Search results for: municipal waste and sanitation workers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4431

Search results for: municipal waste and sanitation workers

2301 Impact of Activated Sludge Bulking and Foaming on the Quality of Kuwait's Irrigation Water

Authors: Abdallah Abusam, Andrzej Mydlarczyk, Fadila Al-Salameen, Moh Elmuntasir Ahmed

Abstract:

Treated municipal wastewater produced in Kuwait is used mainly in agricultural and greenery landscape irrigations. However, there are strong doubts that severe sludge bulking and foaming problems, particularly during winter seasons, may render the treated wastewater to be unsuitable for irrigation purposes. To assess the impact of sludge bulking and foaming problems on the quality of treated effluents, samples were collected weekly for nine months (January to September 2014) from the secondary effluents, tertiary effluents and sludge-mixed liquor streams of the two plants that severely suffer from sludge bulking and foaming problems. Dominant filamentous bacteria were identified and quantified using a molecular method called VIT (Vermicon Identification Technology). Quality of the treated effluents was determined according to water and wastewater standard methods. Obtained results were then statistically analyzed and compared to irrigation water standards. Statistical results indicated that secondary effluents were greatly impacted by sludge bulking and foaming problems, while tertiary effluents were slightly affected. This finding highlights the importance of having tertiary treatment units in plants that encountering sludge bulking and foaming problems.

Keywords: agriculture, filamentous bacteria, reclamation, reuse, wastewater

Procedia PDF Downloads 263
2300 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator

Authors: Victoria L. Chester, Usha Kuruganti

Abstract:

The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.

Keywords: EMG, forestry, human factors, wrist biomechanics

Procedia PDF Downloads 139
2299 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process

Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski

Abstract:

Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.

Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction

Procedia PDF Downloads 132
2298 The Comparison between Public's Social Distances against Syrian Refugees and Perceptions of Access to Healthcare Services: Istanbul Sample

Authors: Pinar Dogan, Merve Tarhan, Ahu Kurklu

Abstract:

Syrian refugees who sheltering due to war has protected by the Government of Turkey since 2011. Since Syria was a medium-low income country prior to the war, it is known that chronic health problems weren’t common among citizens. However, it is also known that they frequently use health services in our country because of the spread of infectious and acute diseases due to insufficient sanitation and crowding after the war. This study was planned to compare the social distances of the community against the Syrian refugees and the perceptions of accessing health care services. The descriptive-cross sectional study was carried out on 1262 individuals living in Istanbul. A questionnaire form consisted of Personal Information Form, The Bogardus Social Distance Scale (BSDS) and The Survey of Access to Healthcare Services (AHS) was used as data collection tool. Descriptive tests and chi-square test were used for statistical analysis. It was found that the majorities of participants was satisfied with the health services and were waiting for more than 40 minutes to be examined. It was determined that participants have high scores from BSDS. At the same time, the majority of participants stated that their level of access to health care is diminishing due to refugees. Participants who experienced disruption in access to health services due to refugees were found to have higher scores from BSDS. The data collection process in the study will continue until 2400 individuals are reached. With these conclusions, it is considered necessary that the effect of the presence of the refugees in reaching the health services and nursing care of the society should be revealed through extensive researches to be conducted in Turkey.

Keywords: health care services, nursing care, social distances, Syrian refugees

Procedia PDF Downloads 134
2297 Beyond the Water Seal: On-Field Observations of Occupational Hazards of Faecal Sludge Management in Southern Karnataka

Authors: Anissa Mary Thomas Thattil, Nancy Angeline Gnanaselvam, B. Ramakrishna Goud

Abstract:

Faecal sludge management (FSM) is an unorganized sector, and in India, there is an absence of regulations regarding the collection, transport, treatment, and disposal of faecal sludge. FSM has a high degree of occupational hazards that need to be thoroughly understood in order to shape effective solutions. On-field observations of five FSM operations were conducted in Anekal Taluk of southern Karnataka. All five of the FSM operations were privately owned and snowball method of sampling was employed. Two types of FS operations observed were: mechanical emptying involving direct human contact with faecal sludge and mechanical emptying without direct human contact with faecal sludge. Each operation was manned by 3-4 faecal sludge operators (FSOs). None of the observed FSOs used personal protective equipment. According to the WHO semi-quantitative risk assessment, the very high risk occupational hazards identified were dermal contact with faecal sludge, inhalation of toxic gases, and social stigma. The high risk hazards identified were trips and falls, injuries, ergonomic hazards, substance abuse, and mental health problems. In all five FSM operations, the collected faecal sludge was discharged untreated onto abandoned land. FSM in India is fraught with occupational and environmental hazards which need to be urgently addressed. This includes formalizing the institution of FSM, contextualized behaviour change communication, capacity building of local bodies, awareness programmes among agriculturists and FSOs, and designation of sites for the safe harnessing of faecal sludge as soil nutrient.

Keywords: faecal sludge, faecal sludge management, FSM, occupational hazards, sanitation

Procedia PDF Downloads 174
2296 The Methanotrophic Activity in a Landfill Bio-Cover through a Subzero Winter

Authors: Parvin Berenjkar, Qiuyan Yuan, Richard Sparling, Stan Lozecznik

Abstract:

Landfills highly contribute to anthropological global warming through CH₄ emissions. Landfills are usually capped by a conventional soil cover to control the migration of gases. Methane is consumed by CH₄-oxidizing microorganisms known as methanotrophs that naturally exist in the landfill soil cover. The growth of methanotrophs can be optimized in a bio-cover that typically consists of a gas distribution layer (GDL) to homogenize landfill gas fluxes and an overlying oxidation layer composed of suitable materials that support methanotrophic populations. Materials such as mature yard waste composts can provide an inexpensive and favourable porous support for the growth and activity of methanotrophs. In areas with seasonal cold climates, it is valuable to know if methanotrophs in a bio-cover can survive in winter until the next spring, and how deep they are active in the bio-cover to mitigate CH₄. In this study, a pilot bio-cover was constructed in a closed landfill cell in Winnipeg that has a very cold climate in Canada. The bio-cover has a surface area of 2.5 m x 3.5 m and 1.5 m of depth, filled with 50 cm of gravel as a GDL and 70 cm of biosolids compost amended with yard and leaf waste compost. The observed in situ potential of methanotrophs for CH₄ oxidation was investigated at a specific period of time from December 2016 to April 2017 as well as November 2017 to April 2018, when the transition to surface frost and thawing happens in the bio-cover. Compost samples taken from different depths of the bio-cover were incubated in the laboratory under standardized conditions; an optimal air: methane atmosphere, at 22ºC, but at in situ moisture content. Results showed that the methanotrophs were alive oxidizing methane without a lag, indicating that there was the potential for methanotrophic activity at some depths of the bio-cover.

Keywords: bio-cover, global warming, landfill, methanotrophic activity

Procedia PDF Downloads 117
2295 Malachite Green and Red Congo Dyes Adsorption onto Chemical Treated Sewage Sludge

Authors: Zamouche Meriem, Mehcene Ismahan, Temmine Manel, Bencheikh Lehocine Mosaab, Meniai Abdeslam Hassen

Abstract:

In this study, the adsorption of Malachite Green (MG) by chemical treated sewage sludge has been studied. The sewage sludge, collected from drying beds of the municipal wastewater treatment station of IBN ZIED, Constantine, Algeria, was treated by different acids such us HNO₃, H₂SO₄, H₃PO₄ for modifying its aptitude to removal the MG from aqueous solutions. The results obtained shows that the sewage sludge activated by sulfuric acid give the highest elimination amounts of MG (9.52 mg/L) compared by the other acids used. The effects of operation parameters have been investigated, the results obtained show that the adsorption capacity per unit of adsorbent mass decreases from 18.69 to 1.20 mg/g when the mass of the adsorbent increases from 0.25 to 4 g respectively, the optimum mass for which a maximum of elimination of the dye is equal to 0.5g. The increasing in the temperature of the solution results in a slight decrease in the adsorption capacity of the chemically treated sludge. The highest amount of dye adsorbed by CSSS (9.56 mg/g) was observed for the optimum temperature of 25°C. The chemical activated sewage sludge proved its effectiveness for the removal of the Red Congo (RC), but by comparison the adsorption of the two dyes studies, we noted that the sludge has more affinity to adsorb the (MG).

Keywords: adsorption, chemical activation, malachite green, sewage sludge

Procedia PDF Downloads 185
2294 Mitigating the Negative Health Effects from Stress - A Social Network Analysis

Authors: Jennifer A. Kowalkowski

Abstract:

Production agriculture (farming) is a physically, emotionally, and cognitively stressful occupation, where workers have little control over the stressors that impact both their work and their lives. In an occupation already rife with hazards, these occupational-related stressors have been shown to increase farm workers’ risks for illness, injury, disability, and death associated with their work. Despite efforts to mitigate the negative health effects from occupational-related stress (ORS) and to promote health and well-being (HWB) among farmers in the US, marked improvements have not been attained. Social support accessed through social networks has been shown to buffer against the negative health effects from stress, yet no studies have directly examined these relationships among farmers. The purpose of this study was to use social network analysis to explore the social networks of farm owner-operators and the social supports available to them for mitigating the negative health effects of ORS. A convenience sample of 71 farm owner-operators from a Midwestern County in the US completed and returned a mailed survey (55.5% response rate) that solicited information about their social networks related to ORS. Farmers reported an average of 2.4 individuals in their personal networks and higher levels of comfort discussing ORS with female network members. Farmers also identified few connections (3.4% density) and indicated low comfort with members of affiliation networks specific to ORS. Findings from this study highlighted that farmers accessed different social networks and resources for their personal HWB than for issues related to occupational(farm-related) health and safety. In addition, farmers’ social networks for personal HWB were smaller, with different relational characteristics than reported in studies of farmers’ social networks related to occupational health and safety. Collectively, these findings suggest that farmers conceptualize personal HWB differently than farm health and safety. Therefore, the same research approaches and targets that guide occupational health and safety research may not be appropriate for personal HWB for farmers. Interventions and programming targeting ORS and HWB have largely been offered through the same platforms or mechanisms as occupational health and safety programs. This may be attributed to the significant overlap between the farm as a family business and place of residence, or that ORS stems from farm-related issues. However, these assumptions translated to health research of farmers and farm families from the occupational health and safety literature have not been directly studied or challenged. Thismay explain why past interventions have not been effective at improving health outcomes for farmers and farm families. A close examination of findings from this study raises important questions for researchers who study agricultural health. Findings from this study have significant implications for future research agendas focused on addressing ORS, HWB, and health disparities for farmersand farm families.

Keywords: agricultural health, occupational-related stress, social networks, well-being

Procedia PDF Downloads 103
2293 Modeling Water Inequality and Water Security: The Role of Water Governance

Authors: Pius Babuna, Xiaohua Yang, Roberto Xavier Supe Tulcan, Bian Dehui, Mohammed Takase, Bismarck Yelfogle Guba, Chuanliang Han, Doris Abra Awudi, Meishui Lia

Abstract:

Water inequality, water security, and water governance are fundamental parameters that affect the sustainable use of water resources. Through policy formulation and decision-making, water governance determines both water security and water inequality. Largely, where water inequality exists, water security is undermined through unsustainable water use practices that lead to pollution of water resources, conflicts, hoarding of water, and poor sanitation. Incidentally, the interconnectedness of water governance, water inequality, and water security has not been investigated previously. This study modified the Gini coefficient and used a Logistics Growth of Water Resources (LGWR) Model to access water inequality and water security mathematically, and discussed the connected role of water governance. We tested the validity of both models by calculating the actual water inequality and water security of Ghana. We also discussed the implications of water inequality on water security and the overarching role of water governance. The results show that regional water inequality is widespread in some parts. The Volta region showed the highest water inequality (Gini index of 0.58), while the central region showed the lowest (Gini index of 0.15). Water security is moderately sustainable. The use of water resources is currently stress-free. It was estimated to maintain such status until 2132 ± 18, when Ghana will consume half of the current total water resources of 53.2 billion cubic meters. Effectively, water inequality is a threat to water security, results in poverty, under-development heightens tensions in water use, and causes instability. With proper water governance, water inequality can be eliminated through formulating and implementing approaches that engender equal allocation and sustainable use of water resources.

Keywords: water inequality, water security, water governance, Gini coefficient, moran index, water resources management

Procedia PDF Downloads 128
2292 Advancing Trustworthy Human-robot Collaboration: Challenges and Opportunities in Diverse European Industrial Settings

Authors: Margarida Porfírio Tomás, Paula Pereira, José Manuel Palma Oliveira

Abstract:

The decline in employment rates across sectors like industry and construction is exacerbated by an aging workforce. This has far-reaching implications for the economy, including skills gaps, labour shortages, productivity challenges due to physical limitations, and workplace safety concerns. To sustain the workforce and pension systems, technology plays a pivotal role. Robots provide valuable support to human workers, and effective human-robot interaction is essential. FORTIS, a Horizon project, aims to address these challenges by creating a comprehensive Human-Robot Interaction (HRI) solution. This solution focuses on multi-modal communication and multi-aspect interaction, with a primary goal of maintaining a human-centric approach. By meeting the needs of both human workers and robots, FORTIS aims to facilitate efficient and safe collaboration. The project encompasses three key activities: 1) A Human-Centric Approach involving data collection, annotation, understanding human behavioural cognition, and contextual human-robot information exchange. 2) A Robotic-Centric Focus addressing the unique requirements of robots during the perception and evaluation of human behaviour. 3) Ensuring Human-Robot Trustworthiness through measures such as human-robot digital twins, safety protocols, and resource allocation. Factor Social, a project partner, will analyse psycho-physiological signals that influence human factors, particularly in hazardous working conditions. The analysis will be conducted using a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. However, the adoption of novel technologies, particularly those involving human-robot interaction, often faces hurdles related to acceptance. To address this challenge, FORTIS will draw upon insights from Social Sciences and Humanities (SSH), including risk perception and technology acceptance models. Throughout its lifecycle, FORTIS will uphold a human-centric approach, leveraging SSH methodologies to inform the design and development of solutions. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No 101135707 (FORTIS).

Keywords: skills gaps, productivity challenges, workplace safety, human-robot interaction, human-centric approach, social sciences and humanities, risk perception

Procedia PDF Downloads 42
2291 CO₂ Recovery from Biogas and Successful Upgrading to Food-Grade Quality: A Case Study

Authors: Elisa Esposito, Johannes C. Jansen, Loredana Dellamuzia, Ugo Moretti, Lidietta Giorno

Abstract:

The reduction of CO₂ emission into the atmosphere as a result of human activity is one of the most important environmental challenges to face in the next decennia. Emission of CO₂, related to the use of fossil fuels, is believed to be one of the main causes of global warming and climate change. In this scenario, the production of biomethane from organic waste, as a renewable energy source, is one of the most promising strategies to reduce fossil fuel consumption and greenhouse gas emission. Unfortunately, biogas upgrading still produces the greenhouse gas CO₂ as a waste product. Therefore, this work presents a case study on biogas upgrading, aimed at the simultaneous purification of methane and CO₂ via different steps, including CO₂/methane separation by polymeric membranes. The original objective of the project was the biogas upgrading to distribution grid quality methane, but the innovative aspect of this case study is the further purification of the captured CO₂, transforming it from a useless by-product to a pure gas with food-grade quality, suitable for commercial application in the food and beverage industry. The study was performed on a pilot plant constructed by Tecno Project Industriale Srl (TPI) Italy. This is a model of one of the largest biogas production and purification plants. The full-scale anaerobic digestion plant (Montello Spa, North Italy), has a digestive capacity of 400.000 ton of biomass/year and can treat 6.250 m3/hour of biogas from FORSU (organic fraction of solid urban waste). The entire upgrading process consists of a number of purifications steps: 1. Dehydration of the raw biogas by condensation. 2. Removal of trace impurities such as H₂S via absorption. 3.Separation of CO₂ and methane via a membrane separation process. 4. Removal of trace impurities from CO₂. The gas separation with polymeric membranes guarantees complete simultaneous removal of microorganisms. The chemical purity of the different process streams was analysed by a certified laboratory and was compared with the guidelines of the European Industrial Gases Association and the International Society of Beverage Technologists (EIGA/ISBT) for CO₂ used in the food industry. The microbiological purity was compared with the limit values defined in the European Collaborative Action. With a purity of 96-99 vol%, the purified methane respects the legal requirements for the household network. At the same time, the CO₂ reaches a purity of > 98.1% before, and 99.9% after the final distillation process. According to the EIGA/ISBT guidelines, the CO₂ proves to be chemically and microbiologically sufficiently pure to be suitable for food-grade applications.

Keywords: biogas, CO₂ separation, CO2 utilization, CO₂ food grade

Procedia PDF Downloads 207
2290 Steel Industry Waste as Recyclable Raw Material for the Development of Ferrous-Aluminum Alloys

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

The study aims to assess if high-purity iron powder in iron-aluminum alloys can be replaced by SAE 1020 steel chips with an atomicity proportion of 50% for each element. Chips of SAE 1020 are rejected in industrial processes. Thus, the use of SAE 1020 as a replaceable composite for iron increase the sustainability of ferrous alloys by recycling industrial waste. The alloys were processed by high energy milling, of which the main advantage is the minimal loss of raw material. The raw material for three of the six samples were high purity iron powder and recyclable aluminum cans. For the other three samples, the high purity iron powder has been replaced with chips of SAE 1020 steel. The process started with the separate milling of chips of aluminum and SAE 1020 steel to obtain the powder. Subsequently, the raw material was mixed in the pre-defined proportions, milled together for five hours and then underwent a closed-die hot compaction at the temperature of 500 °C. Thereafter, the compacted samples underwent heat treatments known as sintering and solubilization. All samples were sintered one hour, and 4 samples were solubilized for either 4 or 10 hours under well-controlled atmosphere conditions. Lastly, the composition and the mechanical properties of their hardness were analyzed. The samples were analyzed by optical microscopy, scanning electron microscopy and hardness testing. The results of the analysis showed a similar chemical composition and interesting hardness levels with low standard deviations. This verified that the use of SAE 1020 steel chips can be a low-cost alternative for high-purity iron powder and could possibly replace high-purity Iron in industrial applications.

Keywords: Fe-Al alloys, high energy milling, iron-aluminum alloys, metallography characterization, powder metallurgy, recycling ferrous alloy, SAE 1020 steel recycling

Procedia PDF Downloads 354
2289 Management of Distillery Spentwash to Enhance Productivity of Dryland Crops and Reduce Environmental Pollution: A Case Study in Southern Dry Zone of Karnataka, India

Authors: A. Sathish, N. N. Lingaraju, K. N. Geetha, C. A. Srinivasamurthy, S. Bhaskar

Abstract:

Under dryland conditions, it is observed that the soil organic matter is low due to low organic carbon content due to poor management with less use of inputs. On the other hand, disposal of sugar industry waste, i.e., spentwash is a major concern with limited space for land based treatment and disposal which causes environmental pollution. Spentwash is also a resource that can be applied for productive uses since it contains nutrients that have the potential for use in agriculture. The disposal of spent wash may lead to environmental pollution. Hence as an alternative mechanism, it was applied once to dry lands, and the experiments were conducted from 2012-13 to 2016-17 in kharif season in Maddur Taluk, Mandya District, Karnataka State, India. The study conducted was in 93 different farmers field (maize-11, finger millet-80 & horsegram-14). Spentwash was applied at the rate of 100 m³ ha⁻¹ before sowing of the crops. The results showed that yield of dryland crops like finger millet, horse gram and maize was recorded 14.75 q ha⁻¹, 6 q ha⁻¹ and 31.00 q ha⁻¹, respectively and the yield increase to an extent of 10-25 per cent with one time application of spentwash to dry lands compared to farmers practice, i.e., chemical fertilizer application. The higher yield may be attributed to slow and steady release of nutrients by spentwash throughout the crop growth period. In addition, the growth promoting and other beneficial substances present in spentwash might have also helped in better plant growth and yield. The soil sample analysis after harvest of the crops indicate acidic to neutral pH, EC of 0.11 dSm⁻¹ and Na of 0.20 C mol (P⁺) kg⁻¹ in the normal range which are not harmful. Hence, it can be applied to drylands at least once in 3 years which enhances yield as well as reduces environmental pollution.

Keywords: dryland crops, pollution, sugar industry waste, spentwash

Procedia PDF Downloads 236
2288 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment

Authors: Rouzbeh Jafari, Joe Nava

Abstract:

This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.

Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy

Procedia PDF Downloads 101
2287 Reduction in Hospital Acquire Infections after Intervention of Hand Hygiene and Personal Protective Equipment at COVID Unit Indus Hospital Karachi

Authors: Aisha Maroof

Abstract:

Introduction: Coronavirus Disease 2019 (COVID-19) is spreading rapidly around the world with devastating consequences on patients, health care workers and health systems. Severe 2019 novel coronavirus infectious disease (COVID-19) with pneumonia is associated with high rates of admission to the intensive care unit (ICU) and they are at high risk to obtain the hospital acquire bloodstream infection (HAIs) such as central line associated bloodstream infection (CLABSI), catheter associated urinary tract infections (CAUTI) and laboratory confirm bloodstream infection (LCBSI). The chances of infection transmission increase when healthcare worker’s (HCWs) practice is inappropriate. Risk related to hand hygiene (HH) and personal protective equipment (PPE) as regards multidrug-resistant organism transmission: use of multiple gloving instead of HH and incorrect use of PPE can lead to a significant increase of device-related infections. As it reaches low- and middle-income countries, its effects could be even more, because it will be difficult for them to react aggressively to the pandemic. HAIs are one of the biggest medical concerns, resulting in increased mortality rates. Objective: To assess the effect of intervention on compliance of hand hygiene and PPE among HCWs reduce the rate of HAI in COVID-19 patients. Method: An interventional study was done between July to December, 2020. CLABSI, CAUTI and LCBSI data were collected from the medical record and direct observation. There were total of 50 Nurses, 18 doctors and all patients with laboratory-confirmed severe COVID-19 admitted to the hospital were included in this research study. Respiratory tract specimens were obtained after the first 48 h of ICU admission. Practices were observed after and before intervention. Education was provided based on WHO guidelines. Results: During the six months of study July to December, the rate of CLABSI, CAUTI and LCBSI pre and post intervention was reported. CLABSI rate decreasedd from 22.7 to 0, CAUTI rate was decreased from 1.6 to 0, LCBSI declined from 3.3 to 0 after implementation of intervention. Conclusion: HAIs are an important cause of morbidity and mortality. Most of the device related infections occurs due to lack of correct use of PPE and hand hygiene compliance. Hand hygiene and PPE is the most important measure to protect patients, through education it can be improved the correct use of PPE and hand hygiene compliance and can reduce the bacterial infection in COVID-19 patients.

Keywords: hospital acquire infection, healthcare workers, hand hygiene, personal protective equipment

Procedia PDF Downloads 125
2286 Disciplinary Procedures Used by Secondary School Teachers in Calabar Municipality, Nigeria

Authors: N. N. Nkomo, M. L. Mayanchi

Abstract:

The present study investigated various forms of disciplinary procedures or punishment used by teachers in secondary schools in Calabar Municipality, Nigera. There are agitations amongst parents and educators on the use of corporal punishment as a disciplinary measure against children. Those against the use of corporal punishment argue that this form of punishment does not teach, it only terminates behaviour temporarily and inculcates violence. Those in support are of the view that corporal punishment serves as a deterrent to others. This study sought to find out the most common measure of discipline employed by teachers in private and public schools. The study had three objectives, three research questions and two hypotheses. The design of the present study was the ex-post facto descriptive survey, since variables under study were not manipulated by the researcher. Teachers in Calabar Municipal Secondary Schools formed the population. A sample of 160 teachers was used for the study. The data collection instrument was a facts finding questionnaire titled Disciplinary Procedures Inventory. Data collected were analyzed using simple percentages and chi-square. The major findings were that physical measures such as flogging, exercise/drills, and painful postures were commonly used by teachers in secondary schools. It was also found that these measures were more often used in public schools. It was recommended that teachers should rather employ non-violent techniques of discipline than physical punishment.

Keywords: discipline, non-violent punishment, physical punishment, penalties, rewards

Procedia PDF Downloads 219
2285 Ecological Art in the Nuclear Anthropocene

Authors: Eve-Andree Laramee

Abstract:

The aesthetics and ethics of the Nuclear Anthropocene are explored through artists responses to the impact of radioactive materials on ecological systems, global issues, energy policies and ourselves. This presentation tracks and reveals the invisible traces of the nuclear weapons complex and the nuclear energy industry, in relation to environmental justice. Radioactive pollution transgresses international borders, boundaries between land and water, contaminating ecological systems. Radioactive waste is never disposed of; it is dispositioned, placed out of sight and out of mind. These materials leave behind an invisible toxic legacy lasting millions of years. As we are learning post-Fukushima, when climate change occurs and vulnerability spectrums shift, nuclear sites and the life forms surrounding them are at increased risk. By visualizing this contamination through art installations, videos, and social-sculpture interventions, information is shared with the public, raising awareness, and activating community participation in remediation and nonproliferation efforts. The emerging Ecological Art genre proposes paradigms sustainable with the life forms and resources of our planet. It is comprised of artists, scientists, philosophers and activists devoted to these. EcoArt is distinguished by a focus on systems and interrelationships within our environment: the ecological, geographic, political, biological and cultural. This presentation will cover artworks addressing the recent Fukushima meltdowns, weapons proliferation, climate change, radioactive waste disposal and environmental justice. Possibilities for art-and-science collaborations will be discussed as projects that sharpen our ethics and politics in our behaviors and social interactions. The presentation will consist of a PowerPoint talk (paper presentation) accompanied by images and video clips.

Keywords: art, ecology, environment, anthropocene, nuclear

Procedia PDF Downloads 227
2284 Industrial Waste Multi-Metal Ion Exchange

Authors: Thomas S. Abia II

Abstract:

Intel Chandler Site has internally developed its first-of-kind (FOK) facility-scale wastewater treatment system to achieve multi-metal ion exchange. The process was carried out using a serial process train of carbon filtration, pH / ORP adjustment, and cationic exchange purification to treat dilute metal wastewater (DMW) discharged from a substrate packaging factory. Spanning a trial period of 10 months, a total of 3,271 samples were collected and statistically analyzed (average baseline + standard deviation) to evaluate the performance of a 95-gpm, multi-reactor continuous copper ion exchange treatment system that was consequently retrofitted for manganese ion exchange to meet environmental regulations. The system is also equipped with an inline acid and hot caustic regeneration system to rejuvenate exhausted IX resins and occasionally remove surface crud. Data generated from lab-scale studies was transferred to system operating modifications following multiple trial-and-error experiments. Despite the DMW treatment system failing to meet internal performance specifications for manganese output, it was observed to remove the cation notwithstanding the prevalence of copper in the waste stream. Accordingly, the average manganese output declined from 6.5 + 5.6 mg¹L⁻¹ at pre-pilot to 1.1 + 1.2 mg¹L⁻¹ post-pilot (83% baseline reduction). This milestone was achieved regardless of the average influent manganese to DMW increasing from 1.0 + 13.7 mg¹L⁻¹ at pre-pilot to 2.1 + 0.2 mg¹L⁻¹ post-pilot (110% baseline uptick). Likewise, the pre-trial and post-trial average influent copper values to DMW were 22.4 + 10.2 mg¹L⁻¹ and 32.1 + 39.1 mg¹L⁻¹, respectively (43% baseline increase). As a result, the pre-trial and post-trial average copper output values were 0.1 + 0.5 mg¹L⁻¹ and 0.4 + 1.2 mg¹L⁻¹, respectively (300% baseline uptick). Conclusively, the operating pH range upstream of treatment (between 3.5 and 5) was shown to be the largest single point of influence for optimizing manganese uptake during multi-metal ion exchange. However, the high variability of the influent copper-to-manganese ratio was observed to adversely impact the system functionality. The journal herein intends to discuss the operating parameters such as pH and oxidation-reduction potential (ORP) that were shown to influence the functional versatility of the ion exchange system significantly. The literature also proposes to discuss limitations of the treatment system such as influent copper-to-manganese ratio variations, operational configuration, waste by-product management, and system recovery requirements to provide a balanced assessment of the multi-metal ion exchange process. The take-away from this literature is intended to analyze the overall feasibility of ion exchange for metals manufacturing facilities that lack the capability to expand hardware due to real estate restrictions, aggressive schedules, or budgetary constraints.

Keywords: copper, industrial wastewater treatment, multi-metal ion exchange, manganese

Procedia PDF Downloads 135
2283 Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors

Authors: Mahmoud Amer, Ibrahim El-Sharkawy, Shinichi Ookawara, Ahmed Elwardany

Abstract:

Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.

Keywords: numerical simulation, carbonization, gasification, biomass, reactor

Procedia PDF Downloads 97
2282 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media

Authors: Andrew Kurochkin, Kostiantyn Bokhan

Abstract:

In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.

Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction

Procedia PDF Downloads 131
2281 Enhanced Growth of Microalgae Chlamydomonas reinhardtii Cultivated in Different Organic Waste and Effective Conversion of Algal Oil to Biodiesel

Authors: Ajith J. Kings, L. R. Monisha Miriam, R. Edwin Raj, S. Julyes Jaisingh, S. Gavaskar

Abstract:

Microalgae are a potential bio-source for rejuvenated solutions in various disciplines of science and technology, especially in medicine and energy. Biodiesel is being replaced for conventional fuels in automobile industries with reduced pollution and equivalent performance. Since it is a carbon neutral fuel by recycling CO2 in photosynthesis, global warming potential can be held in control using this fuel source. One of the ways to meet the rising demand of automotive fuel is to adopt with eco-friendly, green alternative fuels called sustainable microalgal biodiesel. In this work, a microalga Chlamydomonas reinhardtii was cultivated and optimized in different media compositions developed from under-utilized waste materials in lab scale. Using the optimized process conditions, they are then mass propagated in out-door ponds, harvested, dried and oils extracted for optimization in ambient conditions. The microalgal oil was subjected to two step esterification processes using acid catalyst to reduce the acid value (0.52 mg kOH/g) in the initial stage, followed by transesterification to maximize the biodiesel yield. The optimized esterification process parameters are methanol/oil ratio 0.32 (v/v), sulphuric acid 10 vol.%, duration 45 min at 65 ºC. In the transesterification process, commercially available alkali catalyst (KOH) is used and optimized to obtain a maximum biodiesel yield of 95.4%. The optimized parameters are methanol/oil ratio 0.33(v/v), alkali catalyst 0.1 wt.%, duration 90 min at 65 ºC 90 with smooth stirring. Response Surface Methodology (RSM) is employed as a tool for optimizing the process parameters. The biodiesel was then characterized with standard procedures and especially by GC-MS to confirm its compatibility for usage in internal combustion engine.

Keywords: microalgae, organic media, optimization, transesterification, characterization

Procedia PDF Downloads 228
2280 Measuring the Impact of Implementing an Effective Practice Skills Training Model in Youth Detention

Authors: Phillipa Evans, Christopher Trotter

Abstract:

Aims: This study aims to examine the effectiveness of a practice skills framework implemented in three youth detention centres in Juvenile Justice in New South Wales (NSW), Australia. The study is supported by a grant from and Australian Research Council and NSW Juvenile Justice. Recent years have seen a number of incidents in youth detention centres in Australia and other places. These have led to inquiries and reviews with some suggesting that detention centres often do not even meet basic human rights and do little in terms of providing opportunities for rehabilitation of residents. While there is an increasing body of research suggesting that community based supervision can be effective in reducing recidivism if appropriate skills are used by supervisors, there has been less work considering worker skills in youth detention settings. The research that has been done, however, suggest that teaching interpersonal skills to youth officers may be effective in enhancing the rehabilitation culture of centres. Positive outcomes have been seen in a UK detention centre for example, from teaching staff to do five-minute problem-solving interventions. The aim of this project is to examine the effectiveness of training and coaching youth detention staff in three NSW detention centres in interpersonal practice skills. Effectiveness is defined in terms of reductions in the frequency of critical incidents and improvements in the well-being of staff and young people. The research is important as the results may lead to the development of more humane and rehabilitative experiences for young people. Method: The study involves training staff in core effective practice skills and supporting staff in the use of those skills through supervision and de-briefing. The core effective practice skills include role clarification, pro-social modelling, brief problem solving, and relationship skills. The training also addresses some of the background to criminal behaviour including trauma. Data regarding critical incidents and well-being before and after the program implementation are being collected. This involves interviews with staff and young people, the completion of well-being scales, and examination of departmental records regarding critical incidents. In addition to the before and after comparison a matched control group which is not offered the intervention is also being used. The study includes more than 400 young people and 100 youth officers across 6 centres including the control sites. Data collection includes interviews with workers and young people, critical incident data such as assaults, use of lock ups and confinement and school attendance. Data collection also includes analysing video-tapes of centre activities for changes in the use of staff skills. Results: The project is currently underway with ongoing training and supervision. Early results will be available for the conference.

Keywords: custody, practice skills, training, youth workers

Procedia PDF Downloads 97
2279 Efficient Bargaining versus Right to Manage in the Era of Liberalization

Authors: Panagiota Koliousi, Natasha Miaouli

Abstract:

We compare product and labour market liberalization under the two trade union bargaining models: the Right-to-Manage (RTM) model and the Efficient Bargaining (EB) model. The vehicle is a dynamic general equilibrium (DGE) model that incorporates two types of agents (capitalists and workers), imperfectly competitive product and labour markets. The model is solved numerically employing common parameter values and data from the euro area. A key message is that product market deregulation is favourable under any labour market structure while opting for labour market deregulation one should provide special attention to the structure of the labour market such as the bargaining system of unions. If the prevailing way of bargaining is the RTM model then restructuring both markets is beneficial for all agents.

Keywords: market structure, structural reforms, trade unions, unemployment

Procedia PDF Downloads 195
2278 The Impact of Artificial Intelligence on Human Rights Development

Authors: Romany Wagih Farag Zaky

Abstract:

The relationship between development and human rights has long been the subject of academic debate. To understand the dynamics between these two concepts, various principles are adopted, from the right to development to development-based human rights. Despite the initiatives taken, the relationship between development and human rights remains unclear. However, the overlap between these two views and the idea that efforts should be made in the field of human rights have increased in recent years. It is then evaluated whether the right to sustainable development is acceptable or not. The article concludes that the principles of sustainable development are directly or indirectly recognized in various human rights instruments, which is a good answer to the question posed above. This book therefore cites regional and international human rights agreements such as , as well as the jurisprudence and interpretative guidelines of human rights institutions, to prove this hypothesis.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 51
2277 Exploring Managerial Approaches towards Green Manufacturing: A Thematic Analysis

Authors: Hakimeh Masoudigavgani

Abstract:

Since manufacturing firms deplete non-renewable resources and pollute air, soil, and water in greatly unsustainable manner, industrial activities or production of products are considered to be a key contributor to adverse environmental impacts. Hence, management strategies and approaches that involve an effective supply chain decision process in a manufacturing sector could be extremely significant to the application of environmental initiatives. Green manufacturing (GM) is one of these strategies which minimises negative effects on the environment through reducing greenhouse gas emissions, waste, and the consumption of energy and natural resources. This paper aims to explore what greening methods and mechanisms could be applied in the manufacturing supply chain and what are the outcomes of adopting these methods in terms of abating environmental burdens? The study is an interpretive research with an exploratory approach, using thematic analysis by coding text, breaking down and grouping the content of collected literature into various themes and categories. It is found that green supply chain could be attained through execution of some pre-production strategies including green building, eco-design, and green procurement as well as a number of in-production and post-production strategies involving green manufacturing and green logistics. To achieve an effective GM, the pre-production strategies are suggested to be employed. This paper defines GM as (1) the analysis of the ecological impacts generated by practices, products, production processes, and operational functions, and (2) the implementation of greening methods to reduce damaging influences of them on the natural environment. Analysis means assessing, monitoring, and auditing of practices in order to measure and pinpoint their harmful impacts. Moreover, greening methods involved within GM (arranged in order from the least to the most level of environmental compliance and techniques) consist of: •product stewardship (e.g. less use of toxic, non-renewable, and hazardous materials in the manufacture of the product; and stewardship of the environmental problems with regard to the product in all production, use, and end-of-life stages); •process stewardship (e.g. controlling carbon emission, energy and resources usage, transportation method, and disposal; reengineering polluting processes; recycling waste materials generated in production); •lean and clean production practices (e.g. elimination of waste, materials replacement, materials reduction, resource-efficient consumption, energy-efficient usage, emission reduction, managerial assessment, waste re-use); •use of eco-industrial parks (e.g. a shared warehouse, shared logistics management system, energy co-generation plant, effluent treatment). However, the focus of this paper is only on methods related to the in-production phase and needs further research on both pre-production and post-production environmental innovations. The outlined methods in this investigation may possibly be taken into account by policy/decision makers. Additionally, the proposed future research direction and identified gaps can be filled by scholars and researchers. The paper compares and contrasts a variety of viewpoints and enhances the body of knowledge by building a definition for GM through synthesising literature and categorising the strategic concept of greening methods, drivers, barriers, and successful implementing tactics.

Keywords: green manufacturing (GM), product stewardship, process stewardship, clean production, eco-industrial parks (EIPs)

Procedia PDF Downloads 578
2276 The Impact of Globalization on the Development of Israel Advanced Changes

Authors: Erez Cohen

Abstract:

The study examines the socioeconomic impact of development of an advanced industry in Israel. The research method is based on data collected from the Israel Central Bureau of Statistics and from the National Insurance Institute (NII) databases, which provided information that allows to examine the Economic and Social Changes during the 1990s. The study examined the socioeconomic effects of the development of advanced industry in Israel. The research findings indicate that as a result of globalization processes, the weight of traditional industry began to diminish as a result of factory closures and the laying off of workers. These circumstances led to growing unemployment among the weaker groups in Israeli society, detracting from their income and thus increasing inequality among different socioeconomic groups in Israel and enhancement of social disparities.

Keywords: globalization, Israeli advanced industry, public policy, socio-economic indicators

Procedia PDF Downloads 158
2275 The Effects of Perceived Organizational Support and Abusive Supervision on Employee’s Turnover Intention: The Mediating Roles of Psychological Contract and Emotional Exhaustion

Authors: Seung Yeon Son

Abstract:

Workers (especially, competent personnel) have been recognized as a core contributor to overall organizational effectiveness. Hence, verifying the determinants of turnover intention is one of the most important research issues. This study tested the influence of perceived organizational support and abusive supervision on employee’s turnover intention. In addition, mediating roles of psychological contract and emotional exhaustion were examined. Data from 255 Korean employees supported all hypotheses Implications for research and directions for future research are discussed.

Keywords: abusive supervision, emotional exhaustion, perceived organizational support, psychological contract, turnover intention

Procedia PDF Downloads 491
2274 Mismatch of Heavy Equipment Repairer Student’s Skills and Employer’s Needs

Authors: Bolormaa Dalanbayar, Batsaikhan Ulaankhuu, Bayarmaa Tsogtbaatar

Abstract:

In this study, we surveyed employers and students to identify compliance between employers' needs and student self-assessment of skills. Employers' survey consisted of fifteen questions to determine employers' assessment of the knowledge and skills of graduates in heavy equipment repairer's programs from four TVET schools. We also compared a survey questionnaire with Liebherr brands' job duty requirements, which determines the training needs and qualification level of their new workers. The study shows more than 76% of employers assessed professional knowledge as sufficient, more than 47% of employers assessed vocational skills as sufficient and more than 43% of employers rated attitudes as sufficient. Therefore, we can state there is a skill mismatch between the employer's assessment and students' self-assessment.

Keywords: skill mismatch, employers needs, competence-based curriculum

Procedia PDF Downloads 28
2273 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation

Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher

Abstract:

Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.

Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment

Procedia PDF Downloads 116
2272 Solubility and Dissolution Enhancement of Poorly Soluble Drugs Using Biosericin

Authors: Namdeo Jadhav, Nitin Salunkhe

Abstract:

Currently, sericin is being treated as waste of sericulture industry, especially at reeling process. Looking at prospective physicochemical properties, an attempt has been made to explore pharmaceutical applications of sericin waste in fabrication of medicated solid dispersions. Solid dispersions (SDs) of poorly soluble drugs (Lornoxicam, Meloxicam & Felodipine) were prepared by spray drying, solvent evaporation, ball milling and physical kneading in mass ratio of drug: sericin (1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 and 1:3 w/w) and were investigated by solubility, ATR-FTIR, XRD and DSC, micromeritics and tablettability, surface morphology and in-vitro dissolution. It has been observed that sericin improves solubility of drugs by 8 to 10 times compared to pure drugs. The presence of hydrogen bonding between drugs and sericin was confirmed from the ATR-FTIR spectra. Amongst these methods, spray dried (1:2 w/w) SDs showed fully amorphous state representing molecularly distributed drug as confirmed from XRD and DSC study. Spray dried meloxicam SDs showed better compressibility and compactibility. The microphotograph of spray dried batches of lornoxicam (SDLX) and meloxicam SDs (SDMX) showed bowl shaped, and bowl plus spherical particles respectively, while spray dried felodipine SDs (SDFL) showed spherical shape. The SDLX, SDMX and SDFL (1:2 w/w) displayed better dissolution performance than other methods. Conclusively, hydrophilic matrix of sericin can be used to deliver poor water soluble drugs and its aerodynamic shape may show a great potential for various drug deliveries. If established as pharmaceutical excipient, sericin holds a potential to revolutionise economics of pharmaceutical industry, and sericulture farming, especially of Asian countries.

Keywords: biosericin, poorly soluble drugs, solid dispersion, solubility and dissolution improvement

Procedia PDF Downloads 250