Search results for: seismo-tectonic features
1721 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains
Authors: Sandip Suman
Abstract:
Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains
Procedia PDF Downloads 981720 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 1281719 Original and the Translated: A Comparative Evaluation of Native and Non-Native English Translations of Faiz
Authors: Anam Nawaz
Abstract:
The present study is an attempt to compare the translations of Faiz’s poetry made by native and non-native translators, to determine the role of the translator in terms of preserving the cultural ethos of the original text. Peter Newmark and Katharine Reiss’s approaches to translation criticism have been used to provide a theoretical framework for the study. This study also emphasizes those cultural and semantic aspects of the original which are translated more convincingly by a native translator, and contrasting those features which the non-natives can tackle more ably. The research also highlights the linguistic sockets, ignored by the interpreters in the translation process. The analysis showed that both native and non-native translators have made an admirable effort to stay as close to the original as possible. The natives with their advantage of belonging to the same culture have excelled in preserving the original subject matter, whereas the non-native renderings have been presented in a much rhythmic and poetic manner with an excellent choice of words. Though none of the four translators has been successfully able to recreate Faiz’s magic, however V. G. Kiernan and Sarvat Rahman’s translations can be regarded as the closest to the original. Whereas V. G. Kiernan with his outstanding command over English mesmerizes the readers, Sarvat Rahman’s profound understanding of cultural ties helps establish her translations as a brilliant example of faithful re-renderings.Keywords: comparative translations, linguistic and cultural constraints, native translators, non-native translators, poetry and translation, Faiz Ahmad Faiz
Procedia PDF Downloads 2611718 Effectiveness of ISSR Technique in Revealing Genetic Diversity of Phaseolus vulgaris L. Representing Various Parts of the World
Authors: Mohamed El-Shikh
Abstract:
Phaseolus vulgaris L. is the world’s second most important bean after soybeans; used for human food and animal feed. It has generally been linked to reduced risk of cardiovascular disease, diabetes mellitus, obesity, cancer and diseases of digestive tract. The effectiveness of ISSR in achievement of the genetic diversity among 60 common bean accessions; represent various germplasms around the world was investigated. In general, the studied Phaseolus vulgaris accessions were divided into 2 major groups. All of the South-American accessions were separated into the second major group. These accessions may have different genetic features that are distinct from the rest of the accessions clustered in the major group. Asia and Europe accessions (1-20) seem to be more genetically similar (99%) to each other as they clustered in the same sub-group. The American and African varieties showed similarities as well and clustered in the same sub-tree group. In contrast, Asian and American accessions No. 22 and 23 showed a high level of genetic similarities, although these were isolated from different regions. The phylogenetic tree showed that all the Asian accessions (along with Australian No. 59 and 60) were similar except Indian and Yemen accessions No. 9 and 20. Only Netherlands accession No. 3 was different from the rest of European accessions. Morocco accession No. 52 was genetically different from the rest of the African accessions. Canadian accession No. 44 seems to be different from the other North American accessions including Guatemala, Mexico and USA.Keywords: phylogenetic tree, Phaseolus vulgaris, ISSR technique, genetics
Procedia PDF Downloads 4081717 DesignChain: Automated Design of Products Featuring a Large Number of Variants
Authors: Lars Rödel, Jonas Krebs, Gregor Müller
Abstract:
The growing price pressure due to the increasing number of global suppliers, the growing individualization of products and ever-shorter delivery times are upcoming challenges in the industry. In this context, Mass Personalization stands for the individualized production of customer products in batch size 1 at the price of standardized products. The possibilities of digitalization and automation of technical order processing open up the opportunity for companies to significantly reduce their cost of complexity and lead times and thus enhance their competitiveness. Many companies already use a range of CAx tools and configuration solutions today. Often, the expert knowledge of employees is hidden in "knowledge silos" and is rarely networked across processes. DesignChain describes the automated digital process from the recording of individual customer requirements, through design and technical preparation, to production. Configurators offer the possibility of mapping variant-rich products within the Design Chain. This transformation of customer requirements into product features makes it possible to generate even complex CAD models, such as those for large-scale plants, on a rule-based basis. With the aid of an automated CAx chain, production-relevant documents are thus transferred digitally to production. This process, which can be fully automated, allows variants to always be generated on the basis of current version statuses.Keywords: automation, design, CAD, CAx
Procedia PDF Downloads 761716 Empowering Certificate Management with Blockchain Technology
Authors: Yash Ambekar, Kapil Vhatkar, Prathamesh Swami, Kartikey Singh, Yashovardhan Kaware
Abstract:
The rise of online courses and certifications has created new opportunities for individuals to enhance their skills. However, this digital transformation has also given rise to coun- terfeit certificates. To address this multifaceted issue, we present a comprehensive certificate management system founded on blockchain technology and strengthened by smart contracts. Our system comprises three pivotal components: certificate generation, authenticity verification, and a user-centric digital locker for certificate storage. Blockchain technology underpins the entire system, ensuring the immutability and integrity of each certificate. The inclusion of a cryptographic hash for each certificate is a fundamental aspect of our design. Any alteration in the certificate’s data will yield a distinct hash, a powerful indicator of potential tampering. Furthermore, our system includes a secure digital locker based on cloud storage that empowers users to efficiently manage and access all their certificates in one place. Moreover, our project is committed to providing features for certificate revocation and updating, thereby enhancing the system’s flexibility and security. Hence, the blockchain and smart contract-based certificate management system offers a robust and one-stop solution to the escalating problem of counterfeit certificates in the digital era.Keywords: blockchain technology, smart contracts, counterfeit certificates, authenticity verification, cryptographic hash, digital locker
Procedia PDF Downloads 461715 Sound Instance: Art, Perception and Composition through Soundscapes
Authors: Ricardo Mestre
Abstract:
The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. Murray Schafer, the author who originally developed this concept, highlights the need for a greater recognition of sound reality, through the selection and differentiation of sounds, contributing to a tuning of the world and to the balance and well-being of humanity. According to some authors sound environment, produced and created in various ways, provides various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference.Keywords: sound instance, soundscape, sound art, perception, composition
Procedia PDF Downloads 1461714 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach
Authors: Xinyi Le
Abstract:
In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach
Procedia PDF Downloads 4381713 Representation of Violence in Contemporary Chinese Literature: A Case Study of Chi Zijian’s Work
Authors: Xiaowen Yang
Abstract:
Violence has been gaining an increasing presence among contemporary Chinese writers, yet scholarship on the representation of violence in contemporary Chinese literature is disappointingly sparse. The violence which took place in the Cultural Revolution attracted the most attention in previous literary work and academic studies. Known as a writer of the quotidian, chi Zijian is one of China’s most prominent and prolific writers. It is noticeable that in her depiction of ordinary people, an overwhelming presence of violence features which embodies one of the on-going characteristics of contemporary Chinese literature. The violence present in her texts are not about graphic and minute depiction of violent acts, But rather about the character’s complex interrelation with violence. Is it an obsession with extreme figures and events to create powerful tensions within the texts? Or is it a necessary tool to achieve criticism about social realities? This paper argues that based on her grassroots writing philosophy which is characterized by her long-standing concern about ordinary and even marginal people, it is necessary for her texts to involve characters related to violence. This endows her texts with great potential for reading their social and political implications. This paper also contends that though a shocking effect could make the criticism of social realities more powerful, an over-reliance on the excessive exterior representation of violence inhibits the writer’s literary innovation.Keywords: Chi Zijian, contemporary Chinese literature, Violence, grassroots writing philosophy
Procedia PDF Downloads 3421712 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.Keywords: multiclass classification, convolution neural network, OpenCV
Procedia PDF Downloads 1761711 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization
Authors: Zhiyan Meng, Dan Liu, Jintao Meng
Abstract:
Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model
Procedia PDF Downloads 301710 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet
Authors: Rangoli Goyal, Rama Bhargava
Abstract:
The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion
Procedia PDF Downloads 4201709 Phishing Detection: Comparison between Uniform Resource Locator and Content-Based Detection
Authors: Nuur Ezaini Akmar Ismail, Norbazilah Rahim, Norul Huda Md Rasdi, Maslina Daud
Abstract:
A web application is the most targeted by the attacker because the web application is accessible by the end users. It has become more advantageous to the attacker since not all the end users aware of what kind of sensitive data already leaked by them through the Internet especially via social network in shake on ‘sharing’. The attacker can use this information such as personal details, a favourite of artists, a favourite of actors or actress, music, politics, and medical records to customize phishing attack thus trick the user to click on malware-laced attachments. The Phishing attack is one of the most popular attacks for social engineering technique against web applications. There are several methods to detect phishing websites such as Blacklist/Whitelist based detection, heuristic-based, and visual similarity-based detection. This paper illustrated a comparison between the heuristic-based technique using features of a uniform resource locator (URL) and visual similarity-based detection techniques that compares the content of a suspected phishing page with the legitimate one in order to detect new phishing sites based on the paper reviewed from the past few years. The comparison focuses on three indicators which are false positive and negative, accuracy of the method, and time consumed to detect phishing website.Keywords: heuristic-based technique, phishing detection, social engineering and visual similarity-based technique
Procedia PDF Downloads 1771708 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework
Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim
Abstract:
Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change
Procedia PDF Downloads 2171707 Characterization of Fateh Sagar Wetland and Its Catchment Area at Udaipur City, (Raj.) India, Using High Resolution Data
Authors: Parul Bhalla, Sarvesh Palria
Abstract:
Wetlands are areas of land that are either temporarily or permanently covered by water. Wetlands exhibit enormous diversity according to their genesis, geographical location, water regime and chemistry, dominant plants and soil or sediment characteristics. The spatial and temporal characteristics of wetland in terms of turbidity and aquatic vegetation could serve as guiding tool, in conservation prioritization of wetlands. The aquatic vegetation in the wetland is an indicator of the trophic status of the wetland which has a bearing on the water quality, the turbidity level in any wetland is indicative of the quality of the water in it. To conserve and manage wetland resources, it is important to have inventory of wetland and its catchment. Fateh Sagar wetland in Udaipur city is the one of the important wetland for tourism industry and other economic activities in the region. Realizing the importance of the wetland, the present study has been taken up with the specific objective of delineation and characterization of Fateh Sagar wetland in terms of turbidity and aquatic vegetation, using high resolution satellite data such as Cartosat and LISS IV multi-temporal data, which will efficiently bring out the changes in water spread and quality parameters. The catchment of wetland has been also characterized for various features. The study leads in to takes necessary steps to conserve the wetland and its resources.Keywords: aquatic vegetation, catchment, turbidity status, wetland
Procedia PDF Downloads 4031706 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism
Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng
Abstract:
Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition
Procedia PDF Downloads 1831705 The Use of Neuter in Oedipus Lines to Refer to Antigone in Phoenissae of Seneca
Authors: Cíntia Martins Sanches
Abstract:
In the first part of Phoenissae of Seneca, Antigone is a guide to Oedipus, and they leave Thebes: he is blind searching for death (inflicting the punishment himself wished on the killer of Laius, ie exile and death); she is trying to convince him to give up such punishment and bring him back to Thebes. Concerning Oedipus lines, we observed a high frequency of Latin neuter in the treatment the protagonist gave to his daughter Antigone. We considered in this study that such frequency may be related to the sanctification of the daughter, who is seen by him as an enlightened being and without defects, free of the human condition (which takes on the existence of failures by essence). This study, thus, puts forward an analysis of the passages the said feature is present, relating them to the effect of meaning found in each occurrence. As part of a doctorate, this study investigates the stylistic idiom of Seneca in the Oedipus and Phoenissae tragedies, aiming at translating both tragedies expressively. The concept of stylistic idiom concerns the stylistic affinity required for a translation to be equivalent to the source text. In this wise, this study inquires into how the Latin text is organized poetically, pointing out the expressive features frequently appearing in both dramas. The method we used is based on the Semiotics theory — observing how connotation, ie a language use in which prevails the poetic function, naturally polysemous, acts to achieve each expressive effect.Keywords: antigone, neuter, Oedipus, Phoenissae, Seneca
Procedia PDF Downloads 2881704 Recovery of Copper and Gold by Delamination of Printed Circuit Boards Followed by Leaching and Solvent Extraction Process
Authors: Kamalesh Kumar Singh
Abstract:
Due to increasing trends of electronic waste, specially the ICT related gadgets, their green recycling is still a greater challenge. This article presents a two-stage, eco-friendly hydrometallurgical route for the recovery of gold from the delaminated metallic layers of waste mobile phone Printed Circuit Boards (PCBs). Initially, mobile phone PCBs are downsized (1x1 cm²) and treated with an organic solvent dimethylacetamide (DMA) for the separation of metallic fraction from non-metallic glass fiber. In the first stage, liberated metallic sheets are used for the selective dissolution of copper in an aqueous leaching reagent. Influence of various parameters such as type of leaching reagent, the concentration of the solution, temperature, time and pulp density are optimized for the effective leaching (almost 100%) of copper. Results have shown that 3M nitric acid is a suitable reagent for copper leaching at room temperature and considering chemical features, gold remained in solid residue. In the second stage, the separated residue is used for the recovery of gold by using sulphuric acid with a combination of halide salt. In this halide leaching, Cl₂ or Br₂ is generated as an in-situ oxidant to improve the leaching of gold. Results have shown that almost 92 % of gold is recovered at the optimized parameters.Keywords: printed circuit boards, delamination, leaching, solvent extraction, recovery
Procedia PDF Downloads 561703 Remotely Sensed Data Fusion to Extract Vegetation Cover in the Cultural Park of Tassili, South of Algeria
Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur
Abstract:
The cultural park of the Tassili, occupying a large area of Algeria, is characterized by a rich vegetative biodiversity to be preserved and managed both in time and space. The management of a large area (case of Tassili), by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information etc.), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Multispectral imaging sensors have been very useful in the last decade in very interesting applications of remote sensing. They can aid in several domains such as the de¬tection and identification of diverse surface targets, topographical details, and geological features. In this work, we try to extract vegetative areas using fusion techniques between data acquired from sensor on-board the Earth Observing 1 (EO-1) satellite and Landsat ETM+ and TM sensors. We have used images acquired over the Oasis of Djanet in the National Park of Tassili in the south of Algeria. Fusion technqiues were applied on the obtained image to extract the vegetative fraction of the different classes of land use. We compare the obtained results in vegetation end member extraction with vegetation indices calculated from both Hyperion and other multispectral sensors.Keywords: Landsat ETM+, EO1, data fusion, vegetation, Tassili, Algeria
Procedia PDF Downloads 4331702 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 71701 Comparing Different Frequency Ground Penetrating Radar Antennas for Tunnel Health Assessment
Authors: Can Mungan, Gokhan Kilic
Abstract:
Structural engineers and tunnel owners have good reason to attach importance to the assessment and inspection of tunnels. Regular inspection is necessary to maintain and monitor the health of the structure not only at the present time but throughout its life cycle. Detection of flaws within the structure, such as corrosion and the formation of cracks within the internal elements of the structure, can go a long way to ensuring that the structure maintains its integrity over the course of its life. Other issues that may be detected earlier through regular assessment include tunnel surface delamination and the corrosion of the rebar. One advantage of new technology such as the ground penetrating radar (GPR) is the early detection of imperfections. This study will aim to discuss and present the effectiveness of GPR as a tool for assessing the structural integrity of the heavily used tunnel. GPR is used with various antennae in frequency and application method (2 GHz and 500 MHz GPR antennae). The paper will attempt to produce a greater understanding of structural defects and identify the correct tool for such purposes. Conquest View with 3D scanning capabilities was involved throughout the analysis, reporting, and interpretation of the results. This study will illustrate GPR mapping and its effectiveness in providing information of value when it comes to rebar position (lower and upper reinforcement). It will also show how such techniques can detect structural features that would otherwise remain unseen, as well as moisture ingress.Keywords: tunnel, GPR, health monitoring, moisture ingress, rebar position
Procedia PDF Downloads 1191700 A Cellular-Based Structural Health Monitoring Device (HMD) Based on Cost-Effective 1-Axis Accelerometers
Authors: Chih-Hsing Lin, Wen-Ching Chen, Chih-Ting Kuo, Gang-Neng Sung, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang
Abstract:
This paper proposes a cellular-based structure health monitoring device (HMD) for temporary bridge monitoring without the requirement of power line and internet service. The proposed HMD includes sensor node, power module, cellular gateway, and rechargeable batteries. The purpose of HMD focuses on short-term collection of civil infrastructure information. It achieves the features of low cost by using three 1-axis accelerometers with data synchronization problem being solved. Furthermore, instead of using data acquisition system (DAQ) sensed data is transmitted to Host through cellular gateway. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 50.5% cost saving with high sensitivity 2000mv/g. In addition to fit different monitoring environments, the proposed system can be easily replaced and/or extended with different PCB boards, such as communication interfaces and sensors, to adapt to various applications. Therefore, with using the proposed device, the real-time diagnosis system for civil infrastructure damage monitoring can be conducted effectively.Keywords: cellular-based structural health monitoring, cost-effective 1-axis accelerometers, short-term monitoring, structural engineering
Procedia PDF Downloads 5171699 Police Mothers at Home: Police Work and Danger-Protection Parenting Practices
Authors: Tricia Agocs, Debra Langan, Carrie B. Sanders
Abstract:
Studies of the challenges faced by women in policing have paid little attention to the specific experiences of Policewomen who are mothers. Guided by critical theorizing on the gendered nature of the police culture and domestic labor, 16 police officer mothers in Ontario, Canada, were interviewed. Our qualitative analyses explore their experiences of the “lion’s share” of domestic labor; the organizational, cultural, and operational features of policing; and the challenges of child care, and examine how these combine to foster particular stresses. In contrast to intensive mothering approaches that rely on the advice of external experts, our participants work to protect children by carefully constructing stories and asking questions that are based on their own on-the-job experiences with dangerous and/or abhorrent situations. As such, they engage in danger-protection parenting practices to prevent their children from becoming victims or offenders. Our research extends the theorizing on intensive/extensive mothering practices, builds on the scholarship on policing, and adds to the literature on women in nonstandard occupations. This sociological analysis of police mothers’ experiences and practices underscores the importance of understanding and working to change the social contexts, at work and at home, that compromise the well-being of police mothers and other emergency-response workers.Keywords: policewomen, mothers, parenting, danger, qualitative research
Procedia PDF Downloads 5551698 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning
Authors: Eiman Kattan
Abstract:
This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.Keywords: conventional neural network, remote sensing, land cover, land use
Procedia PDF Downloads 3701697 Characterization and Evaluation of Soil Resources for Sustainable Land Use Planning of Timatjatji Community Farm, Limpopo, South Africa
Authors: M. Linda Phooko, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa, Rhandu Chauke
Abstract:
The decline of yields as a consequence of miss-informed land-use decisions poses a threat to sustainable agriculture in South Africa. The non-uniform growth pattern of wheat crop and the yields below expectations has been one of the main concerns for Timatjatji community farmers. This study was then conducted to characterize, classify, and evaluate soils of the farm for sustainable land use planning. A detailed free survey guided by surface features was conducted on a 25 ha farm to check soil variation. It was revealed that Sepane (25%), Bonheim (21%), Rensburg (18%), Katspruit (15%), Arcadia (12%) and Dundee (9%) were the dominant soil forms found across the farm. Field soil description was done to determine morphological characteristics of the soils which were matched with slope percentage and climate to assess the potential of the soils. The land capability results showed that soils were generally shallow due to high clay content in the B horizon. When the climate of the area was factored in (i.e. land potential), it further revealed that the area has low cropping potential due to heat, moisture stress and shallow soils. This implies that the farm is not suitable for annual cropping but can be highly suitable for planted pastures.Keywords: characterization, land capability, land evaluation, land potential
Procedia PDF Downloads 1991696 The Nature and the Structure of Scientific and Innovative Collaboration Networks
Authors: Afshin Moazami, Andrea Schiffauerova
Abstract:
The objective of this work is to investigate the development and the role of collaboration networks in the creation of knowledge and innovations in the US and Canada, with a special focus on Quebec. In order to create scientific networks, the data on journal articles were extracted from SCOPUS, and the networks were built based on the co-authorship of the journal papers. For innovation networks, the USPTO database was used, and the networks were built on the patent co-inventorship. Various indicators characterizing the evolution of the network structure and the positions of the researchers and inventors in the networks were calculated. The comparison between the United States, Canada, and Quebec was then carried out. The preliminary results show that the nature of scientific collaboration networks differs from the one seen in innovation networks. Scientists work in bigger teams and are mostly interconnected within one giant network component, whereas the innovation network is much more clustered and fragmented, the inventors work more repetitively with the same partners, often in smaller isolated groups. In both Canada and the US, an increasing tendency towards collaboration was observed, and it was found that networks are getting bigger and more centralized with time. Moreover, a declining share of knowledge transfers per scientist was detected, suggesting an increasing specialization of science. The US collaboration networks tend to be more centralized than the Canadian ones. Quebec shares a lot of features with the Canadian network, but some differences were observed, for example, Quebec inventors rely more on the knowledge transmission through intermediaries.Keywords: Canada, collaboration, innovation network, scientific network, Quebec, United States
Procedia PDF Downloads 2011695 Management Options and Life Cycle Assessment of Municipal Solid Waste in Madinah, KSA
Authors: Abdelkader T. Ahmed, Ayed E. Alluqmani
Abstract:
The population growth in the KSA beside the increase in the urbanization level and standard of living improvement have resulted in the rapid growth of the country’s Municipal Solid Waste (MSW) generation. Municipalities are managing the MSW system in the KSA by collecting and getting rid of it by dumping it in nearest open landfill sites. Solid waste management is one of the main critical issues considered worldwide due to its significant impact on the environment and the public health. In this study, municipal solid waste (MSW) generation, composition and collection of Madinah city, as one of largest cities in KSA, were examined to provide an overview of current state of MSW management, an analysis of existing problem in MSW management, and recommendations for improving the waste treatment and management system in this area. These recommendations would be not specific to Madinah region, but also would be applied to other cities in KSA or any other regions with similar features. The trend of waste generation showed that current waste generation would be increased as much as two to three folds in 2030. Approximately 25% of total generated waste is disposed to a sanitary landfill, while 75% is sent to normal dumpsites. This study also investigated the environmental impacts of MSW through the Life Cycle Assessment (LCA) of waste generations and related processes. LCA results revealed that among the seven scenarios, recycling and composting are the best scenario for the solid waste management in Madinah and similar regions.Keywords: municipal solid waste, waste recycling and land-filling, waste management, life cycle assessment
Procedia PDF Downloads 4641694 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 1051693 Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter
Authors: Zbigniew Czyz, Ksenia Siadkowska, Krzysztof Skiba, Karol Scislowski
Abstract:
Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.Keywords: main rotor, rotorcraft aerodynamics, shape memory alloy, materials, unmanned helicopter
Procedia PDF Downloads 1581692 Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa
Authors: Tatyana A. Karpenyuk, Saltanat B. Orazova, Yana S. Tzurkan, Alla V. Goncharova, Bakytzhan K. Kairat, Togzhan D. Mukasheva, Ludmila V. Ignatova, Ramza Z. Berzhanova
Abstract:
Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate α-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2).Keywords: microalgae, lipids, fatty acids, culture conditions
Procedia PDF Downloads 451