Search results for: Network Time Protocol
20204 A Case Report: The Role of Gut Directed Hypnotherapy in Resolution of Irritable Bowel Syndrome in a Medication Refractory Pediatric Male Patient
Authors: Alok Bapatla, Pamela Lutting, Mariastella Serrano
Abstract:
Background: Irritable Bowel Syndrome (IBS) is a functional gastrointestinal disorder characterized by abdominal pain associated with altered bowel habits in the absence of an underlying organic cause. Although the exact etiology of IBS is not fully understood, one of the leading theories postulates a pathology within the Brain-Gut Axis that leads to an overall increase in gastrointestinal sensitivity and pejorative changes in gastrointestinal motility. Research and clinical practice have shown that Gut Directed Hypnotherapy (GDH) has a beneficial clinical role in improving Mind-Gut control and thereby comorbid conditions such as anxiety, abdominal pain, constipation, and diarrhea. Aims: This study presents a 17-year old male with underlying anxiety and a one-year history of IBS-Constipation Predominant Subtype (IBS-C), who has demonstrated impressive improvement of symptoms following GDH treatment following refractory trials with medications including bisacodyl, senna, docusate, magnesium citrate, lubiprostone, linaclotide. Method: The patient was referred to a licensed clinical psychologist specializing in clinical hypnosis and cognitive-behavioral therapy (CBT), who implemented “The Standardized Hypnosis Protocol for IBS” developed by Dr. Olafur S. Palsson, Psy.D at the University of North Carolina at Chapel Hill. The hypnotherapy protocol consisted of a total of seven weekly 45-minute sessions supplemented with a 20-minute audio recording to be listened to once daily. Outcome variables included the GAD-7, PHQ-9 and DCI-2, as well as self-ratings (ranging 0-10) for pain (intensity and frequency), emotional distress about IBS symptoms, and overall emotional distress. All variables were measured at intake prior to administration of the hypnosis protocol and at the conclusion of the hypnosis treatment. A retrospective IBS Questionnaire (IBS Severity Scoring System) was also completed at the conclusion of the GDH treatment for pre-and post-test ratings of clinical symptoms. Results: The patient showed improvement in all outcome variables and self-ratings, including abdominal pain intensity, frequency of abdominal pain episodes, emotional distress relating to gut issues, depression, and anxiety. The IBS Questionnaire showed a significant improvement from a severity score of 400 (defined as severe) prior to GDH intervention compared to 55 (defined as complete resolution) at four months after the last session. IBS Questionnaire subset questions that showed a significant score improvement included abdominal pain intensity, days of pain experienced per 10 days, satisfaction with bowel habits, and overall interference of life affected by IBS symptoms. Conclusion: This case supports the existing research literature that GDH has a significantly beneficial role in improving symptoms in patients with IBS. Emphasis is placed on the numerical results of the IBS Questionnaire scoring, which reflects a patient who initially suffered from severe IBS with failed response to multiple medications, who subsequently showed full and sustained resolutionKeywords: pediatrics, constipation, irritable bowel syndrome, hypnotherapy, gut-directed hypnosis
Procedia PDF Downloads 20020203 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting
Authors: Nader Khalafian, Mohsen Ghaderi
Abstract:
Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.Keywords: reverse faulting, surface deformation, numerical, neural network
Procedia PDF Downloads 42320202 Invasion of Scaevola sericea (Goodeniaceae) in Cuba: Invasive Dynamic and Density-Dependent Relationship with the Native Species Tournefortia gnaphalodes (Boraginaceae)
Authors: Jorge Ferro-Diaz, Lazaro Marquez-Llauger, Jose Alberto Camejo-Lamas, Lazaro Marquez-Govea
Abstract:
The invasion of Scaevola sericea Vahl (Goodeniaceae) in Cuba is a recent process, this exotic invasive species was reported for the first time, in the national territory, by 2008. S. sericea is native to the coasts around the Indian Ocean and western Pacific, common on sandy beaches; it has expanded rapidly around the planet by either natural or anthropic causes, mainly due to its use in hotel gardening. Cuba is highly vulnerable to the colonization of these species, mainly due to tropical hurricanes which have increased in the last decades; it also affects other native species such as Tournefortia gnaphalodes (L.) R. Br. (Boraginaceae) that show invasive manifestations because of the unbalanced state of demographic processes of littoral vegetation, which has been studied by authors during the last 10 years. The fast development of Cuban tourism has encouraged the use of exotic species in gardening that invade large sectors of sandy coasts. Taking into account the importance of assessing the impacts dimensions and adopting effective control measures, a monitoring program for the invasion of S. sericea in Cuba was undertaken. The program has been implemented since 2013 and the main objective was to identify invasive patterns and interactions with other native species of coastal vegetation. This experience also aimed to validate the design and propose a standardized monitoring protocol to be applied throughout the country. In the Cuban territory, 12 sites were chosen, where there were established 24 permanent plots of 100 m2; measurements were taken twice a year taking into consideration variables such as abundance, plant height, soil cover, flora and companion vegetation, density and frequency; other physical variables of the beaches were also measured. Similarly, for associated individuals of T. gnaphalodes, the same variables were measured. The results of these first four years allowed us to document patterns of S. sericea invasion, highlighting the use of adventitious roots to enhance their colonization, and to characterize demographic indicators, ecosystem affections, and interactions with native plants. A density-dependent relationship with T. gnaphalodes was documented, finding a controlling effect on S. sericea, so that a manipulation experiment was applied to evaluate possible management actions to be incorporated in the Plans of the protected areas involved. With these results, it was concluded, for the evaluated sites, that S. sericea has had an invasion dynamics ruled by effects of coastal dynamics, more intense in beaches with affectations to the native vegetation, and more controlled in beaches with more preserved vegetation. It was found that when S. sericea is established, the mechanism that most reinforces its invasion is the use of adventitious roots, used to expand the patches and colonize beach sectors. It was also found that when the density of T. gnaphalodes increases, it detains the expansion of S. sericea and reduces its colonization possibilities, behaving as a natural controller of its biological invasion. The results include a proposal of a new Monitoring Protocol for Scaevola sericea in Cuba, with the possibility of extending its implementation to other countries in the region.Keywords: biological invasion, exotic invasive species, plant interactions, Scaevola sericea
Procedia PDF Downloads 23020201 Tabu Search Algorithm for Ship Routing and Scheduling Problem with Time Window
Authors: Khaled Moh. Alhamad
Abstract:
This paper describes a tabu search heuristic for a ship routing and scheduling problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size.Keywords: heuristic, scheduling, tabu search, transportation
Procedia PDF Downloads 50920200 How to Enhance Performance of Universities by Implementing Balanced Scorecard with Using FDM and ANP
Authors: Neda Jalaliyoon, Nooh Abu Bakar, Hamed Taherdoost
Abstract:
The present research recommended balanced scorecard (BSC) framework to appraise the performance of the universities. As the original model of balanced scorecard has four perspectives in order to implement BSC in present research the same model with “financial perspective”, “customer”,” internal process” and “learning and growth” is used as well. With applying fuzzy Delphi method (FDM) and questionnaire sixteen measures of performance were identified. Moreover, with using the analytic network process (ANP) the weights of the selected indicators were determined. Results indicated that the most important BSC’s aspect were Internal Process (0.3149), Customer (0.2769), Learning and Growth (0.2049), and Financial (0.2033) respectively. The proposed BSC framework can help universities to enhance their efficiency in competitive environment.Keywords: balanced scorecard, higher education, fuzzy delphi method, analytic network process (ANP)
Procedia PDF Downloads 43220199 Overview of a Quantum Model for Decision Support in a Sensor Network
Authors: Shahram Payandeh
Abstract:
This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.Keywords: quantum model, sensor space, sensor network, decision support
Procedia PDF Downloads 23220198 GIS Based Public Transport Accessibility of Lahore using PTALs Model
Authors: Naveed Chughtai, Salman Atif, Azhar Ali Taj, Murtaza Asghar Bukhari
Abstract:
Accessible transport systems play a crucial role in infrastructure management and ease of access to destinations. Thus, the necessity of knowledge of service coverage and service deprived areas is a prerequisite for devising policies. Integration of PTALs model with GIS network analysis models (Service Area Analysis, Closest Facility Analysis) facilitates the analysis of deprived areas. In this research, models presented determine the accessibility. The empirical evidence suggests that current bus network system caters only 18.5% of whole population. Using network analysis results as inputs for PTALs, it is seen that excellent accessibility indexed bands cover a limited areas, while 78.8% of area is totally deprived of any service. To cater the unserved catchment, new route alignments are proposed while keeping in focus the Socio-economic characteristics, land-use type and net population density of the deprived area. Change in accessibility with proposed routes show a 10% increment in service delivery and enhancement in terms of served population is up to 20.4%. PTALs result shows a decrement of 60 Km2 in unserved band. The result of this study can be used for planning, transport infrastructure management, allocation of new route alignments in combination with future land-use development and for adequate spatial distribution of service access points.Keywords: GIS, public transport accessibility, PTALs, accessibility index, service area analysis, closest facility analysis
Procedia PDF Downloads 44320197 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 10620196 A Mixed Integer Linear Programming Model for Container Collection
Authors: J. Van Engeland, C. Lavigne, S. De Jaeger
Abstract:
In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained.Keywords: container collection, crew scheduling, mixed integer linear programming, waste management
Procedia PDF Downloads 13820195 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds
Authors: Sahar Sohrabi
Abstract:
The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.Keywords: cloud computing, scheduling, real-time private cloud, bayesian
Procedia PDF Downloads 36220194 Bright Light Effects on the Concentration and Diffuse Attention Reaction Time, Tension, Angry, Fatigue and Alertness among Shift Workers
Authors: Mohammad Imani, JabraeilNasl Seraji, Abolfazl Zakerian
Abstract:
Background: Reaction time is the amount of time it takes to respond to a stimulus. In fact The time that passes between the introduction of a stimulus and the reaction by the subject to that stimulus. The aim of this interventional study is evaluation of bright light effects on concentration and diffuse attention reaction time, tension, angry, fatigue and alertness among shift workers. There are several incentives that can reduce the reaction time or added. Bright light as one of the environmental factors can reduce reaction time. Material &Method: This cross-sectional descriptive study was conducted in 1391, in 88 subjects (44 Fixed morning worker and 44 shift worker ) In a 24 h time (13-16-19-22-1-4-7-10) in an ordinary light situation after a randomly selected sample size calculation, concentration and diffuse attention test (reaction time) has been done. After intervention and using of bright light (4500lux), again reaction time test was done. After analyzing by ElISA method obtained data were analyzed by statistical software SPSS 19 and using T-test and ANOVA statistical analysis. Results: Between average of reaction time tests in ordinary light exposed to fixed morning workers and bright light exposed to shift worker, with 95% CI, (P>%5) there was no significant relationship. After the intervention and the use of bright light (4500 lux),between average of concentration and diffused attention reaction time tests in ordinary light exposure on the fixed morning workers and bright light exposure shift workers with 95% CI, (P<5%) there was significant relationship. Conclusion: In sometimes of 24 h during ordinary light exposure concentration and diffused attention reaction time has changed in shift workers. After intervention, during bright light (4500lux) exposure as a light shower, focused and diffuse attention reaction time, tension ,angry and fatigue decreased.Keywords: bright light, reaction time, tension, angry, fatigue, alertness
Procedia PDF Downloads 39120193 Statistical Models and Time Series Forecasting on Crime Data in Nepal
Authors: Dila Ram Bhandari
Abstract:
Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.Keywords: time series analysis, forecasting, ARIMA, machine learning
Procedia PDF Downloads 16920192 Generating Real-Time Visual Summaries from Located Sensor-Based Data with Chorems
Authors: Z. Bouattou, R. Laurini, H. Belbachir
Abstract:
This paper describes a new approach for the automatic generation of the visual summaries dealing with cartographic visualization methods and sensors real time data modeling. Hence, the concept of chorems seems an interesting candidate to visualize real time geographic database summaries. Chorems have been defined by Roger Brunet (1980) as schematized visual representations of territories. However, the time information is not yet handled in existing chorematic map approaches, issue has been discussed in this paper. Our approach is based on spatial analysis by interpolating the values recorded at the same time, by sensors available, so we have a number of distributed observations on study areas and used spatial interpolation methods to find the concentration fields, from these fields and by using some spatial data mining procedures on the fly, it is possible to extract important patterns as geographic rules. Then, those patterns are visualized as chorems.Keywords: geovisualization, spatial analytics, real-time, geographic data streams, sensors, chorems
Procedia PDF Downloads 40520191 Synthesis of Modified Cellulose for the Capture of Uranyl Ions from Aqueous Solutions
Authors: Claudia Vergara, Oscar Valdes, Jaime Tapia, Leonardo Santos
Abstract:
The poly(amidoamine) dendrimers (PAMAM) are a class of material introduced by D. Tomalia. Modifications of the PAMAM dendrimer with several functional groups have attracted the attention for new interesting properties and new applications in many fields such as chemistry, physics, biology, and medicine. However, in the last few years, the use of dendrimers in environmental applications has increased due to pollution concerns. In this contribution, we report the synthesis of three new PAMAM derivates modified with asparagine aminoacid supported in cellulose: PG0-Asn (PAMAM-asparagine), PG0-Asn-Trt (with trityl group) and PG0-Asn-Boc-Trt (with tert-butyl oxycarbonyl group). The functionalization of generation 0 PAMAM dendrimer was carried out by amidation reaction by using an EDC/HOBt protocol. In a second step, functionalized dendrimer was covalently supported to the cellulose surface and used to study the capture of uranyl ions from aqueous solution by fluorescence spectroscopy. The structure and purity of the desired products were confirmed by conventional techniques such as FT-IR, MALDI, elemental analysis, and ESI-MS. Batch experiments were carried out to determine the affinity of uranyl ions with the dendrimer in aqueous solution. Firstly, the optimal conditions for uranyl capture were obtained, where the optimum pH for the removal was 6, the contact time was 4 hours, the initial concentration of uranyl was 100 ppm, and the amount of the adsorbent to be used was 2.5 mg. PAMAM significantly increased the capture of uranyl ions with respect to cellulose as the starting substrate, reaching 94.8% of capture (PG0), followed by 91.2% corresponding to PG0-Asn-Trt, then 70.3% PG0-Asn and 24.2% PG0-Asn-Boc-Trt. These results show that the PAMAM dendrimer is a good option to remove uranyl ions from aqueous solutions.Keywords: asparagine, cellulose, PAMAM dendrimer, uranyl ions
Procedia PDF Downloads 14220190 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques
Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt
Abstract:
Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.Keywords: forecasting, time series, auto regression, ARCH, ARMA
Procedia PDF Downloads 35120189 The Study on Corpse Floating Time in Shanghai Region of China
Authors: Hang Meng, Wen-Bin Liu, Bi Xiao, Kai-Jun Ma, Jian-Hui Xie, Geng Fei, Tian-Ye Zhang, Lu-Yi Xu, Dong-Chuan Zhang
Abstract:
The victims in water are often found in the coastal region, along river region or the region with lakes. In China, the examination for the bodies of victims in the water is conducted by forensic doctors working in the public security bureau. Because the enter water time for most of the victims are not clear, and often lack of monitor images and other information, so to find out the corpse enter water time for victims is very difficult. After the corpse of the victim enters the water, it sinks first, then corruption gas produces, which can make the density of the corpse to be less than water, and thus rise again. So the factor that determines the corpse floating time is temperature. On the basis of the temperature data obtained in Shanghai region of China (Shanghai is a north subtropical marine monsoon climate, with an average annual temperature of about 17.1℃. The hottest month is July, the average monthly temperature is 28.6℃, and the coldest month is January, the average monthly temperature is 4.8℃). This study selected about 100 cases with definite corpse enter water time and corpse floating time, analyzed the cases and obtained the empirical law of the corpse floating time. For example, in the Shanghai region, on June 15th and October 15th, the corpse floating time is about 1.5 days. In early December, the bodies who entered the water will go up around January 1st of the following year, and the bodies who enter water in late December will float in March of next year. The results of this study can be used to roughly estimate the water enter time of the victims in Shanghai. Forensic doctors around the world can also draw on the results of this study to infer the time when the corpses of the victims in the water go up.Keywords: corpse enter water time, corpse floating time, drowning, forensic pathology, victims in the water
Procedia PDF Downloads 19920188 Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements
Authors: Shagufta Tabassum
Abstract:
The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. In this paper, we discuss the basic calibration and normalization procedure for time-domain reflectometry measurements. Our approach is to explain the different types of error occur during TDR measurements and how these errors can be eliminated or minimized.Keywords: time domain reflectometry measurement techinque, cable and connector loss, oscilloscope loss, and normalization technique
Procedia PDF Downloads 21020187 An excessive Screen Time of High School Students in Their Free Time Promotes Our Young People’s Risk of Obesity
Authors: Susana Aldaba Yaben, Marga Echauri Ozcoidi, Rosario Osinaga Cenoz
Abstract:
It was decided to make a diagnosis with students of Berriozar High School between 12 and 15 years (both included) for their lifestyles in relation to eating habits, BMI (Body Mass Index), physical activity, drugs, interpersonal relationships and screen time. The aim of this survey is identifying needs of this population and depending on the results, we could program socio-educational activities. This action is part of the Community Health Promotion Programme and healthy lifestyles in childhood and youth of Berriozar. The eating habits, a lack of physical activity and an excessive screen time are causes of 26,75% of obese or overweight young people. First of all, many of them have got a diet enriched in saturated fats and sugars. Secondly, most of them do not practise physical exercise daily and finally, their screen time are higher than the recommendation (until 2 hours a day).Keywords: lifestyle, diet, BMI, physical activity, screen time, education, youth
Procedia PDF Downloads 57820186 The Efficacy of Psychological Interventions for Psychosis: A Systematic Review and Network Meta-Analysis
Authors: Radu Soflau, Lia-Ecaterina Oltean
Abstract:
Background: Increasing evidence supports the efficacy of psychological interventions for psychosis. However, it is unclear which one of these interventions is most likely to address negative psychotic symptoms and related outcomes. We aimed to determine the relative efficacy of psychological and psychosocial interventions for negative symptoms, overall psychotic symptoms, and related outcomes. Methods: To attain this goal, we conducted a systematic review and network meta-analysis. We searched for potentially eligible trials in PubMed, EMBASE, PsycInfo, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases up until February 08, 2022. We included randomized controlled trials that investigated the efficacy of psychological for adults with psychosis. We excluded interventions for prodromal or “at risk” individuals, as well as patients with serious co-morbid medical or psychiatric conditions (others than depressive and/or anxiety disorders). Two researchers conducted study selection and performed data extraction independently. Analyses were run using STATA network and mvmeta packages, applying a random effect model under a frequentist framework in order to compute standardized mean differences or risk ratio. Findings: We identified 47844 records and screened 29466 records for eligibility. The majority of eligible interventions were delivered in addition to pharmacological treatment. Treatment as usual (TAU) was the most frequent common comparator. Theoretically driven psychological interventions generally outperformed TAU at post-test and follow-up, displaying small and small-to-medium effect sizes. A similar pattern of results emerged in sensitivity analyses focused on studies that employed an inclusion criterion for relevant negative symptom severity. Conclusion: While the efficacy of some psychological interventions is promising, there is a need for more high-quality studies, as well as more trials directly comparing psychological treatments for negative psychotic symptoms.Keywords: psychosis, network meta-analysis, psychological interventions, efficacy, negative symptoms
Procedia PDF Downloads 10820185 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach
Authors: Hassan M. H. Mustafa
Abstract:
This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology
Procedia PDF Downloads 47520184 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems
Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu
Abstract:
Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.Keywords: agent communication, introspective agent, isolation of agent, policy enforcement system
Procedia PDF Downloads 29920183 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation
Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian
Abstract:
The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction
Procedia PDF Downloads 10520182 Designing Electronic Kanban in Assembly Line Tailboom at XYZ Corp to Reducing Lead Time
Authors: Nadhifah A. Nugraha, Dida D. Damayanti, Widia Juliani
Abstract:
Airplanes manufacturing is growing along with the increasing demand from consumers. The helicopter's tail called Tailboom is a product of the helicopter division at XYZ Corp, where the Tailboom assembly line is a pull system. Based on observations of existing conditions that occur at XYZ Corp, production is still unable to meet the demands of consumers; lead time occurs greater than the plan agreed upon by the consumers. In the assembly process, each work station experiences a lack of parts and components needed to assemble components. This happens because of the delay in getting the required part information, and there is no warning about the availability of parts needed, it makes some parts unavailable in assembly warehouse. The lack of parts and components from the previous work station causes the assembly process to stop, and the assembly line also stops at the next station. In its completion, the production time was late and not on the schedule. In resolving these problems, the controlling process is needed, which is controlling the assembly line to get all components and subassembly in the right amount and at the right time. This study applies one of Just In Time tools, namely Kanban and automation, should be added as efficiently and effectively communication line becomes electronic Kanban. The problem can be solved by reducing non-value added time, such as waiting time and idle time. The proposed results of controlling the assembly line of Tailboom result in a smooth assembly line without waiting, reduced lead time, and achieving production time according to the schedule agreed with the consumers.Keywords: kanban, e-Kanban, lead time, pull system
Procedia PDF Downloads 12120181 Room Level Indoor Localization Using Relevant Channel Impulse Response Parameters
Authors: Raida Zouari, Iness Ahriz, Rafik Zayani, Ali Dziri, Ridha Bouallegue
Abstract:
This paper proposes a room level indoor localization algorithm based on the use Multi-Layer Neural Network (MLNN) classifiers and one versus one strategy. Seven parameters of the Channel Impulse Response (CIR) were used and Gram-Shmidt Orthogonalization was performed to study the relevance of the extracted parameters. Simulation results show that when relevant CIR parameters are used as position fingerprint and when optimal MLNN architecture is selected good room level localization score can be achieved. The current study showed also that some of the CIR parameters are not correlated to the location and can decrease the localization performance of the system.Keywords: mobile indoor localization, multi-layer neural network (MLNN), channel impulse response (CIR), Gram-Shmidt orthogonalization
Procedia PDF Downloads 36420180 Project Time Prediction Model: A Case Study of Construction Projects in Sindh, Pakistan
Authors: Tauha Hussain Ali, Shabir Hussain Khahro, Nafees Ahmed Memon
Abstract:
Accurate prediction of project time for planning and bid preparation stage should contain realistic dates. Constructors use their experience to estimate the project duration for the new projects, which is based on intuitions. It has been a constant concern to both researchers and constructors to analyze the accurate prediction of project duration for bid preparation stage. In Pakistan, such study for time cost relationship has been lacked to predict duration performance for the construction projects. This study is an attempt to explore the time cost relationship that would conclude with a mathematical model to predict the time for the drainage rehabilitation projects in the province of Sindh, Pakistan. The data has been collected from National Engineering Services (NESPAK), Pakistan and regression analysis has been carried out for the analysis of results. Significant relationship has been found between time and cost of the construction projects in Sindh and the generated mathematical model can be used by the constructors to predict the project duration for the upcoming projects of same nature. This study also provides the professionals with a requisite knowledge to make decisions regarding project duration, which is significantly important to win the projects at the bid stage.Keywords: BTC Model, project time, relationship of time cost, regression
Procedia PDF Downloads 38720179 A Protocol for Usability of Teaching to Students with Learning Difficulties at University: An Italian Research
Authors: Tamara Zappaterra
Abstract:
The Learning Difficulties have an evolutionary nature. The international research has focused its analysis on the characteristics of Learning Difficulties in childhood, but we are still far from a thorough understanding of the nature of such disorders in adolescence and adulthood. Such issues become even more urgent in the university context. Spelling, meaning, and appropriate use of the specific vocabulary of the various disciplines represent an additional challenge for the dyslexic student. This paper explores the characteristics of Learning Difficulties in adulthood and the impact with the university teaching. It presents the results of an interdisciplinary project (educational, medical and engineering area) at University of Florence. The purpose of project is to design of a protocol for usability of teaching and individual study at university level. The project, after a first reconnaissance of user needs that have been reached with the participation of the very same protagonists, is at the stage of guidelines drafting for inclusion and education, to be used by teachers, students and administrative staff. The methodologies used are a questionnaire built on purpose and a series of focus groups with users. For collecting data during the focus groups it was decided to use a method typical of the Quality Function Deployment, a tool originally used for quality management, whose versatility makes it easy to use in a number of different context. The paper presents furthermore the findings of the project, the most significant elements of the guidelines for teaching, i.e. the section for teachers, whose aim is to implement a Learning Difficulties-friendly teaching, even at the university level, in compliance with italian Law 170/2010. The Guidelines for the didactic and inclusion of Learning Difficulties students of the University of Florence are articulated around a global and systemic plan of action, meant to accompany and protect the students during their study career, even before enrolling at the University, with different declination: the logistical, relational, educational, and didactic levels have been considered. These guidelines in Italy received the endorsement of the CNUDD. It is a systemic intervention plan for Learning Difficulties students, which roused and keeps rousing the interest of all the university system, with a radical consideration on academic teaching. Since while we try to provide the best Learning Difficulties-friendly didactic in compliance with the rules, no one can be exempted from a wider consideration on the nature and the quality of university teaching offered to all students.Keywords: didactic tools, learning difficulties, special and inclusive education, university teaching
Procedia PDF Downloads 28420178 Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms
Authors: Wael M. Bazzi, Amir Rastegarnia, Azam Khalili
Abstract:
In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.Keywords: adaptive filter, distributed estimation, sensor network, IDLMS algorithm
Procedia PDF Downloads 63820177 Artificial Intelligence Based Method in Identifying Tumour Infiltrating Lymphocytes of Triple Negative Breast Cancer
Authors: Nurkhairul Bariyah Baharun, Afzan Adam, Reena Rahayu Md Zin
Abstract:
Tumor microenvironment (TME) in breast cancer is mainly composed of cancer cells, immune cells, and stromal cells. The interaction between cancer cells and their microenvironment plays an important role in tumor development, progression, and treatment response. The TME in breast cancer includes tumor-infiltrating lymphocytes (TILs) that are implicated in killing tumor cells. TILs can be found in tumor stroma (sTILs) and within the tumor (iTILs). TILs in triple negative breast cancer (TNBC) have been demonstrated to have prognostic and potentially predictive value. The international Immune-Oncology Biomarker Working Group (TIL-WG) had developed a guideline focus on the assessment of sTILs using hematoxylin and eosin (H&E)-stained slides. According to the guideline, the pathologists use “eye balling” method on the H&E stained- slide for sTILs assessment. This method has low precision, poor interobserver reproducibility, and is time-consuming for a comprehensive evaluation, besides only counted sTILs in their assessment. The TIL-WG has therefore recommended that any algorithm for computational assessment of TILs utilizing the guidelines provided to overcome the limitations of manual assessment, thus providing highly accurate and reliable TILs detection and classification for reproducible and quantitative measurement. This study is carried out to develop a TNBC digital whole slide image (WSI) dataset from H&E-stained slides and IHC (CD4+ and CD8+) stained slides. TNBC cases were retrieved from the database of the Department of Pathology, Hospital Canselor Tuanku Muhriz (HCTM). TNBC cases diagnosed between the year 2010 and 2021 with no history of other cancer and available block tissue were included in the study (n=58). Tissue blocks were sectioned approximately 4 µm for H&E and IHC stain. The H&E staining was performed according to a well-established protocol. Indirect IHC stain was also performed on the tissue sections using protocol from Diagnostic BioSystems PolyVue™ Plus Kit, USA. The slides were stained with rabbit monoclonal, CD8 antibody (SP16) and Rabbit monoclonal, CD4 antibody (EP204). The selected and quality-checked slides were then scanned using a high-resolution whole slide scanner (Pannoramic DESK II DW- slide scanner) to digitalize the tissue image with a pixel resolution of 20x magnification. A manual TILs (sTILs and iTILs) assessment was then carried out by the appointed pathologist (2 pathologists) for manual TILs scoring from the digital WSIs following the guideline developed by TIL-WG 2014, and the result displayed as the percentage of sTILs and iTILs per mm² stromal and tumour area on the tissue. Following this, we aimed to develop an automated digital image scoring framework that incorporates key elements of manual guidelines (including both sTILs and iTILs) using manually annotated data for robust and objective quantification of TILs in TNBC. From the study, we have developed a digital dataset of TNBC H&E and IHC (CD4+ and CD8+) stained slides. We hope that an automated based scoring method can provide quantitative and interpretable TILs scoring, which correlates with the manual pathologist-derived sTILs and iTILs scoring and thus has potential prognostic implications.Keywords: automated quantification, digital pathology, triple negative breast cancer, tumour infiltrating lymphocytes
Procedia PDF Downloads 12120176 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels Along The Jeddah Coast, Saudi Arabia
Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati
Abstract:
Sea level rise threatens to increase the impact of future storms and hurricanes on coastal communities. Accurate sea level change prediction and supplement is an important task in determining constructions and human activities in coastal and oceanic areas. In this study, support vector machines (SVM) is proposed to predict daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal parameter values of kernel function are determined using a genetic algorithm. The SVM results are compared with the field data and with back propagation (BP). Among the models, the SVM is superior to BPNN and has better generalization performance.Keywords: tides, prediction, support vector machines, genetic algorithm, back-propagation neural network, risk, hazards
Procedia PDF Downloads 47120175 Subjective Temporal Resources: On the Relationship Between Time Perspective and Chronic Time Pressure to Burnout
Authors: Diamant Irene, Dar Tamar
Abstract:
Burnout, conceptualized within the framework of stress research, is to a large extent a result of a threat on resources of time or a feeling of time shortage. In reaction to numerous tasks, deadlines, high output, management of different duties encompassing work-home conflicts, many individuals experience ‘time pressure’. Time pressure is characterized as the perception of a lack of available time in relation to the amount of workload. It can be a result of local objective constraints, but it can also be a chronic attribute in coping with life. As such, time pressure is associated in the literature with general stress experience and can therefore be a direct, contributory burnout factor. The present study examines the relation of chronic time pressure – feeling of time shortage and of being rushed, with another central aspect in subjective temporal experience - time perspective. Time perspective is a stable personal disposition, capturing the extent to which people subjectively remember the past, live the present and\or anticipate the future. Based on Hobfoll’s Conservation of Resources Theory, it was hypothesized that individuals with chronic time pressure would experience a permanent threat on their time resources resulting in relatively increased burnout. In addition, it was hypothesized that different time perspective profiles, based on Zimbardo’s typology of five dimensions – Past Positive, Past Negative, Present Hedonistic, Present Fatalistic, and Future, would be related to different magnitudes of chronic time pressure and of burnout. We expected that individuals with ‘Past Negative’ or ‘Present Fatalist’ time perspectives would experience more burnout, with chronic time pressure being a moderator variable. Conversely, individuals with a ‘Present Hedonistic’ - with little concern with the future consequences of actions, would experience less chronic time pressure and less burnout. Another temporal experience angle examined in this study is the difference between the actual distribution of time (as in a typical day) versus desired distribution of time (such as would have been distributed optimally during a day). It was hypothesized that there would be a positive correlation between the gap between these time distributions and chronic time pressure and burnout. Data was collected through an online self-reporting survey distributed on social networks, with 240 participants (aged 21-65) recruited through convenience and snowball sampling methods from various organizational sectors. The results of the present study support the hypotheses and constitute a basis for future debate regarding the elements of burnout in the modern work environment, with an emphasis on subjective temporal experience. Our findings point to the importance of chronic and stable temporal experiences, as time pressure and time perspective, in occupational experience. The findings are also discussed with a view to the development of practical methods of burnout prevention.Keywords: conservation of resources, burnout, time pressure, time perspective
Procedia PDF Downloads 181