Search results for: dimensional accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5707

Search results for: dimensional accuracy

3577 Public and Private Domains: Contradictions and Covenants in Evolution of Game Policy

Authors: Mingzhu Lyu, Runlei Ren, Xinyu Dai, Jiaxuan Pi, Kanghua Li

Abstract:

The study of video game policy in China has been divided into two branches: "pedagogy" and "game industry". The binary perspective of policy reveals the "contradictory" side of policy performance. Based on this suspicion, this paper constructs a three-dimensional sequence of time, content and institutions of game policy, and establishes the "contradictory" aspects of policy performance between 1949 and 2019. A central-level database of game policies, clarifying that our game policies follow a shift from reactive response to proactive guidance, stigmatization and de-stigmatization, the evolutionary logic. The study found that the central government has always maintained a strict requirement and prudent guidance for game policy, and the deep contradictions in game policy stem from the essential conflict between the natural amusement of games and the seriousness of the educational system, and the Chinese government's use of the understanding of the public and private domains and the Managing of the conflict.

Keywords: game industry, gaming policy, public domain, private domain

Procedia PDF Downloads 153
3576 Transport of Reactive Carbo-Iron Composite Particles for in situ Groundwater Remediation Investigated at Laboratory and Field Scale

Authors: Sascha E. Oswald, Jan Busch

Abstract:

The in-situ dechlorination of contamination by chlorinated solvents in groundwater via zero-valent iron (nZVI) is potentially an efficient and prompt remediation method. A key requirement is that nZVI has to be introduced in the subsurface in a way that substantial quantities of the contaminants are actually brought into direct contact with the nZVI in the aquifer. Thus it could be a more flexible and precise alternative to permeable reactive barrier techniques using granular iron. However, nZVI are often limited by fast agglomeration and sedimentation in colloidal suspensions, even more so in the aquifer sediments, which is a handicap for the application to treat source zones or contaminant plumes. Colloid-supported nZVI show promising characteristics to overcome these limitations and Carbo-Iron Colloids is a newly developed composite material aiming for that. The nZVI is built onto finely ground activated carbon of about a micrometer diameter acting as a carrier for it. The Carbo-Iron Colloids are often suspended with a polyanionic stabilizer, and carboxymethyl cellulose is one with good properties for that. We have investigated the transport behavior of Carbo-Iron Colloids (CIC) on different scales and for different conditions to assess its mobility in aquifer sediments as a key property for making its application feasible. The transport properties were tested in one-dimensional laboratory columns, a two-dimensional model aquifer and also an injection experiment in the field. Those experiments were accompanied by non-invasive tomographic investigations of the transport and filtration processes of CIC suspensions. The laboratory experiments showed that a larger part of the CIC can travel at least scales of meters for favorable but realistic conditions. Partly this is even similar to a dissolved tracer. For less favorable conditions this can be much smaller and in all cases a particular fraction of the CIC injected is retained mainly shortly after entering the porous medium. As field experiment a horizontal flow field was established, between two wells with a distance of 5 meters, in a confined, shallow aquifer at a contaminated site in North German lowlands. First a tracer test was performed and a basic model was set up to define the design of the CIC injection experiment. Then CIC suspension was introduced into the aquifer at the injection well while the second well was pumped and samples taken there to observe the breakthrough of CIC. This was based on direct visual inspection and total particle and iron concentrations of water samples analyzed in the laboratory later. It could be concluded that at least 12% of the CIC amount injected reached the extraction well in due course, some of it traveling distances larger than 10 meters in the non-uniform dipole flow field. This demonstrated that these CIC particles have a substantial mobility for reaching larger volumes of a contaminated aquifer and for interacting there by their reactivity with dissolved contaminants in the pore space. Therefore they seem suited well for groundwater remediation by in-situ formation of reactive barriers for chlorinated solvent plumes or even source removal.

Keywords: carbo-iron colloids, chlorinated solvents, in-situ remediation, particle transport, plume treatment

Procedia PDF Downloads 248
3575 Effects of Biocompatible Substrates on the Electrical Properties of Graphene

Authors: M. Simchi, M. Amiri, E. Rezvani, I. Mirzaei, M. Berahman, A. Simchi, M. Fardmanesh

Abstract:

Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate.

Keywords: biocompatible substrates, electrical properties, graphene, sheet resistance

Procedia PDF Downloads 137
3574 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation

Procedia PDF Downloads 376
3573 Relativity in Toddlers' Understanding of the Physical World as Key to Misconceptions in the Science Classroom

Authors: Michael Hast

Abstract:

Within their first year, infants can differentiate between objects based on their weight. By at least 5 years children hold consistent weight-related misconceptions about the physical world, such as that heavy things fall faster than lighter ones because of their weight. Such misconceptions are seen as a challenge for science education since they are often highly resistant to change through instruction. Understanding the time point of emergence of such ideas could, therefore, be crucial for early science pedagogy. The paper thus discusses two studies that jointly address the issue by examining young children’s search behaviour in hidden displacement tasks under consideration of relative object weight. In both studies, they were tested with a heavy or a light ball, and they either had information about one of the balls only or both. In Study 1, 88 toddlers aged 2 to 3½ years watched a ball being dropped into a curved tube and were then allowed to search for the ball in three locations – one straight beneath the tube entrance, one where the curved tube lead to, and one that corresponded to neither of the previous outcomes. Success and failure at the task were not impacted by weight of the balls alone in any particular way. However, from around 3 years onwards, relative lightness, gained through having tactile experience of both balls beforehand, enhanced search success. Conversely, relative heaviness increased search errors such that children increasingly searched in the location immediately beneath the tube entry – known as the gravity bias. In Study 2, 60 toddlers aged 2, 2½ and 3 years watched a ball roll down a ramp and behind a screen with four doors, with a barrier placed along the ramp after one of four doors. Toddlers were allowed to open the doors to find the ball. While search accuracy generally increased with age, relative weight did not play a role in 2-year-olds’ search behaviour. Relative lightness improved 2½-year-olds’ searches. At 3 years, both relative lightness and relative heaviness had a significant impact, with the former improving search accuracy and the latter reducing it. Taken together, both studies suggest that between 2 and 3 years of age, relative object weight is increasingly taken into consideration in navigating naïve physical concepts. In particular, it appears to contribute to the early emergence of misconceptions relating to object weight. This insight from developmental psychology research may have consequences for early science education and related pedagogy towards early conceptual change.

Keywords: conceptual development, early science education, intuitive physics, misconceptions, object weight

Procedia PDF Downloads 191
3572 C Vibration Analysis of a Beam on Elastic Foundation with Elastically Restrained Ends Using Spectral Element Method

Authors: Hamioud Saida, Khalfallah Salah

Abstract:

In this study, a spectral element method is employed to predict the free vibration of a Euler-Bernoulli beam resting on a Winkler foundation with elastically restrained ends. The formulation of the dynamic stiffness matrix has been established by solving the differential equation of motion, which was transformed to frequency domain. Non-dimensional natural frequencies and shape modes are obtained by solving the partial differential equations, numerically. Numerical comparisons and examples are performed to show the effectiveness of the SEM and to investigate the effects of various parameters, such as the springs at the boundaries and the elastic foundation parameter on the vibration frequencies. The obtained results demonstrate that the present method can also be applied to solve the more general problem of the dynamic analysis of structures with higher order precision.

Keywords: elastically supported Euler-Bernoulli beam, free-vibration, spectral element method, Winkler foundation

Procedia PDF Downloads 136
3571 Calculation of Lungs Physiological Lung Motion in External Lung Irradiation

Authors: Yousif Mohamed Y. Abdallah, Khalid H. Eltom

Abstract:

This is an experimental study deals with measurement of the periodic physiological organ motion during lung external irradiation in order to reduce the exposure of healthy tissue during radiation treatments. The results showed for left lung displacement reading (4.52+1.99 mm) and right lung is (8.21+3.77 mm) which the radiotherapy physician should take suitable countermeasures in case of significant errors. The motion ranged between 2.13 mm and 12.2 mm (low and high). In conclusion, the calculation of tumour mobility can improve the accuracy of target areas definition in patients undergo Sterostatic RT for stage I, II and III lung cancer (NSCLC). Definition of the target volume based on a high resolution CT scan with a margin of 3-5 mm is appropriate.

Keywords: physiological motion, lung, external irradiation, radiation medicine

Procedia PDF Downloads 425
3570 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 87
3569 Seismic Retrofit of Existing Bridge Foundations with Micropiles: 3D Finite Element Analysis

Authors: Mohanad Talal Alfach

Abstract:

This paper concerns the seismic behaviour of soil-piles-bridge reinforced by additional micropiles. The analysis carried out by three-dimensional finite element modelling using the FE software ABAQUS. The soil behaviour is assumed to be elastic with Rayleigh damping, while the micropiles are modeled as 3D elastic beam elements. The bridge deck slab was represented by a concentrated mass at the top of the pier column. The interaction between the added micropiles and the existing piles as well as the performance of the retrofitted soil-pile-superstructure system were investigated for different configurations of additional micropiles (number, position, inclination). Numerical simulation results show that additional micropiles constitute an efficient retrofitting solution. Analysis of results also shows that spacing between existing piles and retrofitting micropiles has little effect; while it is observed a substantial improvement (in case of weak piles/micropiles - soil interface) with reducing the inclination angle of retrofitting micropiles.

Keywords: retrofitting, seismic, finite element, micropiles, elastic

Procedia PDF Downloads 151
3568 Numerical Simulation of the Bond Behavior Between Concrete and Steel Reinforcing Bars in Specialty Concrete

Authors: Camille A. Issa, Omar Masri

Abstract:

In the study, the commercial finite element software Abaqus was used to develop a three-dimensional nonlinear finite element model capable of simulating the pull-out test of reinforcing bars from underwater concrete. The results of thirty-two pull-out tests that have different parameters were implemented in the software to study the effect of the concrete cover, the bar size, the use of stirrups, and the compressive strength of concrete. The interaction properties used in the model provided accurate results in comparison with the experimental bond-slip results, thus the model has successfully simulated the pull-out test. The results of the finite element model are used to better understand and visualize the distribution of stresses in each component of the model, and to study the effect of the various parameters used in this study including the role of the stirrups in preventing the stress from reaching to the sides of the specimens.

Keywords: pull-out test, bond strength, underwater concrete, nonlinear finite element analysis, abaqus

Procedia PDF Downloads 445
3567 Revealing Insights into the Mechanisms of Biofilm Adhesion on Surfaces in Crude Oil Environments

Authors: Hadjer Didouh, Mohammed Hadj Meliani, Izzaddine Sameut Bouhaik

Abstract:

This study employs a multidisciplinary approach to investigate the intricate processes governing biofilm-surface interactions. Results indicate that surface properties significantly influence initial microbial attachment, with materials characterized by increased roughness and hydrophobicity promoting enhanced biofilm adhesion. Moreover, the chemical composition of materials plays a crucial role in impacting the development of biofilms. Environmental factors, such as temperature fluctuations and nutrient availability, were identified as key determinants affecting biofilm formation dynamics. Advanced imaging techniques revealed complex three-dimensional biofilm structures, emphasizing microbial communication and cooperation within these networks. These findings offer practical implications for industries operating in crude oil environments, guiding the selection and design of materials to mitigate biofilm-related challenges and enhance operational efficiency in such settings.

Keywords: biofilm adhesion, surface properties, crude oil environments, microbial interactions, multidisciplinary investigation

Procedia PDF Downloads 78
3566 Curve Fitting by Cubic Bezier Curves Using Migrating Birds Optimization Algorithm

Authors: Mitat Uysal

Abstract:

A new met heuristic optimization algorithm called as Migrating Birds Optimization is used for curve fitting by rational cubic Bezier Curves. This requires solving a complicated multivariate optimization problem. In this study, the solution of this optimization problem is achieved by Migrating Birds Optimization algorithm that is a powerful met heuristic nature-inspired algorithm well appropriate for optimization. The results of this study show that the proposed method performs very well and being able to fit the data points to cubic Bezier Curves with a high degree of accuracy.

Keywords: algorithms, Bezier curves, heuristic optimization, migrating birds optimization

Procedia PDF Downloads 343
3565 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: nano-enhanced phase change material (NEPCM), phase change material (PCM), nanoparticles, latent heat storage unit (LHSU), melting.

Procedia PDF Downloads 411
3564 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution

Authors: T. Zitoun, M. Bouhadef

Abstract:

When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.

Keywords: analytical solution, free-surface wave, hydraulic channel, inviscid fluid

Procedia PDF Downloads 200
3563 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing

Procedia PDF Downloads 143
3562 Unsteady Simulation of Burning Off Carbon Deposition in a Coke Oven

Authors: Uzu-Kuei Hsu, Keh-Chin Chang, Joo-Guan Hang, Chang-Hsien Tai

Abstract:

Carbon Deposits are often occurred inside the industrial coke oven during the coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three-dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from the atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during the burn-off process.

Keywords: coke oven, burning off, carbon deposits, carbon combustion, CFD

Procedia PDF Downloads 697
3561 Influence of Nanoparticles Phenomena on the Peristaltic Flow of Pseudoplastic Fluid in an Inclined Asymmetric Channel with Different Wave Forms

Authors: Safia Akram

Abstract:

The influence of nanofluid with different waveforms in the presence of inclined asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing equations for two-dimensional and two directional flows of a pseudoplastic fluid along with nanofluid are modeled and then simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions for temperature and nanoparticle volume fraction are calculated. Series solution of the stream function and pressure gradient are carried out using perturbation technique. The flow quantities have been examined for various physical parameters of interest. It was found, that the magnitude value of the velocity profile decreases with an increase in volume flow rate (Q) and relaxation times (ζ) and increases in sinusoidal, multisinusoidal, trapezoidal and triangular waves. It was also observed that the size of the trapping bolus decreases with the drop of the width of the channel ‘d’ and increases with a rise of relaxation times ζ.

Keywords: nanofluid particles, peristaltic flow, pseudoplastic fluid, different waveforms, inclined asymmetric channel

Procedia PDF Downloads 240
3560 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 402
3559 Numerical Investigation of Two Turbulence Models for Predicting the Temperature Separation in Conical Vortex Tube

Authors: M. Guen

Abstract:

A three-dimensional numerical study is used to analyze the behavior of the flow inside a vortex tube. The vortex tube or Ranque-Hilsch vortex tube is a simple device which is capable of dividing compressed air from the inlet nozzle tangentially into two flow with different temperatures warm and cold. This phenomenon is known from literature by temperature separation. The K ω-SST and K-ε turbulence models are used to predict the turbulent flow behaviour inside the tube. The vortex tube is an Exair 708 slpm (25 scfm) commercial tube. The cold and hot exits areas are 30.2 and 95 mm2 respectively. The vortex nozzle consists of 6 straight slots; the height and the width of each slot are 0.97 mm and 1.41 mm. The total area normal to the flow associated with six nozzles is therefore 8.15 mm 2. The present study focuses on a comparison between two turbulence models K ω-SST, K-ε by using a new configuration of vortex tube (Conical Vortex Tube). The performance curves of the temperature separation versus cold outlet mass fraction were calculated and compared with experimental and numerical study of other researchers.

Keywords: conical vortex tube, temperature separation, cold mass fraction, turbulence

Procedia PDF Downloads 254
3558 Detection of Chaos in General Parametric Model of Infectious Disease

Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari

Abstract:

Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.

Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test

Procedia PDF Downloads 328
3557 Camera Model Identification for Mi Pad 4, Oppo A37f, Samsung M20, and Oppo f9

Authors: Ulrich Wake, Eniman Syamsuddin

Abstract:

The model for camera model identificaiton is trained using pretrained model ResNet43 and ResNet50. The dataset consists of 500 photos of each phone. Dataset is divided into 1280 photos for training, 320 photos for validation and 400 photos for testing. The model is trained using One Cycle Policy Method and tested using Test-Time Augmentation. Furthermore, the model is trained for 50 epoch using regularization such as drop out and early stopping. The result is 90% accuracy for validation set and above 85% for Test-Time Augmentation using ResNet50. Every model is also trained by slightly updating the pretrained model’s weights

Keywords: ​ One Cycle Policy, ResNet34, ResNet50, Test-Time Agumentation

Procedia PDF Downloads 213
3556 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong

Abstract:

This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.

Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 222
3555 Effects of the Non-Newtonian Viscosity of Blood on Flow Field in a Constricted Artery with a Porous Plaque

Authors: Maedeh Shojaeizadeh, Amirreza Yeganegi

Abstract:

Nowadays many people lose their lives due to cardiovascular diseases. Inappropriate food habits and lack of exercise expedite deposit process of fatty substances on inner surface of blood arteries. This abnormal lump disturbs uniform blood flow and reduces oxygen delivery to active organs. This work presents a numerical simulation of Non-Newtonian blood flow in a stenosis vessel. The vessel is considered as two dimensional channel and plaque area is modelled as a homogenous porous medium. To simulate blood flow reaction around stenosis region, we use C++ code and solve coupled Cauchy, Darcy, governing continuity and energy equations. The analyses results show that viscosity power (n) plays an important role in flow separation and the size of the eddy at the downstream edge of the plaque. It is also observed that with increasing (n) value, temperature discontinuity and likelihood of vessel rupture declined.

Keywords: blood flow, computational fluid dynamic, porosity, power law fluid

Procedia PDF Downloads 461
3554 An Extended Model for Sustainable Food and Nutrition Security in the Agrifood Sector

Authors: Ioannis Manikas

Abstract:

The increased consumer demand for environmentally friendly production and distribution practices and the stricter environmental regulations turned environmental aspects into important criteria in business decision-making. On the other hand, Food and Nutrition Security (FNS) has evolved dramatically during the last decades in theory and practice serving as a reference point for exchanging experiences among all agents involved in programs and projects to fostering policy and strategy development. Global pressures make it more important than ever to gain a better understanding of the contribution that agrifood businesses make to FNS and to examine ways to make them more resilient in an increasingly globalized and uncertain world. This study extends the standard three-dimensional model of sustainability to include two more dimensions: A technological dimension and a policy/political dimension. Apart from the economic, environmental and social dimensions regularly used in sustainability literature, the extended model will accurately represent the measures and policies addressing food and nutrition security.

Keywords: food and nutrition security, sustainability, food safety, resilience

Procedia PDF Downloads 343
3553 Analytical Response Characterization of High Mobility Transistor Channels

Authors: F. Z. Mahi, H. Marinchio, C. Palermo, L. Varani

Abstract:

We propose an analytical approach for the admittance response calculation of the high mobility InGaAs channel transistors. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The total currents and the potentials matrix relation between the gate and the drain terminals determine the frequency-dependent small-signal admittance response. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand, to control the appearance of plasma resonances, and on the other hand, can give significant information about the admittance phase frequency dependence.

Keywords: small-signal admittance, Poisson equation, currents and potentials matrix, the drain and the gate terminals, analytical model

Procedia PDF Downloads 543
3552 X-Ray Diffraction and Precision Dilatometer Study of Neutron-Irradiated Nuclear Graphite Recovery Process up to 1673K

Authors: Yuhao Jin, Zhou Zhou, Katsumi Yoshida, Zhengcao Li, Tadashi Maruyama, Toyohiko Yano

Abstract:

Four kinds of nuclear graphite, IG-110U, ETP-10, CX-2002U and IG-430U were neutron-irradiated at different fluences and temperatures, ranged from 1.38 x 1024 to 7.4 x 1025 n/m2 (E > 1.0 MeV) at 473K, 573K and 673K. To take into account the disorder in the microstructure, such as stacking faults and anisotropic coherent lengths, the X-ray diffraction patterns were interpreted using a comprehensive structural model and a refinement program CARBONXS. The deduced structural parameters show the changes of lattice parameters, coherent lengths along the c-axis and the basal plane, and the degree of turbostratic disorder as a function of the irradiation dose. Our results reveal neutron irradiation effects on the microstructure and macroscopic dimension, which are consistent with previous work. The methodology used in this work enables the quantification of the damage on the microstructure of nuclear graphite induced by neutron irradiation.

Keywords: nuclear graphite, neutron irradiation, thermal annealing, recovery behavior, dimensional change, CARBONX, XRD analysis

Procedia PDF Downloads 405
3551 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device

Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang

Abstract:

This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.

Keywords: CFD modeling, validation, microsphere generation, modified T-junction

Procedia PDF Downloads 710
3550 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images

Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi

Abstract:

Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.

Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis

Procedia PDF Downloads 63
3549 Investigation of Chip Formation Characteristics during Surface Finishing of HDPE Samples

Authors: M. S. Kaiser, S. Reaz Ahmed

Abstract:

Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.

Keywords: HDPE, surface-finishing, chip formation, deformation, roughness

Procedia PDF Downloads 149
3548 Characterizing the Geometry of Envy Human Behaviour Using Game Theory Model with Two Types of Homogeneous Players

Authors: A. S. Mousa, R. I. Rajab, A. A. Pinto

Abstract:

An envy behavioral game theoretical model with two types of homogeneous players is considered in this paper. The strategy space of each type of players is a discrete set with only two alternatives. The preferences of each type of players is given by a discrete utility function. All envy strategies that form Nash equilibria and the corresponding envy Nash domains for each type of players have been characterized. We use geometry to construct two dimensional envy tilings where the horizontal axis reflects the preference for players of type one, while the vertical axis reflects the preference for the players of type two. The influence of the envy behavior parameters on the Cartesian position of the equilibria has been studied, and in each envy tiling we determine the envy Nash equilibria. We observe that there are 1024 combinatorial classes of envy tilings generated from envy chromosomes: 256 of them are being structurally stable while 768 are with bifurcation. Finally, some conditions for the disparate envy Nash equilibria are stated.

Keywords: game theory, Nash equilibrium, envy Nash behavior, geometric tilings, bifurcation thresholds

Procedia PDF Downloads 233