redox flow batteries, energy is stored in external electrolyte tanks and electrolytes are circulated through the cell units to achieve electrochemical energy conversions. However, IRFBs are hybrid battery systems where metallic iron deposition at the negative side of the battery controls the storage capacity. This adds complexity to the design of a porous structure of 3D-electrodes to achieve a desired high storage capacity. In addition, there is a need to control parasitic hydrogen evolution reaction which accompanies the metal deposition process, increases the pH, lowers the energy efficiency, and limits the durability. To achieve sustainable operation of IRFBs, electrolyte pH, which affects the solubility of reactants and the rate of parasitic reactions, needs to be dynamically readjusted. In the present study we explore the impact of complexing agents on maintaining solubility of the reactants and find the optimal electrolyte conditions and battery operating regime, which are specific for IRFBs with additives, and demonstrate the robust operation.

Keywords: flow battery, iron-based redox flow battery, IRFB, energy storage, electrochemistry

Procedia PDF Downloads 64
3611 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 94
3610 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.

Authors: Najih Amina

Abstract:

Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.

Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.

Procedia PDF Downloads 393
3609 Quantum Confinement in LEEH Capped CdS Nanocrystalline

Authors: Mihir Hota, Namita Jena, S. N. Sahu

Abstract:

LEEH (L-cysteine ethyl ester hydrochloride) capped CdS semiconductor nanocrystals are grown at 800C using a simple chemical route. Photoluminescence (PL), Optical absorption (UV) and Transmission Electron Microscopy (TEM) have been carried out to evaluate the structural and optical properties of the nanocrystal. Optical absorption studies have been carried out to optimize the sample. XRD and TEM analysis shows that the nanocrystal belongs to FCC structure having average size of 3nm while a bandgap of 2.84eV is estimated from Photoluminescence analysis. The nanocrystal emits bluish light when excited with 355nm LASER.

Keywords: cadmium sulphide, nanostructures, luminescence, optical properties

Procedia PDF Downloads 383
3608 A Techno-Economic Evaluation of Bio Fuel Production from Waste of Starting Dates in South Algeria

Authors: Insaf Mehani, Bachir Bouchekima

Abstract:

The necessary reduction and progressive consumption of fossil fuels, whose scarcity is inevitable, involves mobilizing a set of alternatives.Renewable energy, including bio energy are an alternative to fossil fuel depletion and a way to fight against the harmful effects of climate change. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.

Keywords: bioenergy, dates, bioethanol, renewable energy, south Algeria

Procedia PDF Downloads 470
3607 Liquid Unloading of Wells with Scaled Perforation via Batch Foamers

Authors: Erwin Chan, Aravind Subramaniyan, Siti Abdullah Fatehah, Steve Lian Kuling

Abstract:

Foam assisted lift technology is proven across the industry to provide efficient deliquification in gas wells. Such deliquification is typically achieved by delivering the foamer chemical downhole via capillary strings. In highly liquid loaded wells where capillary strings are not readily available, foamer can be delivered via batch injection or bull-heading. The latter techniques differ from the former in that cap strings allow for liquid to be unloaded continuously, whereas foamer batches require that periodic batching be conducted for the liquid to be unloaded. Although batch injection allows for liquid to be unloaded in wells with suitable water to gas (WGR) ratio and condensate to gas (CGR) ratio without well intervention for capillary string installation, this technique comes with its own set of challenges - for foamer to de-liquify liquids, the chemical needs to reach perforation locations where gas bubbling is observed. In highly scaled perforation zones in certain wells, foamer delivered in batches is unable to reach the gas bubbling zone, thus achieving poor lift efficiency. This paper aims to discuss the techniques and challenges for unloading liquid via batch injection in scaled perforation wells X and Y, whose WGR is 6bbl/MMscf, whose scale build-up is observed at the bottom of perforation interval, whose water column is 400 feet, and whose ‘bubbling zone’ is less than 100 feet. Variables such as foamer Z dosage, batching technique, and well flow control valve opening times are manipulated during the duration of the trial to achieve maximum liquid unloading and gas rates. During the field trial, the team has found optimal values between the three aforementioned parameters for best unloading results, in which each cycle’s gas and liquid rates are compared with baselines with similar flowing tubing head pressures (FTHP). It is discovered that amongst other factors, a good agitation technique is a primary determinant for efficient liquid unloading. An average increment of 2MMscf/d against an average production of 4MMscf/d at stable FTHP is recorded during the trial.

Keywords: foam, foamer, gas lift, liquid unloading, scale, batch injection

Procedia PDF Downloads 165
3606 Effect of Post and Pre Induced Treatment with Hesperidin in N-Methyl N-Nitrosourea Induced Mammary Gland Cancer in Female Sprague-Dawley Rats

Authors: Vinay Kumar Theendra

Abstract:

The main objective of the study is to evaluate the effectiveness of hesperidin in the treatment of breast cancer and causing less (or) no bone marrow depression which is the major side effect of the present anticancer drugs treating breast cancer, also to evaluate the mechanisms through which these compounds are exerting their effect. Breast cancer is induced by administering N-methyl N-Nitrosourea (MNU) at a dose of 50mg/kg body weight. Upon the termination of the experiment, the animals were sacrificed by the method of cervical dislocation. The animals were dissected along the ventral midline and were grossly examined for the presence of tumors. Then the tumours were removed along with the stroma. Vascular endothelial growth factor (VEGF) levels were estimated by using ELISA method. The first occurrence of palpable tumors was eight weeks after carcinogen treatment and the final tumour incidence was 100% in the MNU alone and topical treated rats. Whereas in rats of other treatment groups there is decreased tumour incidence which might be due to their antitumour activity. Hesperidin therapy inhibited angiogenesis which can be evident from the significant reduction in serum as well as tumour VEGF concentrations in comparison to the untreated mammary carcinoma bearing rats. Hesperidin is promising agents that exert direct antitumor and also antiangiogenic, antiproliferative and anti-inflammatory activities. Even though the potency is little lesser than standard drug vincristine, it has been proved to be safe without effecting haematological count.

Keywords: hesperidin, VEGF, COX 2, N-methyl N-nitrosourea

Procedia PDF Downloads 122
3605 Effects of Soil Organic Amendment Types and Rates on Growth and Yield of Amaranthus cruentus, Southern Guinea Savannah of Nigeria

Authors: S. Yussuf Abdulmaliq

Abstract:

Experiment was conducted for two years (2013 and 2014) at Ibrahim Badamasi Babangida University, Lapai, Teaching and Research Farm to study the effects of soil organic amendment types and rates on soil chemical fertility improvement, growth and yield of Amarathus cruentus in the southern guinea savannah, lapai, Niger state, Nigeria. Soil and manure samples were collected and analysed for physical and chemical components. The experiments were laid out in 3 x 4 factorial in a randomized complete block design (RCBD). Consisting of three (3) levels of soil amendment types (Poultry manure, goat manure and cowdung) and four (4) levels of amendment rates (0, 6, 12 and 18 t ha-1). Data collected include plant height/plant (cm), number of leaves/plant, leaf area/ plant (cm2) at 2, 4, 6 and 8WAT, fresh vegetable yield/plant, fresh vegetable yield/plot and fresh vegetable yield in tons ha-1. The result obtained showed that, Amaranthus cruentus height, number of leaves and leaf area were not significantly affected by the type of organic amendment and rates at 2WAT in 2013 and 2014 cropping seasons. However, at 4, 6 and 8 WAT, significant differences were observed among the types of amendment and their rates. Application of poultry manure as soil amendment supported taller, large number of leaves and wider leaf area, and higher marketable vegetable yield in 2013 and 2014 cropping seasons (Pα 0.05) which was closely followed by goat manure in the two (2) cropping seasons. In addition, the application of 18 t ha-1 was superior to 12, 6 and the control by producing tallest amaranthus plants, higher number of leaves, wider leaf area and higher marketable vegetable yield in 2013 and 2014 cropping seasons (Pα 0.05). In conclusion, the use of 18 t ha-1poultry manure is therefore recommended as soil amendment for Amaranthus cruentus in southern guinea savannah of Nigeria.

Keywords: Amaranthus cruentus, cowdung, goat manure, poultry manure, soil amendment

Procedia PDF Downloads 352
3604 Horizontal Development of Built-up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991-2014)

Authors: Pukhtoon Yar

Abstract:

Peshawar City is experiencing a rapid spatial urban growth primarily as a result of high rate of urbanization along with economic development. This paper was designed to understand the impacts of urbanization on agriculture land use change by particularly focusing on land use change trajectories from the past (1991-2014). We used Landsat imageries (30 meters) for1991along with Spot images (2.5 meters) for year 2014. . The ground truthing of the satellite data was performed by collecting information from Peshawar Development Authority, revenue department, real estate agents and interviews with the officials of city administration. The temporal satellite images were processed by applying supervised maximum likelihood classification technique in ArcGIS 9.3. The procedure resulted into five main classes of land use i.e. built-up area, farmland, barren land, cultivable-wasteland and water bodies. The analysis revealed that, in Peshawar City the built-up environment has been doubled from 8.1 percent in 1991 to over 18.2 percent in 2014 by predominantly encroaching land producing food. Furthermore, the CA-Markov Model predicted that the area under impervious surfaces would continue to flourish during the next three decades. This rapid increase in built-up area is accredited to the lack of proper land use planning and management, which has caused chaotic urban sprawl with detrimental social and environmental consequences.

Keywords: Urban Expansion, Land use, GIS, Remote Sensing, Markov Model, Peshawar City

Procedia PDF Downloads 173
3603 Combined Treatment with Microneedling and Chemical Peels Improves Periorbital Wrinkles and Skin Laxity

Authors: G. Kontochristopoulos, T. Spiliopoulos, V. Markantoni, E. Platsidaki, A. Kouris, E. Balamoti, C. Bokotas, G. Haidemenos

Abstract:

Introduction: There is a high patient demand for periorbital rejuvenation since the facial area is often the first to show visible signs of aging. With advancing age, there are sometimes marked changes that occur in the skin, fat, muscle and bone of the periorbital region, resulting to wrinkles and skin laxity. These changes are among the easiest areas to correct using several minimally invasive techniques, which have become increasingly popular over the last decade. Lasers, radiofrequency, botulinum toxin, fat grafting and fillers are available treatments sometimes in combination to traditional blepharoplasty. This study attempts to show the benefits of a minimally invasive approach to periorbital wrinkles and skin laxity that combine microneedling and 10% trichloroacetic acid (TCA) peels. Method: Eleven female patients aged 34-72 enrolled in the study. They all gave informed consent after receiving detailed information regarding the treatment procedure. Exclusion criteria in the study were previous treatment for the same condition in the past six months, pregnancy, allergy or hypersensitivity to the components, infection, inflammation and photosensitivity on the affected region. All patients had diffuse periorbital wrinkles and mild to moderate upper or lower eyelid skin laxity. They were treated with Automatic Microneedle Therapy System-Handhold and topical application of 10% trichloroacetic acid solution to each periorbital area for five minutes. Needling at a 0,25 mm depth was performed in both latelar (x-y) directions. Subsequently, the peeling agent was applied to each periorbital area for five minutes. Patients were subjected to the above combination every two weeks for a series of four treatments. Subsequently they were followed up regularly every month for two months. The effect was photo-documented. A Physician's and a Patient's Global Assessment Scale was used to evaluate the efficacy of the treatment (0-25% indicated poor response, 25%-50% fair, 50%-75% good and 75%-100% excellent response). Safety was assessed by monitoring early and delayed adverse events. Results: At the end of the study, almost all patients demonstrated significant aesthetic improvement. Physicians assessed a fair and a good improvement in 9(81.8% of patients) and 2(18.1% of patients) participants respectively. Patients Global Assessment rated a fair and a good response in 6 (54.5%) and 5 (45.4%) participants respectively. The procedure was well tolerated and all patients were satisfied. Mild discomfort and transient erythema were quite common during or immediately after the procedure, however only temporary. During the monthly follow up, no complications or scars were observed. Conclusions: Microneedling is known as a simple, office–based collagen induction therapy. Low concentration TCA solution applied to the epidermis that has been more permeable by microneedling, can reach the dermis more effectively. In the present study, chemical peels with 10% TCA acted as an adjuvant to microneedling, as it causes controlled skin damage, promoting regeneration and rejuvenation of tissues. This combined therapy improved periorbital fine lines, wrinkles, and overall appearance of the skin. Thus it constitutes an alternative treatment of periorbital skin aging, with encouraging results and minor side-effects.

Keywords: chemical peels, microneedling, periorbital wrinkles, skin laxity

Procedia PDF Downloads 339
3602 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 128