Search results for: digital learning resources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13847

Search results for: digital learning resources

11717 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 54
11716 The Game of Dominoes as Teaching-Learning Method of Basic Concepts of Differential Calculus

Authors: Luis Miguel Méndez Díaz

Abstract:

In this article, a mathematics teaching-learning strategy will be presented, specifically differential calculus in one variable, in a fun and competitive space in which the action on the part of the student is manifested and not only the repetition of information on the part of the teacher. Said action refers to motivating, problematizing, summarizing, and coordinating a game of dominoes whose thematic cards are designed around the basic and main contents of differential calculus. The strategies for teaching this area are diverse and precisely the game of dominoes is one of the most used strategies in the practice of mathematics because it stimulates logical reasoning and mental abilities. The objective on this investigation is to identify the way in which the game of dominoes affects the learning and understanding of fundamentals concepts of differential calculus in one variable through experimentation carried out on students of the first semester of the School of Engineering and Sciences of the Technological Institute of Monterrey Campus Querétaro. Finally, the results of this study will be presented and the use of this strategy in other topics around mathematics will be recommended to facilitate logical and meaningful learning in students.

Keywords: collaborative learning, logical-mathematical intelligence, mathematical games, multiple intelligences

Procedia PDF Downloads 81
11715 Technological Improvements and the Challenges They Pose to Market Competition in the Philippines

Authors: Isabel L. Guidote

Abstract:

Continued advancements and innovation in the technological arena may yield both beneficial and detrimental effects to market competition in the Philippines. This paper discusses recent developments in the digital sphere which have resulted in improved access to the Philippine market for both producers and consumers. Acknowledging that these developments are likely to disrupt or alter prevailing market conditions, this paper likewise tackles competition theories of harm that may arise as a result of such technological innovations, with reference to cases decided by foreign competition authorities and the European Commission. As the Philippine moves closer to the digital frontier, it is imperative that producers, consumers, and regulators alike be well-equipped to address the risks and challenges posed by these rapid advancements in technology.

Keywords: antitrust, competition law, market competition, technology

Procedia PDF Downloads 165
11714 A Primer to the Learning Readiness Assessment to Raise the Sharing of E-Health Knowledge amongst Libyan Nurses

Authors: Mohamed Elhadi M. Sharif, Mona Masood

Abstract:

The usage of e-health facilities is seen to be the first priority by the Libyan government. As such, this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using e-health services in nursing education.

Keywords: Libyan nurses, e-learning readiness, e-health, nursing education

Procedia PDF Downloads 492
11713 Demystifying Mathematics: Handling Learning Disabilities in Mathematics Among Low Achievers in Kenyan Schools

Authors: Gladys Gakenia Njoroge

Abstract:

Mathematics is a compulsory subject in both primary and secondary schools in Kenya. However, learners’ poor performance in the subject in Kenya national examinations year in year out remains a serious concern for teachers of Mathematics, parents, curriculum developers, and the general public. This is particularly worrying because of the importance attached to the subject in national development hence the need to find out what could be affecting learning of Mathematics in Kenyan schools. The research on which this paper is based sought to examine the factors that influence performance in Mathematics in Kenyan schools; identify the characteristics of Mathematics learning disabilities; determine how the learners with such learning disabilities can be assessed and identified and interventions for these difficulties implemented. A case study was undertaken on class six learners in a primary school in Nairobi County. The tools used for the research were: classroom observations and an Individualized Education Program (IEP) developed by the teachers with the help of the researcher. This paper therefore highlights the findings from the research, discusses the implications of the findings and suggests the way forward as far as teaching, learning and assessment of Mathematics in Kenyan schools is concerned. Perhaps with the application of the right interventions, poor performance in Mathematics in the national examinations in Kenya will be a thing of the past.

Keywords: demystifying mathematics, individualized education program, learning difficulties, assessment

Procedia PDF Downloads 90
11712 An Examination of the Impact of Sand Dunes on Soils, Vegetation and Water Resources as the Major Means of Livelihood in Gada Local Government Area of Sokoto State, Nigeria

Authors: Abubakar Aminu

Abstract:

Sand dunes, as a major product of desertification, is well known to affect soil resources, water resources and vegetation, especially in arid and semi-arid region; this scenario disrupt the livelihood security of people in the affected areas. The research assessed the episode of sand dune accumulation on water resources, soil and vegetation in Gada local government of Sokoto State, Nigeria. In this paper, both qualitative and quantitative methods were used to generate data which was analyzed and discussed. The finding of the paper shows that livelihood was affected by accumulations of sand dunes as water resources and soils were affected negatively thereby reducing crop yields and making livestock domestication a very difficult and expensive task; the finding also shows that 60% of the respondents agreed to planting of trees as the major solution to combat sand dunes accumulation. However, the soil parameters tested indicated low Organic carbon, low Nitrogen, low Potassium, Calcium and Phosphorus but higher values were recorded in Sodium and Cation exchange capacity which served as evidence of the high or strong aridity nature of the soil in the area. In line with the above, the researcher recommended a massive tree planting campaign to curtail desertification as well as using organic manures for higher agricultural yield and as such, improvement in livelihood security.

Keywords: soils, vegetatio, water, desertification

Procedia PDF Downloads 70
11711 Evaluation of Sustained Improvement in Trauma Education Approaches for the College of Emergency Nursing Australasia Trauma Nursing Program

Authors: Pauline Calleja, Brooke Alexander

Abstract:

In 2010 the College of Emergency Nursing Australasia (CENA) undertook sole administration of the Trauma Nursing Program (TNP) across Australia. The original TNP was developed from recommendations by the Review of Trauma and Emergency Services-Victoria. While participant and faculty feedback about the program was positive, issues were identified that were common for industry training programs in Australia. These issues included didactic approaches, with many lectures and little interaction/activity for participants. Participants were not necessarily encouraged to undertake deep learning due to the teaching and learning principles underpinning the course, and thus participants described having to learn by rote, and only gain a surface understanding of principles that were not always applied to their working context. In Australia, a trauma or emergency nurse may work in variable contexts that impact on practice, especially where resources influence scope and capacity of hospitals to provide trauma care. In 2011, a program review was undertaken resulting in major changes to the curriculum, teaching, learning and assessment approaches. The aim was to improve learning including a greater emphasis on pre-program preparation for participants, the learning environment and clinically applicable contextualized outcomes participants experienced. Previously if participants wished to undertake assessment, they were given a take home examination. The assessment had poor uptake and return, and provided no rigor since assessment was not invigilated. A new assessment structure was enacted with an invigilated examination during course hours. These changes were implemented in early 2012 with great improvement in both faculty and participant satisfaction. This presentation reports on a comparison of participant evaluations collected from courses post implementation in 2012 and in 2015 to evaluate if positive changes were sustained. Methods: Descriptive statistics were applied in analyzing evaluations. Since all questions had more than 20% of cells with a count of <5, Fisher’s Exact Test was used to identify significance (p = <0.05) between groups. Results: A total of fourteen group evaluations were included in this analysis, seven CENA TNP groups from 2012 and seven from 2015 (randomly chosen). A total of 173 participant evaluations were collated (n = 81 from 2012 and 92 from 2015). All course evaluations were anonymous, and nine of the original 14 questions were applicable for this evaluation. All questions were rated by participants on a five-point Likert scale. While all items showed improvement from 2012 to 2015, significant improvement was noted in two items. These were in regard to the content being delivered in a way that met participant learning needs and satisfaction with the length and pace of the program. Evaluation of written comments supports these results. Discussion: The aim of redeveloping the CENA TNP was to improve learning and satisfaction for participants. These results demonstrate that initial improvements in 2012 were able to be maintained and in two essential areas significantly improved. Changes that increased participant engagement, support and contextualization of course materials were essential for CENA TNP evolution.

Keywords: emergency nursing education, industry training programs, teaching and learning, trauma education

Procedia PDF Downloads 266
11710 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: deep learning, long short term memory, energy, renewable energy load forecasting

Procedia PDF Downloads 263
11709 Legal Regulation of Personal Information Data Transmission Risk Assessment: A Case Study of the EU’s DPIA

Authors: Cai Qianyi

Abstract:

In the midst of global digital revolution, the flow of data poses security threats that call China's existing legislative framework for protecting personal information into question. As a preliminary procedure for risk analysis and prevention, the risk assessment of personal data transmission lacks detailed guidelines for support. Existing provisions reveal unclear responsibilities for network operators and weakened rights for data subjects. Furthermore, the regulatory system's weak operability and a lack of industry self-regulation heighten data transmission hazards. This paper aims to compare the regulatory pathways for data information transmission risks between China and Europe from a legal framework and content perspective. It draws on the “Data Protection Impact Assessment Guidelines” to empower multiple stakeholders, including data processors, controllers, and subjects, while also defining obligations. In conclusion, this paper intends to solve China's digital security shortcomings by developing a more mature regulatory framework and industry self-regulation mechanisms, resulting in a win-win situation for personal data protection and the development of the digital economy.

Keywords: personal information data transmission, risk assessment, DPIA, internet service provider, personal information data transimission, risk assessment

Procedia PDF Downloads 58
11708 Language Learning Strategies of Chinese Students at Suan Sunandha Rajabhat University in Thailand

Authors: Gunniga Anugkakul, Suwaree Yordchim

Abstract:

The objectives were to study language learning strategies (LLSs) employed by Chinese students, and the frequency of LLSs they used, and examine the relationship between the use of LLSs and gender. The Strategy Inventory for Language Learning (SILL) by Oxford was administered to thirty-six Chinese students at Suan Sunandha Rajabhat University in Thailand. The data obtained was analyzed using descriptive statistics and chi-square tests. Three useful findings were found on the use of LLSs reported by Chinese students. First, Chinese students used overall LLSs at a high level. Second, among the six strategy groups, Chinese students employed compensation strategy most frequently and memory strategy least frequently. Third, the research results also revealed that gender had significant effect on Chinese Student’s use of overall LLSs.

Keywords: English language, language learning strategy, Chinese students, compensation strategy

Procedia PDF Downloads 676
11707 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 27
11706 Walls, Barriers, and Fences to Informal Political Economy of Land Resource Accesses: A Case of Banyabunagana Along with Uganda–Congo Border, South Western Uganda, Kisoro District

Authors: Niringiye Fred

Abstract:

Banyabunagana has always had access to land resources for grazing animals, sand mining, and farmland across the border in the Democratic Republic of Congo during the pre-colonial and colonial times, usually on an informal arrangement facilitated by kinship ties and rent transactions for these resources. However, in recent periods, the government of the Democratic Republic of the Congo (DRC) has been pursuing a policy of constructing barriers such as walls and fences so that Banyabunagana communities do not access the land on the DRC side of the border. This is happening in the background of increased and intensified demand for land use on the side of the Ugandan community. This paper will attempt to discuss the reasons behind the construction of walls, fences, and other barriers which deny access to land for Banyabunagana communities in Bunagana Parish, Muramba Sub-county- Kisoro district, Uganda. The research will attempt to answer the following main questions, among others, whether there are the factors that explain the construction of walls and fences which could limit or deny access to the informal use of land and other resources and whether policy options to ensure continued access to land and other resources for local communities.

Keywords: border, walls, fences, land resource access

Procedia PDF Downloads 122
11705 Students’ Experiential Knowledge Production in the Teaching-Learning Process of Universities

Authors: Didiosky Benítez-Erice, Frederik Questier, Dalgys Pérez-Luján

Abstract:

This paper aims to present two models around the production of students’ experiential knowledge in the teaching-learning process of higher education: the teacher-centered production model and the student-centered production model. From a range of knowledge management and experiential learning theories, the paper elaborates into the nature of students’ experiential knowledge and proposes further adjustments of existing second-generation knowledge management theories taking into account the particularities of higher education. Despite its theoretical nature the paper can be relevant for future studies that stress student-driven improvement and innovation at higher education institutions.

Keywords: experiential knowledge, higher education, knowledge management, teaching-learning process

Procedia PDF Downloads 444
11704 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 348
11703 Implementation of Student-Centered Learning Approach in Building Surveying Course

Authors: Amal A. Abdel-Sattar

Abstract:

The curriculum of architecture department in Prince Sultan University includes ‘Building Surveying’ course which is usually a part of civil engineering courses. As a fundamental requirement of the course, it requires a strong background in mathematics and physics, which are not usually preferred subjects to the architecture students and many of them are not giving the required and necessary attention to these courses during their preparation year before commencing their architectural study. This paper introduces the concept and the methodology of the student-centered learning approach in the course of building surveying for architects. One of the major outcomes is the improvement in the students’ involvement in the course and how this will cover and strength their analytical weak points and improve their mathematical skills. The study is conducted through three semesters with a total number of 99 students. The effectiveness of the student-centered learning approach is studied using the student survey at the end of each semester and teacher observations. This survey showed great acceptance of the students for these methods. Also, the teachers observed a great improvement in the students’ mathematical abilities and how keener they became in attending the classes which were clearly reflected on the low absence record.

Keywords: architecture, building surveying, student-centered learning, teaching and learning

Procedia PDF Downloads 250
11702 Energy Trading for Cooperative Microgrids with Renewable Energy Resources

Authors: Ziaullah, Shah Wahab Ali

Abstract:

Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.

Keywords: distributed energy management, information and communication technologies, microgrid, energy management

Procedia PDF Downloads 373
11701 The Development of Ability in Reading Comprehension Based on Metacognitive Strategies for Mattayom 3 Students

Authors: Kanlaya Ratanasuphakarn, Suttipong Boonphadung

Abstract:

The research on the development of ability in reading comprehension based on metacognitive strategies aimed to (1) improve the students’development of ability in reading comprehension based on metacognitive strategies, (2) evaluate the students’ satisfaction on using metacognitive strategies in learning as a tool developing the ability in reading comprehension. Forty-eight of Mattayom 3 students who have enrolled in the subject of research for learning development of semester 2 in 2013 were purposively selected as the research cohort. The research tools were lesson plans for reading comprehension, pre-posttest and satisfaction questionnaire that were approved as content validity and reliability (IOC=.66-1.00,0.967). The research found that the development of ability in reading comprehension of the research samples before using metacognitive strategies in learning activities was in the normal high level. Additionally, the research discovered that the students’ satisfaction of the research cohort after applying model in learning activities appeared to be high level of satisfaction on using metacognitive strategies in learning as a tool for the development of ability in reading comprehension.

Keywords: development of ability, metacognitive strategies, satisfaction, reading comprehension

Procedia PDF Downloads 307
11700 Optical Whitening of Textiles: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

This study examines the results of optical whitening process of different textiles such as cotton, wool and polyester. The optical whitening agents used are commercially available products, and the optical whitening agents were applied to the textiles with manufacturers’ suggested methods. The aim of this study is to illustrate the proper application methods of optical whitening agent to different textiles and hence to provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, optical whitening agent, wool, cotton, polyester

Procedia PDF Downloads 425
11699 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 160
11698 Maximum Initial Input Allowed to Iterative Learning Control Set-up Using Singular Values

Authors: Naser Alajmi, Ali Alobaidly, Mubarak Alhajri, Salem Salamah, Muhammad Alsubaie

Abstract:

Iterative Learning Control (ILC) known to be a controlling tool to overcome periodic disturbances for repetitive systems. This technique is required to let the error signal tends to zero as the number of operation increases. The learning process that lies within this context is strongly dependent on the initial input which if selected properly tends to let the learning process be more effective compared to the case where a system starts from blind. ILC uses previous recorded execution data to update the following execution/trial input such that a reference trajectory is followed to a high accuracy. Error convergence in ILC is generally highly dependent on the input applied to a plant for trial $1$, thus a good choice of initial starting input signal would make learning faster and as a consequence the error tends to zero faster as well. In the work presented within, an upper limit based on the Singular Values Principle (SV) is derived for the initial input signal applied at trial $1$ such that the system follow the reference in less number of trials without responding aggressively or exceeding the working envelope where a system is required to move within in a robot arm, for example. Simulation results presented illustrate the theory introduced within this paper.

Keywords: initial input, iterative learning control, maximum input, singular values

Procedia PDF Downloads 240
11697 Relationship between the Level of Perceived Self-Efficacy of Children with Learning Disability and Their Mother’s Perception about the Efficacy of Their Child, and Children’s Academic Achievement

Authors: Payal Maheshwari, Maheaswari Brindavan

Abstract:

The present study aimed at studying the level of perceived self-efficacy of children with learning disability and their mother’s perception about the efficacy of the child and the relationship between the two. The study further aimed at finding out the relationship between the level of perceived self-efficacy of children with learning disability and their academic achievement and their mother’s perception about the Efficacy of the child and child’s Academic Achievement. The sample comprised of 80 respondents (40 children with learning disability and their mothers). Children with learning disability as their primary condition, belonging to middle or upper middle class, living with both the parents, residing in Mumbai and their mothers were selected. Purposive or judgmental and snowball sampling technique was used to select the sample for the present study. Proformas in the form of questionnaires were used to obtain the background information of the children with learning disability and their mother’s. A self-constructed Mother’s Perceived Efficacy of their Child Assessment Scale was used to measure mothers perceived level of efficacy of their child with learning disability. Self-constructed Child’s Perceived Self-Efficacy Assessment Scale was used to measure the level of child’s perceived self-efficacy. Academic scores of the child were collected from the child’s parents or teachers and were converted into percentage. The data were analyzed quantitatively using frequencies, mean and standard deviation. Correlations were computed to ascertain the relationships between the different variables. The findings revealed that majority of the mother’s perceived efficacy about their child with learning disability was above average as well as majority of the children with learning disability also perceived themselves as having above average level of self-efficacy. Further in the domains of self-regulated learning and emotional self-efficacy majority of the mothers perceived their child as having average or below average efficacy, 50% of the children also perceived their self-efficacy in the two domains at average or below average level. A significant (r=.322, p < .05) weak correlation (Spearman’s rho) was found between mother’s perceived efficacy about their child, and child’s perceived self-efficacy and a significant (r=.377, p < .01) weak correlation (Pearson Correlation) was also found between mother’s perceived efficacy about their child and child’s academic achievement. Significant weak positive correlation was found between child’s perceived self-efficacy and academic achievement (r=.332, p < .05). Based on the findings, the study discussed the need for intervention program for children in non-academic skills like self-regulation and emotional competence.

Keywords: learning disability, perceived self efficacy, academic achievement, mothers, children

Procedia PDF Downloads 319
11696 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 46
11695 To Prepare a Remedial Teaching Programme for Dyslexic Students of English and Marathi Medium Schools and Study Its Effect on Their Learning Outcome

Authors: Khan Zeenat, S. B. Dandegaonkar

Abstract:

Dyslexia is a neurological disorder which affects the reading and writing ability of children. A sample of 72 dyslexic children (36 from English medium and 36 from Marathi medium schools) of class V from English and Marathi medium schools were selected. The Experimental method was used to study the effect of Remedial Teaching Programme on the Learning outcome of Dyslexic students. The findings showed that there is a Positive effect of remedial teaching programme on the Learning outcome of English and Marathi medium students.

Keywords: remedial teaching, Dyslexic students, learning outcome, neurological

Procedia PDF Downloads 518
11694 Planning for Cities in Transition: Urban Conservation and Urban Development in Potchefstroom, South Africa as a Case Study

Authors: Fortune Mangara

Abstract:

The world is undergoing the largest wave of urban growth in history due to rapid urbanization. Africa’s fast rate of urbanization is being driven by several factors such as population growth and migration. Urbanization results in development pressure on existing infrastructure, and numerous existing buildings are being destroyed in the process. Many of these buildings are built by environmental heritage resources which are part of the city's heritage and are therefore valuable. Many built environment heritage resources are currently being destroyed due to development pressure, while others are facing the risk of destruction or abandonment. There are different approaches that inform urban development and urban conservation. The modernist and post-modernist dichotomy has played an influencing role on how development or conservation of built environment heritage resources are approached. The fragmented nature of historical urban conservation paradigms and theories are also reflected in the evolution of policy and legislation that guide urban development and conservation of built heritage resources. Urban development and conservation have a long history of being guided by separated policies and legislation. However, recent international and South African policy and legislation had started to acknowledge the importance of integrating urban development and urban conservation. Spatial planning guides urban development and can be used as an integrative tool. With the aforementioned in mind, the main research question that guides this study is: What role does spatial planning play in the coexistence of urban development and urban conservation in a city in transition? The main purpose of this research is to use spatial planning as a tool for integrating urban conservation and urban development with reference to built environmental heritage resources. A qualitative research methodology is going to be employed in which a singular case study will be used as the research design. A qualitative document analysis will be used to collect data. Potchefstroom is going to be used as a case study as it is the oldest town in the North West province therefore is rich in built environmental heritage resources.

Keywords: built environmental heritage resources, document analysis, spatial planning, urban conservation, urban development

Procedia PDF Downloads 128
11693 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 270
11692 Urban Growth and Its Impact on Natural Environment: A Geospatial Analysis of North Part of the UAE

Authors: Mohamed Bualhamam

Abstract:

Due to the complex nature of tourism resources of the Northern part of the United Arab Emirates (UAE), the potential of Geographical Information Systems (GIS) and Remote Sensing (RS) in resolving these issues was used. The study was an attempt to use existing GIS data layers to identify sensitive natural environment and archaeological heritage resources that may be threatened by increased urban growth and give some specific recommendations to protect the area. By identifying sensitive natural environment and archaeological heritage resources, public agencies and citizens are in a better position to successfully protect important natural lands and direct growth away from environmentally sensitive areas. The paper concludes that applications of GIS and RS in study of urban growth impact in tourism resources are a strong and effective tool that can aid in tourism planning and decision-making. The study area is one of the fastest growing regions in the country. The increase in population along the region, as well as rapid growth of towns, has increased the threat to natural resources and archeological sites. Satellite remote sensing data have been proven useful in assessing the natural resources and in monitoring the changes. The study used GIS and RS to identify sensitive natural environment and archaeological heritage resources that may be threatened by increased urban growth. The result of GIS analyses shows that the Northern part of the UAE has variety for tourism resources, which can use for future tourism development. Rapid urban development in the form of small towns and different economic activities are showing in different places in the study area. The urban development extended out of old towns and have negative affected of sensitive tourism resources in some areas. Tourism resources for the Northern part of the UAE is a highly complex resources, and thus requires tools that aid in effective decision making to come to terms with the competing economic, social, and environmental demands of sustainable development. The UAE government should prepare a tourism databases and a GIS system, so that planners can be accessed for archaeological heritage information as part of development planning processes. Applications of GIS in urban planning, tourism and recreation planning illustrate that GIS is a strong and effective tool that can aid in tourism planning and decision- making. The power of GIS lies not only in the ability to visualize spatial relationships, but also beyond the space to a holistic view of the world with its many interconnected components and complex relationships. The worst of the damage could have been avoided by recognizing suitable limits and adhering to some simple environmental guidelines and standards will successfully develop tourism in sustainable manner. By identifying sensitive natural environment and archaeological heritage resources of the Northern part of the UAE, public agencies and private citizens are in a better position to successfully protect important natural lands and direct growth away from environmentally sensitive areas.

Keywords: GIS, natural environment, UAE, urban growth

Procedia PDF Downloads 261
11691 Leveraging Deep Q Networks in Portfolio Optimization

Authors: Peng Liu

Abstract:

Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.

Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization

Procedia PDF Downloads 31
11690 Improving the Teaching of Mathematics at University Using the Inverted Classroom Model: A Case in Greece

Authors: G. S. Androulakis, G. Deli, M. Kaisari, N. Mihos

Abstract:

Teaching practices at the university level have changed and developed during the last decade. Implementation of inverted classroom method in secondary education consists of a well-formed basis for academic teachers. On the other hand, distance learning is a well-known field in education research and widespread as a method of teaching. Nonetheless, the new pandemic found many Universities all over the world unprepared, which made adaptations to new methods of teaching a necessity. In this paper, we analyze a model of an inverted university classroom in a distance learning context. Thus, the main purpose of our research is to investigate students’ difficulties as they transit to a new style of teaching and explore their learning development during a semester totally different from others. Our teaching experiment took place at the Business Administration department of the University of Patras, in the context of two courses: Calculus, a course aimed at first-year students, and Statistics, a course aimed at second-year students. Second-year students had the opportunity to attend courses in the university classroom. First-year students started their semester with distance learning. Using a comparative study of these two groups, we explored significant differences in students’ learning procedures. Focused group interviews, written tests, analyses of students’ dialogues were used in a mixed quantity and quality research. Our analysis reveals students’ skills, capabilities but also a difficulty in following, non-traditional style of teaching. The inverted classroom model, according to our findings, offers benefits in the educational procedure, even in a distance learning environment.

Keywords: distance learning, higher education, inverted classroom, mathematics teaching

Procedia PDF Downloads 128
11689 Examination of the Satisfaction Levels of Pre-Service Teachers Concerning E-Learning Process in Terms of Different Variables

Authors: Agah Tugrul Korucu

Abstract:

Significant changes have taken place for the better in the bulk of information and in the use of technology available in the field of education induced by technological changes in the 21st century. It is mainly the job of the teachers and pre-service teachers to integrate information and communication technologies into education by means of conveying the use of technology to individuals. While the pre-service teachers are conducting lessons by using technology, the methods they have developed are important factors for the requirements of the lesson and for the satisfaction levels of the students. The study of this study is to examine the satisfaction levels of pre-service teachers as regards e-learning in a technological environment in which there are lesson activities conducted through an online learning environment in terms of various variables. The study group of the research is composed of 156 pre-service teachers that were students in the departments of Computer and Teaching Technologies, Art Teaching and Pre-school Teaching in the academic year of 2014 - 2015. The qualitative research method was adopted for this study; the scanning model was employed in collecting the data. “The Satisfaction Scale regarding the E-learning Process”, developed by Gülbahar, and the personal information form, which was developed by the researcher, were used as means of collecting the data. Cronbach α reliability coefficient, which is the internal consistency coefficient of the scale, is 0.91. SPSS computerized statistical package program and the techniques of medium, standard deviation, percentage, correlation, t-test and variance analysis were used in the analysis of the data.

Keywords: online learning environment, integration of information technologies, e-learning, e-learning satisfaction, pre-service teachers

Procedia PDF Downloads 351
11688 Chronicling the Debates Around the Use of English as a Language of Learning and Teaching in Schools

Authors: Manthekeleng Linake, Fesi Liziwe

Abstract:

The ongoing argument over the use of English as a learning and teaching language in schools was examined in this study. The nature of the language proficiency gap is particularly relevant in light of the present emphasis on learning and educational quality in contemporary debates, as well as the education sustainable development goal. As a result, an interpretivist paradigm, a qualitative technique, and a case study-based research design were used in the work. Two school principals, two teachers, two members of the School Governing Body (SGB), and four learners were chosen using purposive sampling from two schools in the Amathole West Education District. The researchers were able to acquire in-depth information on the disputes surrounding the use of English as a language of learning and teaching by using semi-structured interview questions and focus groups. Despite knowing that they do not have the potential to do well in English, teachers found that despite appreciating the value of mother tongue and cultural identity, they prefer to use English as the language of teaching in schools. The findings, on the other hand, revealed that proponents of mother-language-based education argue that learning one's mother tongue is a human right.

Keywords: English first additional language learners, social justice, human capabilities, language proficiency

Procedia PDF Downloads 139