Search results for: breast cancer detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5326

Search results for: breast cancer detection

3196 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System

Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia

Abstract:

The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.

Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition

Procedia PDF Downloads 464
3195 Curative Role of Bromoenol Lactone, an Inhibitor of Phospholipase A2 Enzyme, during Cigarette Smoke Condensate Induced Anomalies in Lung Epithelium

Authors: Subodh Kumar, Sanjeev Kumar Sharma, Gaurav Kaushik, Pramod Avti, Phulen Sarma, Bikash Medhi, Krishan Lal Khanduja

Abstract:

Background: It is well known that cigarette smoke is one of the causative factors in various lung diseases especially cancer. Carcinogens and oxidant molecules present in cigarette smoke not only damage the cellular constituents (lipids, proteins, DNA) but may also regulate the molecular pathways involved in inflammation and cancer. Continuous oxidative stress caused by the constituents of cigarette smoke leads to higher PhospholipaseA₂ (PLA₂) activity, resulting in elevated levels of secondary metabolites whose role is well defined in cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites, we checked the curative potential of PLA₂ inhibitor Bromoenol Lactone (BEL) during continuous exposure of cigarette smoke condensate (CSC). Aim: To check the therapeutic potential of Bromoenol Lactone (BEL), an inhibitor of PhospholipaseA₂s, in pathways of CSC-induced changes in type I and type II alveolar epithelial cells. Methods: Effect of BEL on CSC-induced PLA2 activity were checked using colorimetric assay, cellular toxicity using cell viability assay, membrane integrity using fluorescein di-acetate (FDA) uptake assay, reactive oxygen species (ROS) levels and apoptosis markers through flow cytometry, and cellular regulation using MAPKinases levels, in lung epithelium. Results: BEL significantly mimicked CSC-induced PLA₂ activity, ROS levels, apoptosis, and kinases level whereas improved cellular viability and membrane integrity. Conclusions: Current observations revealed that BEL may be a potential therapeutic agent during Cigarette smoke-induced anomalies in lung epithelium.

Keywords: cigarette smoke condensate, phospholipase A₂, oxidative stress, alveolar epithelium, bromoenol lactone

Procedia PDF Downloads 164
3194 Modifying Byzantine Fault Detection Using Disjoint Paths

Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed

Abstract:

Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.

Keywords: Byzantine faults, distributed systems, fault detection, network pro- tocols, node-disjoint paths

Procedia PDF Downloads 550
3193 Targeting Apoptosis by Novel Adamantane Analogs as an Emerging Therapy for the Treatment of Hepatocellular Carcinoma Through EGFR, Bcl-2/BAX Cascade

Authors: Hanan M. Hassan, Laila Abouzeid, Lamya H. Al-Wahaibi, George S. G. Shehatou, Ali A. El-Emam

Abstract:

Cancer is a major public health problem and the second leading cause of death worldwide. In 2020, cancer diagnosis and treatment have been negatively affected by the coronavirus 2019 (COVID-19) pandemic. During the quarantine, because of the limited access to healthcare and avoiding exposure to COVID-19 as a contagious disease; patients of cancer suffered deferments in follow-up and treatment regimens leading to substantial worsening of disease, death, and increased healthcare costs. Thus, this study is designed to investigate the molecular mechanisms by which adamantne derivatives attenuate hepatocllular carcinoma experimentally and theoretically. There is a close association between increased resistance to anticancer drugs and defective apoptosis that considered a causative factor for oncogenesis. Cancer cells use different molecular pathways to inhibit apoptosis, BAX and Bcl-2 proteins have essential roles in the progression or inhibition of intrinsic apoptotic pathways triggered by mitochondrial dysfunction. Therefore, their balance ratio can promote the cellular apoptotic fate. In this study, the in vitro cytotoxic effects of seven synthetic adamantyl isothiorea derivatives were evaluated against five human tumor cell lines by MTT assay. Compounds 5 and 6 showed the best results, mostly against hepatocellular carcinoma (HCC). Hence, in vivo studies were performed in male Sprague-Dawley (SD) rats in which experimental hepatocellular carcinoma was induced with thioacetamide (TAA) (200 mg/kg, i.p., twice weekly) for 16 weeks. The most promising compounds, 5 and 6, were administered to treat liver cancer rats at a dose of 10 mg/kg/day for an additional two weeks, and the effects were compared with doxorubicin (DR), the anticancer drug. Hepatocellular carcinoma was evidenced by a dramatic increase in liver indices, oxidative stress markers, and immunohistochemical studies that were accompanied by a plethora of inflammatory mediators and alterations in the apoptotic cascade. Our results showed that treatment with adamantane derivatives 5 and 6 significantly suppressed fibrosis, inflammation, and other histopathological insults resulting in the diminished formation of hepatocyte tumorigenesis. Moreover, administration of the tested compounds resulted in amelioration of EGFR protein expression, upregulation of BAX, and lessening down of Bcl-2 levels that prove their role as apoptosis inducers. Also, the docking simulations performed for adamantane showed good fit and binding to the EGFR protein through hydrogen bond formation with conservative amino acids, which gives a shred of strong evidence for its hepatoprotective effect. In most analyses, the effects of compound 6 were more comparable to DR than compound 5. Our findings suggest that adamantane derivatives 5 and 6 are shown to have cytotoxic activity against HCC in vitro and in vivo, by more than one mechanism, possibly by inhibiting the TLR4-MyD88-NF-κB pathway and targeting EGFR signaling.

Keywords: adamantane, EGFR, HCC, apoptosis

Procedia PDF Downloads 132
3192 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization

Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi

Abstract:

Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.

Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm

Procedia PDF Downloads 62
3191 Synthesis of Fluorescent PET-Type “Turn-Off” Triazolyl Coumarin Based Chemosensors for the Sensitive and Selective Sensing of Fe⁺³ Ions in Aqueous Solutions

Authors: Aidan Battison, Neliswa Mama

Abstract:

Environmental pollution by ionic species has been identified as one of the biggest challenges to the sustainable development of communities. The widespread use of organic and inorganic chemical products and the release of toxic chemical species from industrial waste have resulted in a need for advanced monitoring technologies for environment protection, remediation and restoration. Some of the disadvantages of conventional sensing methods include expensive instrumentation, well-controlled experimental conditions, time-consuming procedures and sometimes complicated sample preparation. On the contrary, the development of fluorescent chemosensors for biological and environmental detection of metal ions has attracted a great deal of attention due to their simplicity, high selectivity, eidetic recognition, rapid response and real-life monitoring. Coumarin derivatives S1 and S2 (Scheme 1) containing 1,2,3-triazole moieties at position -3- have been designed and synthesized from azide and alkyne derivatives by CuAAC “click” reactions for the detection of metal ions. These compounds displayed a strong preference for Fe3+ ions with complexation resulting in fluorescent quenching through photo-induced electron transfer (PET) by the “sphere of action” static quenching model. The tested metal ions included Cd2+, Pb2+, Ag+, Na+, Ca2+, Cr3+, Fe3+, Al3+, Cd2+, Ba2+, Cu2+, Co2+, Hg2+, Zn2+ and Ni2+. The detection limits of S1 and S2 were determined to be 4.1 and 5.1 uM, respectively. Compound S1 displayed the greatest selectivity towards Fe3+ in the presence of competing for metal cations. S1 could also be used for the detection of Fe3+ in a mixture of CH3CN/H¬2¬O. Binding stoichiometry between S1 and Fe3+ was determined by using both Jobs-plot and Benesi-Hildebrand analysis. The binding was shown to occur in a 1:1 ratio between the sensor and a metal cation. Reversibility studies between S1 and Fe3+ were conducted by using EDTA. The binding site of Fe3+ to S1 was determined by using 13 C NMR and Molecular Modelling studies. Complexation was suggested to occur between the lone-pair of electrons from the coumarin-carbonyl and the triazole-carbon double bond.

Keywords: chemosensor, "click" chemistry, coumarin, fluorescence, static quenching, triazole

Procedia PDF Downloads 139
3190 Surfactant Free Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatment

Authors: M. Sneha, N. Meenakshi Sundaram

Abstract:

In recent times, magnetic hyperthermia is used for cancer treatment as a tool for active targeting of delivering drugs to the targeted site. It has a potential advantage over other heat treatment because there is no systemic buildup in organs and large doses are possible. The aim of this study is to develop a suitable magnetic biomaterial that can destroy the cancer cells as well as induce bone regeneration. In this work, the composite material was synthesized in two-steps. First, porous iron oxide nano needles were synthesized by hydrothermal process. Second, the hydroxyapatite, were synthesized from natural calcium (i.e., egg shell) and inorganic phosphorous source using wet chemical method. The crystalline nature is confirmed by powder X-ray diffraction analysis (XRD). Thermal analysis and the surface area of the material is studied by Thermo Gravimetric Analysis (TGA), Brunauer-Emmett and Teller (BET) technique. Scanning electron microscope (SEM) images show that the particles have nanoneedle-like morphology. The magnetic property is studied by vibrating sample magnetometer (VSM) technique which confirms the superparamagnetic behavior. This paper presents a simple and easy method for synthesis of magnetite/hydroxyapatite composites materials.

Keywords: iron oxide nano needles, hydroxyapatite, superparamagnetic, hyperthermia

Procedia PDF Downloads 624
3189 Malate Dehydrogenase Enabled ZnO Nanowires as an Optical Tool for Malic Acid Detection in Horticultural Products

Authors: Rana Tabassum, Ravi Kant, Banshi D. Gupta

Abstract:

Malic acid is an extensively distributed organic acid in numerous horticultural products in minute amounts which significantly contributes towards taste determination by balancing sugar and acid fractions. An enhanced concentration of malic acid is utilized as an indicator of fruit maturity. In addition, malic acid is also a crucial constituent of several cosmetics and pharmaceutical products. An efficient detection and quantification protocol for malic acid is thus highly demanded. In this study, we report a novel detection scheme for malic acid by synergistically collaborating fiber optic surface plasmon resonance (FOSPR) and distinctive features of nanomaterials favorable for sensing applications. The design blueprint involves the deposition of an assembly of malate dehydrogenase enzyme entrapped in ZnO nanowires forming the sensing route over silver coated central unclad core region of an optical fiber. The formation and subsequent decomposition of the enzyme-analyte complex on exposure of the sensing layer to malic acid solutions of diverse concentration results in modification of the dielectric function of the sensing layer which is manifested in terms of shift in resonance wavelength. Optimization of experimental variables such as enzyme concentration entrapped in ZnO nanowires, dip time of probe for deposition of sensing layer and working pH range of the sensing probe have been accomplished through SPR measurements. The optimized sensing probe displays high sensitivity, broad working range and a minimum limit of detection value and has been successfully tested for malic acid determination in real samples of fruit juices. The current work presents a novel perspective towards malic acid determination as the unique and cooperative combination of FOSPR and nanomaterials provides myriad advantages such as enhanced sensitivity, specificity, compactness together with the possibility of online monitoring and remote sensing.

Keywords: surface plasmon resonance, optical fiber, sensor, malic acid

Procedia PDF Downloads 363
3188 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 28
3187 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces

Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava

Abstract:

Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.

Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection

Procedia PDF Downloads 203
3186 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization

Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder

Abstract:

In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.

Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening

Procedia PDF Downloads 279
3185 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 281
3184 Big Data and Cardiovascular Healthcare Management: Recent Advances, Future Potential and Pitfalls

Authors: Maariyah Irfan

Abstract:

Intro: Current cardiovascular (CV) care faces challenges such as low budgets and high hospital admission rates. This review aims to evaluate Big Data in CV healthcare management through the use of wearable devices in atrial fibrillation (AF) detection. AF may present intermittently, thus it is difficult for a healthcare professional to capture and diagnose a symptomatic rhythm. Methods: The iRhythm ZioPatch, AliveCor portable electrocardiogram (ECG), and Apple Watch were chosen for review due to their involvement in controlled clinical trials, and their integration with smartphones. The cost-effectiveness and AF detection of these devices were compared against the 12-lead ambulatory ECG (Holter monitor) that the NHS currently employs for the detection of AF. Results: The Zio patch was found to detect more arrhythmic events than the Holter monitor over a 2-week period. When patients presented to the emergency department with palpitations, AliveCor portable ECGs detected 6-fold more symptomatic events compared to the standard care group over 3-months. Based off preliminary results from the Apple Heart Study, only 0.5% of participants received irregular pulse notifications from the Apple Watch. Discussion: The Zio Patch and AliveCor devices have promising potential to be implemented into the standard duty of care offered by the NHS as they compare well to current routine measures. Nonetheless, companies must address the discrepancy between their target population and current consumers as those that could benefit the most from the innovation may be left out due to cost and access.

Keywords: atrial fibrillation, big data, cardiovascular healthcare management, wearable devices

Procedia PDF Downloads 119
3183 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images

Authors: U. Datta

Abstract:

The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.

Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection

Procedia PDF Downloads 116
3182 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.

Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document

Procedia PDF Downloads 135
3181 The Effectiveness of Scalp Cooling Therapy on Reducing Chemotherapy Induced Alopecia: A Critical Literature Review

Authors: M. Krishna

Abstract:

The study was intended to identify if scalp cooling therapy is effective on preventing chemotherapy-induced hair loss among cancer patients. Critical literature of non-randomized controlled trials was used to investigate whether scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. The review identified that scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. Most of the patients receiving chemotherapy experience alopecia. It is also perceived as the worst effect of chemotherapy. This may be severe and lead the patients to withdraw the chemo treatment. The image disturbance caused by alopecia will make the patient depressed and will lead to declined immunity. With the knowledge on effectiveness of scalp cooling therapy on preventing chemotherapy-induced alopecia, patient undergoing chemotherapy will not be hesitant to undergo the treatment. Patients are recommended to go through scalp cooling therapy every chemo cycle and the proper therapy duration is 30 minutes before, during chemo. The suggested duration of the scalp cooling therapy is 45-90 minutes for an effective and positive outcome. This finding is excluding other factors of alopecia such as menopause, therapeutic drugs, poor hair density, liver function problems, and drug regimes.

Keywords: alopecia, cancer, chemotherapy, scalp cooling therapy

Procedia PDF Downloads 186
3180 Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics

Authors: Neha Singh

Abstract:

The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera.

Keywords: UV protection, aloe vera, protective clothing, reactive dyes, cotton, woven and knits

Procedia PDF Downloads 232
3179 Aboriginal Head and Neck Cancer Patients Have Different Patterns of Metastatic Involvement, and Have More Advanced Disease at Diagnosis

Authors: Kim Kennedy, Daren Gibson, Stephanie Flukes, Chandra Diwakarla, Lisa Spalding, Leanne Pilkington, Andrew Redfern

Abstract:

Introduction: The mortality gap in Aboriginal Head and Neck Cancer is well known, but the reasons for poorer survival are not well established. Aim: We aimed to evaluate the locoregional and metastatic involvement, and stage at diagnosis, in Aboriginal compared with non-Aboriginal patients. Methods: We performed a retrospective cohort analysis of 320 HNC patients from a single centre in Western Australia, identifying 80 Aboriginal patients and 240 non-Aboriginal patients matched on a 1:3 ratio by sites, histology, rurality, and age. We collected data on the patient characteristics, tumour features, regions involved, stage at diagnosis, treatment history, and survival and relapse patterns, including sites of metastatic and locoregional involvement. Results: Aboriginal patients had a significantly higher incidence of lung metastases (26.3% versus 13.7%, p=0.009). Aboriginal patients also had a numerically but non-statistically significant higher incidence of thoracic nodal involvement (10% vs 5.8%) and malignant pleural effusions (3.8% vs 2.5%). Aboriginal patients also had a numerically but not statistically significantly higher incidence of adrenal and bony involvement. Interestingly, non-Aboriginal patients had an increased rate of cutaneous (2.1% vs 0%) and liver metastases (4.6% vs 2.5%) compared with Aboriginal patients. In terms of locoregional involvement, Aboriginal patients were more than twice as likely to have contralateral neck involvement (58.8% vs 24.2%, p<0.00001), and 30% more likely to have ipsilateral neck lymph node involvement (78.8% vs 60%, p=0.002) than non-Aboriginal patients. Aboriginal patients had significantly more advanced disease at diagnosis (p=0.008). Aboriginal compared with non-Aboriginal patients were less likely to present with stage I (7.5% vs 22.5%), stage II (11.3% vs 13.8%), or stage III disease (13.8% vs 17.1%), and more likely to present with more advanced stage IVA (42.5% vs 34.6%), stage IVB (15% vs 7.1%), or stage IVC (10% vs 5%) disease (p=0.008). Number of regions of disease involvement was higher in Aboriginal patients (median 3, mean 3.64, range 1-10) compared with non-Aboriginal patients (median 2, mean 2.80, range 1-12). Conclusion: Aboriginal patients had a significantly higher incidence of lung metastases, and significantly more frequent involvement of ipsilateral and contralateral neck lymph nodes. Aboriginal patients also had significantly more advanced disease at presentation with a higher stage at diagnosis. We are performing further analyses to investigate explanations for these findings.

Keywords: head and neck cancer, Aboriginal, metastases, locoregional, pattern of relapse, sites of disease

Procedia PDF Downloads 51
3178 Traditional Medicine and Islamic Holistic Approach in Palliative Care Management of Terminal Illpatient of Cancer

Authors: Mohammed Khalil Ur Rahman, Mohammed Alsharon, Arshad Muktar, Zahid Shaik

Abstract:

Any ailment can go into terminal stages, cancer being one such disease which is many times detected in latent stages. Cancer is often characterized by constitutional symptoms which are agonizing in nature which disturbs patients and their family as well. In order to relieve such intolerable symptoms treatment modality employed is known to be ‘Palliative Care’. The goal of palliative care is to enhance patient’s quality of life by relieving or rather reducing the distressing symptoms of patients such as pain, nausea/ vomiting, anorexia/loss of appetite, excessive salivation, mouth ulcers, weight loss, constipation, oral thrush, emaciation etc. which are due to the effect of disease or due to the undergoing treatment such as chemotherapy, radiation etc. Ayurveda and Unani as well as other traditional medicines is getting more and more international attention in recent years and Ayurveda and Unani holistic perspective of the disease, it seems that there are many herbs and herbomineral preparation which can be employed in the treatment of malignancy and also in palliative care. Though many of them have yet to be scientifically proved as anti-cancerous but there is definitely a positive lead that some of these medications relieve the agonising symptoms thereby making life of the patient easy. Health is viewed in Islam in a holistic way. One of the names of the Quran is al-shifa' meaning ‘that which heals’ or ‘the restorer of health’ to refer to spiritual, intellectual, psychological, and physical health. The general aim of medical science, according to Islam, is to secure and adopt suitable measures which, with Allah’s permission, help to preserve or restore the health of the human body. Islam motivates the Physician to view the patient as one organism. The patient has physical, social, psychological, and spiritual dimensions that must be considered in synthesis with an integrated, holistic approach. Aims & Objectives: - To suggest herbs which are mentioned in Ayurveda Unani with potential palliative activity in case of Cancer patients. - Most of tibb nabawi [Prophetic Medicine] is preventive medicine and must have been divinely inspired. - Spiritual Aspects of Healing: Prayer, dua, recitation of the Quran - Remembrance of Allah play a central role.Materials & Method: Literary review of the herbs supported with experiential evidence will be discussed. Discussion: On the basis of collected data subject will be discussed in length. Conclusion: Will be presented in paper.

Keywords: palliative care, holistic, Ayurvedic and Unani traditional system of medicine, Quran, hadith

Procedia PDF Downloads 327
3177 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats

Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.

Keywords: MDA, TBA, ciprofloxacin, HPLC-UV

Procedia PDF Downloads 306
3176 A Novel Method For Non-Invasive Diagnosis Of Hepatitis C Virus Using Electromagnetic Signal Detection: A Multicenter International Study

Authors: Gamal Shiha, Waleed Samir, Zahid Azam, Premashis Kar, Saeed Hamid, Shiv Sarin

Abstract:

A simple, rapid and non-invasive electromagnetic sensor (C-FAST device) was- patented; for diagnosis of HCV RNA. Aim: To test the validity of the device compared to standard HCV PCR. Subjects and Methods: The first phase was done as pilot in Egypt on 79 participants; the second phase was done in five centers: one center from Egypt, two centers from Pakistan and two centers from India (800, 92 and 113 subjects respectively). The third phase was done nationally as multicenter study on (1600) participants for ensuring its representativeness. Results: When compared to PCR technique, C-FAST device revealed sensitivity 95% to 100%, specificity 95.5% to 100%, PPV 89.5% to 100%, NPV 95% to 100% and positive likelihood ratios 21.8% to 38.5%. Conclusion: It is practical evidence that HCV nucleotides emit electromagnetic signals that can be used for its identification. As compared to PCR, C-FAST is an accurate, valid and non-invasive device.

Keywords: C-FAST- a valid and reliable device, distant cellular interaction, electromagnetic signal detection, non-invasive diagnosis of HCV

Procedia PDF Downloads 415
3175 Intensive Crosstalk between Autophagy and Intracellular Signaling Regulates Osteosarcoma Cell Survival Response under Cisplatin Stress

Authors: Jyothi Nagraj, Sudeshna Mukherjee, Rajdeep Chowdhury

Abstract:

Autophagy has recently been linked with cancer cell survival post drug insult contributing to acquisition of resistance. However, the molecular signaling governing autophagic survival response is poorly explored. In our study, in osteosarcoma (OS) cells cisplatin shock was found to activate both MAPK and autophagy signaling. An activation of JNK and autophagy acted as pro-survival strategy, while ERK1/2 triggered apoptotic signals upon cisplatin stress. An increased sensitivity of the cells to cisplatin was obtained with simultaneous inhibition of both autophagy and JNK pathway. Furthermore, we observed that the autophagic stimulation upon drug stress regulates other developmentally active signaling pathways like the Hippo pathway in OS cells. Cisplatin resistant cells were thereafter developed by repetitive drug exposure followed by clonal selection. Basal levels of autophagy were found to be high in resistant cells to. However, the signaling mechanism leading to autophagic up-regulation and its regulatory effect differed in OS cells upon attaining drug resistance. Our results provide valuable clues to regulatory dynamics of autophagy that can be considered for development of improved therapeutic strategy against resistant type cancers.

Keywords: JNK, autophagy, drug resistance, cancer

Procedia PDF Downloads 272
3174 Using Priority Order of Basic Features for Circumscribed Masses Detection in Mammograms

Authors: Minh Dong Le, Viet Dung Nguyen, Do Huu Viet, Nguyen Huu Tu

Abstract:

In this paper, we present a new method for circumscribed masses detection in mammograms. Our method is evaluated on 23 mammographic images of circumscribed masses and 20 normal mammograms from public Mini-MIAS database. The method is quite sanguine with sensitivity (SE) of 95% with only about 1 false positive per image (FPpI). To achieve above results we carry out a progression following: Firstly, the input images are preprocessed with the aim to enhance key information of circumscribed masses; Next, we calculate and evaluate statistically basic features of abnormal regions on training database; Then, mammograms on testing database are divided into equal blocks which calculated corresponding features. Finally, using priority order of basic features to classify blocks as an abnormal or normal regions.

Keywords: mammograms, circumscribed masses, evaluated statistically, priority order of basic features

Procedia PDF Downloads 313
3173 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics

Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah

Abstract:

Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 275
3172 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images

Authors: Meenal Surawar, Rajashree Kotharkar

Abstract:

Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.

Keywords: land use/land cover, land surface temperature, remote sensing, urban heat island

Procedia PDF Downloads 267
3171 Diagnostic Accuracy in the Detection of Cervical Lymph Node Metastases in Head and Neck Squamous Cell Carcinoma Patients: A Comparison of Sonography, CT, PET/CT and MRI

Authors: Di Luo, Maria Buchberger, Anja Pickhard

Abstract:

Objectives: The purpose of this study was to assess and compare the diagnostic accuracy of four common morphological approaches, including sonography, computed tomography (CT), positron emission tomography/computed tomography (PET/CT), and magnetic resonance imaging (MRI) for the evaluation of cervical lymph node metastases in head and neck squamous cell carcinoma (HNSCC) patients. Material and Methods: Included in this retrospective study were 26 patients diagnosed with HNSCC between 2010 and 2011 who all underwent sonography, CT, PET/CT, and MRI imaging before neck dissection. Morphological data were compared to the corresponding histopathological results. Statistical analysis was performed with SPSS statistic software (version 26.0), calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for detection of cervical lymph node metastases. Results: The 5-year survival rate of the patient collective was 55.5%.Risk factors for survival included initial primary tumor stage, initial lymph node stage, initial metastasis status, and therapeutic approaches. Cox regression showed initial metastasis status(HR 8.671, 95%CI 1.316-57.123, p=0.025) and therapeutic approaches(HR 6.699, 95%CI 1.746-25.700, p=0.006)to be independent predictive risk factors for survival. Sensitivity was highest for MRI (96% compared to 85% for sonography and 89% for CT and PET/CT). Specificity was comparable with 95 % for CT and 98 % for sonography and PET/CT, but only 68% for MRI. While the MRI showed the least PPV (34%) compared to all other methods (85% for sonography,75% for CT, and 86% for PET/CT), the NPV was comparable in all methods(98-99%). The overall accuracy of cervical lymph node metastases detection was comparable for sonography, CT, and PET/CT with 96%,97%,94%, respectively, while MRI had only 72% accuracy. Conclusion: Since the initial status of metastasis is an independent predictive risk factor for patients’ survival, efficient detection is crucial to plan adequate therapeutic approaches. Sonography, CT, and PET/CT have better diagnostic accuracy than MRI for the evaluation of cervical lymph node metastases in HNSCC patients.

Keywords: cervical lymph node metastases, diagnostic accuracy, head and neck squamous carcinoma, risk factors, survival

Procedia PDF Downloads 110
3170 Yawning Computing Using Bayesian Networks

Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube

Abstract:

Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.

Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms

Procedia PDF Downloads 441
3169 Amperometric Biosensor for Glucose Determination Based on a Recombinant Mn Peroxidase from Corn Cross-linked to a Gold Electrode

Authors: Anahita Izadyar, My Ni Van, Kayleigh Amber Rodriguez, Ilwoo Seok, Elizabeth E. Hood

Abstract:

Using a recombinant enzyme derived from corn and a simple modification, we fabricated a facile, fast, and cost-beneficial biosensor to measure glucose. The Nafion/ Plant Produced Mn Peroxidase (PPMP)– glucose oxidase (GOx)- Bovine serum albumin (BSA) /Au electrode showed an excellent amperometric response to detect glucose. This biosensor is capable of responding to a wide range of glucose—20.0 µM−15.0 mM and has a lower detection limit (LOD) of 2.90µM. The reproducibility response using six electrodes is also very substantial and indicates the high capability of this biosensor to detect a wide range of 3.10±0.19µM to 13.2±1.8 mM glucose concentration. Selectivity of this electrode was investigated in an optimized experimental solution contains 10% diet green tea with citrus containing ascorbic acid (AA), and citric acid (CA) in a wide concentration of glucose at 0.02 to 14.0mM with an LOD of 3.10µM. Reproducibility was also investigated using 4 electrodes in this sample and shows notable results in the wide concentration range of 3.35±0.45µM to of 13.0 ± 0.81 mM. We also used other voltammetry methods to evaluate this biosensor. We applied linear sweep voltammetry (LSV) and this technique shows a wide range of 0.10−15.0 mM to detect glucose with a lower detection limit of 19.5µM. The performance and strength of this enzyme biosensor were the simplicity, wide linear ranges, sensitivities, selectivity, and low limits of detection. We expect that the modified biosensor has the potential for monitoring various biofluids.

Keywords: plant-produced manganese peroxidase, enzyme-based biosensors, glucose, modified gold electrode, glucose oxidase

Procedia PDF Downloads 120
3168 Robust Diagnosis of an Electro-Mechanical Actuators, Bond Graph LFT Approach

Authors: A. Boulanoir, B. Ould Bouamama, A. Debiane, N. Achour

Abstract:

The paper deals with robust Fault Detection and isolation with respect to parameter uncertainties based on linear fractional transformation form (LFT) Bond graph. The innovative interest of the proposed methodology is the use only one representation for systematic generation of robust analytical redundancy relations and adaptive residual thresholds for sensibility analysis. Furthermore, the parameter uncertainties are introduced graphically in the bond graph model. The methodology applied to the nonlinear industrial Electro-Mechanical Actuators (EMA) used in avionic systems, has determined first the structural monitorability analysis (which component can be monitored) with given instrumentation architecture with any need of complex calculation and secondly robust fault indicators for online supervision.

Keywords: bond graph (BG), electro mechanical actuators (EMA), fault detection and isolation (FDI), linear fractional transformation (LFT), mechatronic systems, parameter uncertainties, avionic system

Procedia PDF Downloads 336
3167 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures

Authors: Reza Rezaeipour Honarmandzad

Abstract:

In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.

Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements

Procedia PDF Downloads 397